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comorbidities treatment
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(IQUEMA), University of Córdoba, Córdoba, Spain, 5CIBER Fragilidad y Envejecimiento Saludable
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Background: Obesity (OB) is a chronic metabolic disease with important

associated comorbidities and mortality. Vitamin D supplementation is

frequently administered after bariatric surgery (BS), so as to reduce OB-related

complications, maybe including chronic inflammation.

Aim: This study aimed to explore relations between vitamin D metabolites and

components of the inflammasomemachinery in OB before and after BS and their

relations with the improvement of metabolic comorbidities.

Patients and methods: Epidemiological/clinical/anthropometric/biochemical

evaluation was performed in patients with OB at baseline and 6 months after

BS. Evaluation of i) vitamin-D metabolites in plasma and ii) components of the

inflammasome machinery and inflammatory-associated factors [NOD-like-

receptors (NLRs), inflammasome-activation-components, cytokines and

inflammation/apoptosis-related components, and cell-cycle and DNA-damage

regulators] in peripheral blood mononuclear cells (PBMCs) was performed at

baseline and 6 months after BS. Clinical and molecular correlations/associations

were analyzed.

Results: Significant correlations between vitamin D metabolites and

inflammasome-machinery components were observed at baseline, and these

correlations were significantly reduced 6months after BS in parallel to a decrease

in inflammation markers, fat mass, and body weight. Treatment with calcifediol

remarkably increased 25OHD levels, despite 24,25(OH)2D3 remained stable after
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BS. Several inflammasome-machinery components were associated with

improvement in metabolic comorbidities, especially hypertension and

dyslipidemia.

Conclusion: The beneficial effects of vitamin D on OB-related comorbidities

after BS patients are associated with significant changes in the molecular

expression of key inflammasome-machinery components. The expression

profile of these inflammasome components can be dynamically modulated in

PBMCs after BS and vitamin D supplementation, suggesting that this profile could

likely serve as a sensor and early predictor of the reversal of OB-related

complications after BS.
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Introduction

Obesity (OB) is characterized by an excess amount of body fat;

it has an important negative impact on health and quality of life (1).

OB is a major public health problem due to its growing incidence,

high frequency of comorbidities, and mortality (2, 3). Metabolic

comorbidities are observed in 10%–30% of patients (4), especially

type-2 diabetes (T2DM), hypertension (HT), heart disease, high

total cholesterol and triglycerides, stroke, and non-alcoholic fatty

liver disease (NAFLD) (5–7).

Bariatric surgery (BS) is a well-recognized treatment for severe

OB and generates superior outcomes compared with non-surgical

methods (8). BS induces substantial and sustained weight loss

through a variety of mechanisms (9–12), which are accompanied

by reduction in obesity-related comorbidities and improvement in

quality of life (13, 14). In clinical practice, the measurement of the

total blood concentration of 25OHD is the marker of the nutritional

status of the vitamin D endocrine system (VDES) (15).. Obesity is

consistently characterized by lower 25(OH)D blood levels due to

several mechanisms including volumetric dilution, adipose tissue

(AT) sequestration, impaired hepatic 25-hydroxylation, altered

VDES metabolism in AT, and some unknown additional

mechanisms (16–20).

Several external factors influence serum/plasma 25(OH)D levels

such as season, geographical location, ethnicity, and sunlight

exposure (21). Additionally, endogenous factors such as OB,

starvation, diabetes, and glucocorticoids have a major influence

on cytochrome P450 Family 2 subfamily R member 1 (CYP2R1)

activity, affecting the production, and in consequence the

circulating levels of 25(OH)-D (22). In this context, total serum

25(OH)-D may incorrectly reflect VDES status. It has been

proposed that the ratio of serum 24,25-dihydroxyvitamin D

(24,25(OH)2 D to 25(OH)D (vitamin D metabolite ratio [VMR])

could represent a new and more reliable biomarker for assessing

vitamin D status in processes such as vitamin D deficiency,

idiopathic childhood hypercalcemia, and chronic kidney disease,

and even assessing the entire VDES metabolome, idiopathic
02
childhood hypercalcemia, and chronic kidney disease (23), or

even to assess the entire VDES metabolome by liquid

chromatography coupled to tandem mass spectrometry (SPE–LC–

MS/MS) as the technique of choice (24).

Deficiency of 25(OH)-D has been associated with metabolic

comorbidities including NAFLD, T2DM, insulin resistance, and

metabolic syndrome (25–27). In this context, several studies have

reported the influence of vitamin D supplementation on reversion

of metabolic comorbidities with contradictory results (28, 29).

Recent studies have shown that low levels of 25(OH)-D have

been associated with a higher prevalence of infections and

autoimmune diseases, while adequate levels have been correlated

to protection of these processes (30, 31).

OB is characterized by the presence of low-grade chronic

inflammation, due to increased pro-inflammatory cytokine

production by macrophages and adipocytes. Multiple studies have

shown that in the presence of abdominal adiposity, vitamin D

deficiency is linked to inflammation and decreased insulin

sensitivity (32).

VDES is a key modulator of immune function and inflammation,

the active metabolite of the system reduces adipocyte chemokine and

cytokine release, and monocyte chemotaxis (33). Its effects on the

systemic and tissue-specific inflammatory response have been

attributed to a variety of factors, including suppression of the

nuclear factor-kB (NF-kb pathway), T-helper cell anti-

inflammatory activation, reduction in toll-like receptor 4 (TLR-4)

expression (which reduces the differentiation of dendritic cells), and

modulation of inflammasome activation (34, 35).

Inflammasomes are multimeric protein complexes that detect

pathogenic microorganisms and sterile stressors, activate highly

pro-inflammatory cytokines, and are, in consequence, responsible

for innate immune system response (36, 37). Inflammasome have

germline-encoded pattern-recognition receptors (PRRs), which

recognize the presence of unique microbial components

[pathogen-associated molecular patterns (PAMPs)], including

bacterial flagellin or damage-associated molecular patterns

(DAMPs), such as uric acid crystals, which are generated by
frontiersin.org
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endogenous stress (38); in consequence, inflammasome activates

the innate immune system (39) in response to infection and/or to

repair damaged tissues (40).

Remarkably, the activity of inflammasome components is

regulated by different regulatory proteins, metabolic pathways,

and a regulatory mitochondrial hub (37, 41). In consequence, the

activation of these inflammasome components leads to the

secretion of diverse inflammatory cytokines and key receptors in

immune cells, thus inducing the activation of inflammatory

cascades, which can lead, in some cases, to cell-cycle alterations

and DNA damage (36, 41).

Dysregulation of inflammasome has been associated with

several inflammatory disorders including Alzheimer’s disease,

autoinflammatory diseases, and OB-related comorbidities,

including T2DM, NAFLD, and atherosclerosis (36, 37). A

preliminary study of our group has reported dysregulation of

several components of inflammasome in patients with OB and

their relation with the presence of metabolic comorbidities (42).

Considering the link between vitamin D, inflammation,

inflammasome, and OB, the aim of the present study was to

investigate the clinical relation between VDES status,

inflammasome activation, and reversal of metabolic comorbidities

in patients with OB who underwent BS and received oral

supplementation with calcifediol (25(OH)3. Peripheral blood

mononuclear cells (PBMCs) were used, since gene expression

patterns are commonly reflected in these cells and are closely

related to the molecular profile of the disease (43). Specifically,

the gene expression levels of four groups of components of the

inflammasome machinery, namely, 1) NLRs or NOD-like receptors,

2) regulators of inflammasome activation, 3) cytokines and

inflammation/apoptosis-related components, and 4) cell-cycle and

DNA-damage regulators, were analyzed. Additionally, we measured

VDES metabolites using SPE–LC–MS/MS, which has been reported

as an accurate and robust method for measuring vitamin D

metabolites in human serum (23, 44). The putative relations

between gene expression levels of the inflammasome machinery

with vitamin D metabolites and the clinical evolution of metabolic

and inflammatory comorbidities, associated with OB, after BS

were explored.
Materials and methods

Patients

This study was approved by the Ethics Committee of the Reina

Sofia University Hospital (Cordoba, Spain; registration code

CB01072018) and was conducted in accordance with the

Declaration of Helsinki and according to national and

international guidelines. This is a prospective open-label study,

wherein a written informed consent was signed by every individual

before inclusion into the study. A total of 40 consecutive patients

who underwent BS were included. Clinical records were used to

collect full medical history of all patients (demographic and clinical

characteristics of patients are summarized in Table 1). All patients

were managed following available clinical guidelines and
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oral calcifediol in variable dose in order to reach blood levels >30

ng/dL (0.266 mg every 10, 15, 21, or 30 days). Clinical follow-up was

performed by the same clinician in all cases at baseline (before

surgery) and 6 months after BS. Body composition was evaluated

using a multi-frequency bioimpedanciometer (Tanita MC-780MA,

Barcelona, Spain), and waist circumference was measured at

minimal expiration. Blood samples were obtained at baseline and

6 months after BS from all patients to obtain plasma, serum, and

PBMCs. Regular physical exercise and health style education are

regularly advised to all patients; specific evaluation of the patient

adherence was not performed.
Chemicals and reagents

Mass spectrometry grade ammonium formate and formic acid

(FA) were acquired from Sigma (Sigma–Aldrich, St. Louis, MO,

USA) as ionization and sorbent activation agents; methanol and

acetonitrile (ACN) from Scharlab (Barcelona, Spain) and deionized

water (18 mW cm) from a Millipore Milli-Q water purification

system were employed for the preparation of chromatographic

mobile phases and SPE solutions.

Analytical standards of vitamin D3, 25-hydroxyvitamin D3 [25

(OH)D3], 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-

dihydroxyvitamin D3 [24,25(OH)2D3] and their deuterated

internal standards (ISs), vitamin D3-d3, 25(OH)D3-d3, 1,25(OH)

2D3-d3, and 24,25(OH)2D3-d6, were purchased from Sigma-

Aldrich. 1,24,25-Trihydroxyvitamin D3 [1,24,25(OH)3D3]

analytical standard was obtained from Quimigen S.L. (Madrid,

Spain), but no IS for this analyte was available. According to

endogenous concentration ranges of these metabolites found in

blood samples, a multistandard working solution was prepared:

vitamin D3 at 2.5 mg mL–1, 25(OH)D3 at 15 mg mL–1, 24,25(OH)2D3

at 0.5 mg mL–1, 1,25(OH)2D3 at 15 ng mL–1, and 1,24,25(OH)3D3 at

50 ng mL–1. Since the presence of matrix effects has been proven in

LC–MS/MS analyses of vitamin D3 and its metabolites in blood

samples [2,16], a working solution of ISs was used, in order to

correct results variations due to this phenomenon, at the following

concentrations: vitamin D3-d3 and 25(OH)D3-d3 at 625 ng mL–1,

24,25(OH)2D3-d6 at 125 ng mL–1, and 1,25(OH)2D3-d3 at 7.5 ng

mL–1.
Online SPE–LC–MS/MS determination

Sample preparation step consisted of thawing plasma samples at

room temperature, centrifuging (4°C) at 20,000×g for 10 min and

sterilizing the resulting supernatant fraction by filtration. Then,

aliquots of 240 mL were pretreated by adding 10 mL of ISs working

solution to each one followed by SPE after shaking in vortex for 2

min. Regarding SPE stage, activation of cartridge’s sorbent was

achieved by adding 6 mL of methanol and conditioning and

equilibration of cartridges by adding 8 mL of the loading sample

solvent mix as recommended by the manufacturer. However,

different loading sample and interferents clean-up volumes and
frontiersin.org
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solvent mixes were evaluated for appropriate process performance.

Finally, elution of retained metabolites was achieved with LCmobile

phases during 5 min.

The composition of LC mobile phases was 5 mM of ammonium

formate in water (phase A) and 5 mM of ammonium formate in

methanol (phase B). Chromatographic gradient was programmed

as follows with a constant flowrate of 0.5 mL min−1: from 85% of

phase B, maintained during the initial 2 min, up to 100% of phase B

in the next 5 min, conditions that were kept constant for the final 7

min of the chromatography. Furthermore, a post-run of 10

additional min was set to re-establish and equilibrate the initial

conditions for the consequent run.

Chromatograph–detector interface parameters were set to 350°

C and 9 L min–1 of drying gas (N2), a nebulizer pressure of 50 psi,

and 4,500 V of capillary voltage. Detection was carried out in MRM

mode. All metabolites detection parameters were studied by direct

infusion of individual standard solutions at a concentration of 1

mg mL−1.

Assessment of analytical features of the proposed method was

performed according to the Center for Drug Evaluation and

Research (CDER) guidelines. Thus, linearity, sensitivity, accuracy,

precision, and recovery were characterized. Applicability of the

proposed method was also carried out for further use in

clinical studies.
Blood sampling and processing to
isolate PBMCs

Venous blood from all patients was collected in tubes

containing EDTA at baseline and 6 months after BS. PBCMs

were isolated as previously described (43, 50).
RNA extraction, quantification, and reverse
transcription

Total RNA from PBMCs was isolated using Direct-zol RNA kit

(Zymo Research, Irvine, CA, USA) following manufacturer’s

instructions and as previously described (43, 50, 51). The amount of

RNA recovered was determined and its quality assessed by the

NanoDrop2000 spectrophotometer (Thermo Fisher). Specifically, all

the RNA samples passed the quality controls, being 260/280 and 230/

260 absorbance ratios among 1.8–2.0. As previously described (43, 52,

53), 1 mg of RNA was reverse transcribed (RT) to cDNA using random

hexamer primers with the First Strand Synthesis Kit (Thermo Fisher).
Analysis of components of the
inflammasome machinery by qPCR
dynamic array based on
microfluidic technology

A 48.48 dynamic array based on microfluidic technology

(Fluidigm, San Francisco, CA, USA) was developed and

implemented to determine, simultaneously, the expression of 48
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transcripts in 48 samples, following the same methods previously

described (43, 54). Specific primers for human transcripts of the

inflammasome machinery including NLR-/NOD-like receptors

(n=7), regulators of inflammasome activation (n=15), cytokines

and inflammation/apoptosis-related components (n=18), and cell-

cycle and DNA-damage regulators (n=5) were used (42). In

addition, three housekeeping genes were used. The selection of

this panel of genes was based on two main criteria: 1) the relevance

of the given inflammasome components and other cell cycle

regulators in the inflammatory and apoptotic process and 2) the

demonstrated implication in the inflammatory response in

metabolic disorders, especially in OB conditions.

Preamplification, exonuclease treatment, and qPCR dynamic array

based on microfluidic technology were implemented following

manufacturer’s instructions using the Biomark System and the Real-

Time PCR Analysis Software (Fluidigm), as previously described (55,

56). The expression level of each transcript was adjusted by a

normalization factor (NF) obtained from the expression levels of two

different housekeeping genes [beta actin (ACTB) and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH)] using Genorm 3.3. This

selection was based on the stability of the housekeeping genes

analyzed among the experimental groups to be compared, wherein

the expression of these two housekeeping genes was not significantly

different among groups.
Statistical analysis

Between-group comparisons were analyzed by the Mann–

Whitney U test (non-parametric data), or the Kruskal–Wallis test

(non-parametric data, when we compared more than two groups).

Paired analysis was performed by Student’s t (parametric data) or

Wilcoxon test (non-parametric data). Chi-squared test was used to

compare categorical data. Statistical analyses were performed using

SPSS statistical software version 20 and Graph Pad Prism version 6.

Heatmaps and clustering analysis were performed using

MetaboAnalyst (57). Data are expressed as mean ± SD and

percentages. p-values <0.05 were considered statistically significant.
Results

Forty patients were evaluated, 55% were women, with a mean age of

45 years. As expected, patients underwent BS due to grade 3 OB

(Table 1). Gastric bypass was the most common surgical procedure;

only 17% received oral treatment with calcifediol before surgery. Six

months after BS, patients presented a significant decrease in body weight

and fat mass and increase in the percentage of lean mass (Table 2).
Changes in vitamin D metabolites in
patients undergoing bariatric surgery

In clinical practice, routine evaluation of serum calcifediol and

C-reactive protein (CRP) levels was performed during follow-up of

patients with OB who undergo BS. As expected, serum levels of
frontiersin.org
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calcifediol (using a chemiluminescence method) increased 6

months after BS due to oral treatment, while CRP levels

significantly decreased (Figure 1A). Calcium levels were normal

in all patients (median, 8.7 mg/dl).

Using SPE-LC-MD/MS, 25(OH)-D3 levels also significantly

increased, but most of the cases of extreme values (range, 4.96–

173.2 ng/ml) were observed 6 months after BS when compared with

the chemiluminescence method (range, 0.11–0.52 ng/ml).

Remarkably, 24,25OH OH)2-D3 levels do not significantly change

(Figure 1B). Additionally, 1,25(OH)2-D3 levels significantly

decreased during follow-up. Despite 24,25(OH)2-D3 was not

significantly decreased, VMR was markedly decreased 6 months

after BS, in parallel with 1,25(OH)2-D3 levels (Figure 1B).

Figure 2 shows that vitamin D3 levels (but not the other vitamin D

metabolites) correlated with fat mass at baseline [median Body Mass

Index (BMI), 46.7 kg/m2]. Six months after BS, vitamin D3 correlated

with lean mass (median BMI, 36.6 kg/m2), after significant decrease in

fat mass and increase in the percentage of lean mass (Tables 1, 2).
Vitamin D and metabolic comorbidities
reversion after BS

Patients with baseline dyslipidemia (DLP) presented with lower

25(OH)-D3 levels compared with patients without such DLP
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(Figure 3A). Any other correlation between metabolic

comorbidities and vitamin D metabolites was observed at

baseline. Remarkably, patients in which DLP and T2DM did not

reverse presented with lower vitamin D3 levels (Figure 3B).

When anthropometric variables were analyzed, improvement of

metabolic comorbidities was associated with increased abdominal

circumference at baseline and increased fat-mass difference

(Figures 3C, D).
Inflammasome is correlated with body
composition and improvement of
metabolic comorbidities after BS

At baseline, fat mass was positively correlated with some key

component of the inflammasome machinery, especially with

inflammasome-activation components (AIM2, CASP5, CASP6,

IL1b, IL18R, JNK2, and P2RX7), and also with the chemokines

CCL7, CCL8, and with IKKA, and with the NOD-like receptor1

(NLRP1) (Figure 4A). A negative correlation was also observed with

IL1a (Figure 4A). In contrast, lean mass was negatively correlated

with IL1R, JNK2, and CCL5.

Six months after BS, fat mass was negatively correlated with

IL18, TLR4, NLRC4, NLRP1, and TGFb. Fat mass did not correlate

positively with any inflammasome component. In contrast, BMI
TABLE 1 Clinical characteristic of the evaluated patients (n=40).

Characteristic Baseline 6 months after
bariatric surgery

p°

Gender (%)

Female 55 (22/40)

Male 45 (18/40)

Age (years) 45.23 ± 10.65

BMI (kg/m2) 46.7 (41–52) 36.6 (31–39) <0.001

Body weight 122.5 (82–186) 91 (64–137) <0.001

Fat mass (%) 45 (43–47) 36 (22–46) <0.001

Fat mass (kg) 54 (26–87) 35.5 (17–52) <0.001

Lean mass (%) 54.2 (47–61) 60.8 (52–73) 0.03

Lean mass (kg) 67 (45–97) 59.5 (24–92) 0.004

Water (%) 38.9 (33.48) 45.5 (37–56) <0.001

Water (kg) 52 (35–73) 44.4 (29–65) <0.001

Abdominal perimeter 134 (114–154) 117 (91–146) <0.001

Serum 25–OHD (ng/dl)* 17.4 (11–24) 32.1 (25–40) <0.001

Serum RCP (g/dl) 6.8 (4–10) 2.1 (.03–4) <0.001

Weight loss (%) 25.7 (20–28)

Type of surgery

Sleeve (%) 27.5 (11/40)

Bypass (%) 72.5 (29/40)
frontie
*Determined using chemiluminescence with acridine ster.
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positively correlated with IL18, JNK2, P2XR7, NLRP7, and

TGFb (Figure 4B).

Patients who had improved hypertension 6 months after surgery

presented with increased expression levels of the inflammasome

activation components (ASC, P2X7, and IL18R), cytokines (CCL8,

CXCL2, IKKA, and IL6R), NOD-like receptors (NLRP1), and cell

cycle/DNA regulators (TGFb) (Figure 5A). These patients also

presented with increased levels of CASP5 and NFKB and tended to

express increased levels of IL1RA, NLRP3, and CDKN2A (Figure 5B).
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When metabolic comorbidities were analyzed (hypertension,

T2DM, and DLP), their improvement was associated with increased

baseline levels of the inflammasome activation component IL18R

(Figure 6A; CASP4 and TGFB tended to be also overexpressed in

these patients). Additionally, the improvement of these metabolic

comorbidities was also associated with increased expression levels

of CCL8 and NLRP3 6 months after BS. Remarkably, CASP4,

IKKA, and CDKN2A tended to be overexpressed in these

patients (Figure 6B).
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FIGURE 1

Change in serum levels of RCP and calcidiol using chemoluminiscence in patients before and 6 months after bariatric surgery (A). Change in vitamin
D metabolites using SPE-LC-MD/MS in patients before and 6 months after bariatric surgery (B). Data represent the median ± interquartile range.
Asterisks (***p<0.001) indicate significant changes between the clinical variables. ns, non-significant.
TABLE 2 Clinical characteristic of the evaluated patients (n=40) according to the presence of metabolic comorbidities at diagnosis.

Characteristic Without metabolic comorbidities With metabolic comorbidities

Baseline 6 months after
bariatric surgery

p Baseline 6 months after
bariatric surgery

p

Age (years) 37 ± 7.7 49.6 ± 9

BMI (kg/m2) 46.7 ± 4 34.6 ± 4.6 0.001 45.8 ± 6.8 34.1 ± 5 <0.001

Body weight (kg) 126.9 ± 1 5.5 93.5 ± 14.2 0.001 128.6 ± 25.2 97 ± 17.8 <0.001

Fat mass (%) 49.2 ± 4.4 31.7 ± 11.3 0.001 48.5 ± 5.2 33.3 ± 8.6 <0.001

Fat mass (kg) 62.2 ± 6.3 30.3 ± 11.1 0.001 61.9 ± 15.3 31.9 ± 11.2 <0.001

Lean mass (%) 52.9 ± 4.1 57.7 ± 8.6 0.2 52.5 ± 5.3 62.8 ± 6.2 0.068

Lean mass (kg) 61.8 ± 15.3 60.5 ± 13.8 0.3 65.6 ± 14 60.4 ± 14.8 0.005

Water (%) 38.4 ± 3.5 49.1 ± 9 0.001 38.9 ± 4.6 47.7 ± 6.8 <0.001

Water (Kg) 49.7 ± 10 45.7 ± 9.9 0.009 51.3 ± 12.6 44.5 ± 10 <0.001

Abdominal perimeter (cm) 133 ± 11 107 ± 9 0.001 138 ± 12.3 113.7 ± 11.2 <0.001

Serum 25-OHD (ng/dl)* 19.9 ± 8.1 28.1 ± 8.9 0.016 15.4 ± 5.9 29.6 ± 11 <0.001

Serum RCP (g/dl) 8.6 ± 4.4 2 ± 2 0.002 10 ± 7.3 4.3 ± 5.8 <0.001

Weight loss (%) 26.3 ± 5.7 25.9 ± 5.1
frontie
*Measured using a chemiluminescence method.
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Inflammasome and vitamin D metabolites
are correlated in patients with obesity

At baseline, 24,25(OH)2-D3 and VMR positively correlated with

key inflammasome machinery components, especially with the
Frontiers in Endocrinology 07
inflammasome activation components (CASP1, CASP5, IL1b,

IL1RA, and P2X7) and with cell cycle and DNA regulators

(ATM, CDKN1B, CDKN2D, and SIRT1). In contrast, 25(OH)-D3

correlated with IL1b, IL1RA, CXCR1, IL6R, SIRT1, and

TGFb (Figure 7A).
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Significant clinical–molecular associations between vitamin D metabolites and the presence of baseline hypertension, dyslipidemia, and metabolic
comorbidities in patients with OB before surgery (A); clinical–molecular associations between vitamin D metabolites and improvement of
hypertension and metabolic comorbidities 6 months after surgery (B). Clinical associations between anthropometric measurements and
improvement of metabolic comorbidities at baseline (C) and 6 months after surgery (D). Data represent the median ± interquartile range. Asterisks
(*p<0.05) indicate significant changes between the clinical variables.
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Clinical correlations between bioelectrical impedance, anthropometric measurements, and vitamin D metabolites in patients before (A) and 6
months after bariatric surgery (B). Only significant correlations (p<0.05) are presented.
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Six months after BS, 24,25(OH)2-D3 negatively correlated only

with AIM2, and 25(OH)-D3 and VMR did not correlate with

inflammasome after BS (Figure 7B).
Discussion

In the present study, changes in VDES metabolites and relevant

components of the inflammasome machinery (and inflammatory-

associated factors) were comprehensively evaluated in a well-

characterized cohort of patients with severe OB, who underwent

BS and received treatment with oral calcifediol during 6 months.

Additionally, their relation with metabolic comorbidities was

studied. To the best of our knowledge, this is the first report that

links important inflammasome components, VDES metabolites,

and reversal of metabolic comorbidities in the clinical practice.
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Decreased serum levels of 25(OH)-D3 have been widely

reported in patients (of all ages) with OB (58, 59). In this cohort,

decreased 25(OH)-D3 and vitamin D3 serum levels were associated

with the presence of DLP at baseline and 6 months after BS,

respectively. These results are in concordance with previous

publications, in which vitamin D has been described as a

significant independent inverse determinant of total cholesterol

and low-density lipoprotein (LDL) and triglycerides (60). Despite

this, no correlation or association was observed with lipoprotein

(HDL) cholesterol levels, which have been previously described in

the literature (61, 62). Remarkably, we did not observe differences in

patients who underwent sleeve gastrectomy or gastric bypass,

probably due to the fact that all patients received calcifediol at

different dosage in order to achieve a sufficiency level (>30 ng/dl).

Additionally, some studies have suggested a link between

medical treatment with vitamin D and changes in body
B

A

FIGURE 5

Significant clinical–molecular associations between the improvement of hypertension (6 months after surgery) and the mRNA expression of some
inflammasome components at baseline (A) and 6 months after surgery (B). Data represent the median ± interquartile range. Asterisks (*p<0.05)
indicate significant changes between the clinical variables.
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composition. Specifically, a 3-month double-blind, randomized

clinical trial in women demonstrated that vitamin D

supplementation (25 mg/day as vitamin D3) reduced body fat

mass regardless of BMI (63). In the same line, a meta-analysis

described improvement in BMI and waist circumference following

vitamin D supplementation (64). In contrast, we did not observe

changes in BMI or body composition in patients according to the

circulating 25(OH)-D3 levels at baseline. Similar results have been

reported in intervention studies and meta-analyses in healthy

population (65) and in patients with OB and after BS (66–68).

It is remarkable that despite a clear association between 25

(OH)-D3 deficiency and OB, medical treatment has not been clearly

associated with clinical improvement (69). This discordance might

be explained by the metabolites measured. Indeed, it is well-known

that 25(OH)-D3 is the most commonly measured metabolite (70),

but it is frequently decreased in patients with OB due to several

mechanisms. Several hypotheses have tried to explain this situation,

including the 25(OH)-D3 sequestration by the adipose tissue,

changes in vitamin D metabolism, volumetric dilution, or vitamin

D receptor polymorphism (71). In this context, it would be valuable
Frontiers in Endocrinology 09
to determine another metabolite that could not be influenced by

internal or external factors. A previous study of our group has

demonstrated that the VMR was an appropriate marker of vitamin

D status in patients with severe OB (grade 3 or higher) compared

with patients without OB (23). In the present study, 6 months after

surgery, serum levels of 25(OH)D significantly increased after oral

supplementation with calcifediol, but 24,25(OH)2D3 levels did not

change; these findings might be explained by the fact that patients

received supplementation with calcifediol, which is a potent

supplement with a higher rate of intestinal absorption (when

compared with cholecalciferol) (72).

It has been previously described that the enlarged pool of

visceral and subcutaneous adipose tissue probably impounds

vitamin D and its metabolites, reducing their bioavailability (34).

As expected, total levels of vitamin D3 were inversely correlated

with fat mass at baseline in our cohort of patients, but this

correlation disappeared 6 months after BS.

Curiously, vitamin D3 negatively correlated with lean mass after

BS. Similar to this result, previous studies have suggested that there

was no effect of vitamin D supplementation on lean mass and
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Significant clinical–molecular associations between the improvement of metabolic comorbidities and the mRNA expression of inflammasome
components at baseline (A) and 6 months after surgery (B). Data represent the median ± interquartile range. Asterisks (*p<0.05) indicate significant
changes between the clinical variables.
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muscle strength in elderly subjects (73). Additionally, a double-

blind, placebo-controlled randomized clinical trial that compared

the administration of 2,000 IU/day oral vitamin D3 or placebo

during a lifestyle-based weight loss intervention reported that

vitamin D3 supplementation during weight loss decreased leg

strength, without affecting lean mass, among postmenopausal

women (74). Based on this, we suggest that an ideal study for

evaluating the effect of vitamin D supplementation in patients with

OB should include the measurement of VDES metabolites (or

metabolome) and body composition evaluation in order to avoid

confounding results.

As expected, our results demonstrated that inflammation status

significantly decreased (reflected in decreased CRP levels) 6 months

after BS and calcifediol treatment with normalization of 25(OH)D3

serum levels (in parallel to a significant decrease in body weight, fat

mass, and reduction in metabolic comorbidities, as previously

reported (75). In this context, improvement in metabolic

comorbidities has been associated with fat mass loss after BS (66,

76, 77). In a previous study, we analyzed the effect of vitamin D

supplementation on the reversal of metabolic comorbidities in a

large cohort of patients after BS (n=346). In that cohort,

improvement of comorbidities was independent of the serum

levels of 25OHD (66). In contrast, in this study, patients that still

presented with DLP or T2DM 6 months after surgery had lower

circulating levels of vitamin D3 but no other metabolites.

Differences might be explained by the different body composition

of the evaluated patients (increased fat mass levels).

Previous studies have reported an association between

inflammasome, OB, and fat mass (42, 78). In this cohort, we

clearly observe positive correlations between fat mass and key

inflammasome machinery components, and negative correlations

between lean mass and inflammasome components, in concordance

with previous publications that suggest a significant dysregulation

of inflammasome components in patients with severe OB (37). For

example, it has been described that visceral adipose tissue from

patients with metabolic comorbidities show increased expression of

IL1b (79), and IL18 has been associated with atherosclerosis and

T2DM (80). These interleukins are clearly dysregulated and

positively correlated with fat mass at baseline, but IL18 was

negatively correlated with fat mass 6 months after BS and

calcifediol treatment.

Additionally, the increased expression of inflammasome

components in patients with severe OB has been associated with

improvement of metabolic comorbidities, suggesting that there is a

different inflammasome profile in patients that would significantly

improve after BS. Particularly, according to previous studies,

patients with essential HT exhibit elevated levels of circulating

IL1b. In line with this, pyroptosis and inflammasome have been

associated with the development of HT (42, 81). In our cohort, we

observed that improvement of HT was associated with increased

baseline levels of several key inflammasome components including

IL6R, IL18R, and NLRP1.

Probably, NLRP3 is the most studied inflammasome. In fact,

NLP3 has been associated with metabolic comorbidities including

DLP and T2DM (82–84), and its role and regulation are a matter of

debate for improving OB-related comorbidities (37). Remarkably,
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in our study, the patients with increased expression levels of NLRP3

improved HT and metabolic comorbidities 6 months after BS.

Finally, previous studies have demonstrated that NLRP3 can

interact with vitamin D receptor (VDR) (35). Specifically, 1,25(OH)

2 D and Vitamin D receptor signaling mechanisms increase the

phagocytic ability of monocytes to modulate the innate immune

system (85) and promote the ability of dendritic cells to modulate

regulatory T-cell differentiation (86, 87). Furthermore, VDR

deficiency is associated with increased inflammation and

deregulation in several inflammatory diseases, such as

inflammatory bowel disease, sepsis, diabetes, and asthma (87). It

has been demonstrated that VDR inhibits the deubiquitination of

NLRP3 by BRCC3 (35), which is a deubiquitinase with a crucial role

for the post-transcriptional activation of NLRP3 (88). Similar

results have been observed in peripheral blood monocytes from

pregnant women with preeclampsia and in human monocyte cell

lines (89). In addition, a preclinical model of OB and asthma

showed a significant increase in airway hyper-responsiveness,

airway inflammation, pro-inflammatory cytokine levels, mRNA

expression of NLRP3 and IL1b in mice with OB, asthma, and

lower 25(OH)D levels (90). In our cohort, IL1b and IL6R mRNA

expression correlated with 25(OH)-D3 and 24,25(OH)2-D3

circulating levels in patients before BS.

In vitro studies have revealed that treatment with 1,25(OH)2D3

suppressed the expression of NLRP3 inflammasome-related genes

and the production of IL1b in human corneal epithelial cells (91).

1,25(OH)2D3 treatment also inhibited caspase-1 activation and

IL1b secretion in an ulcerative colitis model (92). Furthermore,

treatment with 1,25(OH)2D3- and 25(OH)D3 also induced IL1b
release from THP-1 cells in vitro (93). Additionally, it has been

demonstrated that 1,25(OH)2VD3 inhibited the nigericin-induced

activation step of NLRP1 inflammasome in unprimed

keratinocytes (94).

Animal models have shown that treatment with 1,25(OH)2 D3

inactivates the NLRP3 inflammasome; in consequence, treatment

with the hormonally active metabolite of VDES decreased surgery-

induced neuroinflammation and memory and cognitive

dysfunctions in aged mice (95). Treatment with 1,25(OH)2 D3

also exerted protective effects against retinal vascular damage and

cell apoptosis especially in mice with type 1 diabetes (96).

Furthermore, a strong correlation between increased NLRP3

inflammasome pathway and decreased 1,25(OH)2 D3

concentrations in the vitreous of proliferative diabetic retinopathy

patients has been observed, suggesting that vitamin D

supplementation may play a key role in preventing, treating, and

improving the prognosis of this disease (97). In the present study, a

significant reduction in the correlation between vitamin D

metabolites and the molecular expression of inflammasome has

been shown. Due to confounding factors, this change cannot be

attributed to the medical treatment with calcifediol or the bariatric

surgery-induced weight loss, exclusively.

This study has some limitations, including the cohort size, the

short follow-up, and the absence of a control group for comparing

the treatment with calcifediol; additionally, a specific evaluation of

physical activity and lifestyle changes was not performed. Despite

this, several strengths include the well-characterization of the
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cohort, the complete evaluation of the metabolites, and the clinical

management of the patients according to the current clinical

guidelines in BS.

Taken together, the results of the present study reveal new

conceptual and functional information in the OB/BS field, with

potential clinical implications, by demonstrating a clear dysregulation

pattern of key components of the inflammasomemachinery and VDES

metabolism in patients with OB and in those patients who had

improved metabolic OB-related comorbidities after BS and calcifediol

treatment. This study provides solid evidence demonstrating that

VDES metabolism in combination with some components of the

inflammasome machinery might play a critical pathophysiological

role in the improvement of OB-related comorbidities, offering a

clinically relevant opportunity for novel targets that should be tested

in humans. Importantly, these data demonstrated that the expression

profile of inflammasome-machinery components can be dynamically

modulated in PBMCs after BS and calcifediol treatment, suggesting

that this profile could likely serve as a sensor and early predictor of the

reversal of OB-related complications after BS. Interventional studies

that evaluate vitamin D supplementation, vitamin D metabolites

determination, and inflammasome expression should be performed

in patients of different races and BMI.
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