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Connections between serum
Trimethylamine N-Oxide
(TMAO), a gut-derived
metabolite, and vascular
biomarkers evaluating arterial
stiffness and subclinical
atherosclerosis in children
with obesity
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Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania, 42nd Department
of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania, 53rd
Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University
of Medicine and Pharmacy, Timisoara, Romania, 6Department of Functional Sciences—
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Introduction: Childhood obesity leads to early subclinical atherosclerosis and

arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked

to cardio-metabolic disorders in adults, is crucial to prevent long-term

cardiovascular issues.

Methods: The study involved 70 children aged 4 to 18 (50 obese, 20 normal-

weight). Clinical examination included BMI, waist measurements, puberty stage,

the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical

atherosclerosis was assessed by measuring the carotid intima-media thickness

(CIMT), and the arterial stiffness was evaluated through surrogatemarkers like the

pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central

blood pressures. The blood biomarkers included determining the values of

TMAO, HOMA-IR, and other usual biomarkers investigating metabolism.

Results: The study detected significantly elevated levels of TMAO in obese

children compared to controls. TMAO presented positive correlations to BMI,

waist circumference and waist-to-height ratio and was also observed as an

independent predictor of all three parameters. Significant correlations were

observed between TMAO and vascular markers such as CIMT, PWV, and
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peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP,

and central SBP levels, even after adding BMI, waist circumference, waist-to-

height ratio, puberty development and age in the regression model. Obese

children with high HOMA-IR presented a greater weight excess and

significantly higher vascular markers, but TMAO levels did not differ

significantly from the obese with HOMA-IR<cut-offs. TMAO did not correlate

to HOMA-IR and insulin levels but presented a negative correlation to fasting

glucose levels. An increase in TMAOwas shown to be associated with an increase

in the probability of the presence of acanthosis nigricans. TMAO levels are not

influenced by other blood biomarkers.

Conclusion: Our study provides compelling evidence supporting the link

between serum TMAO, obesity, and vascular damage in children. These

findings highlight the importance of further research to unravel the underlying

mechanisms of this connection.
KEYWORDS

arterial stiffness, atherosclerosis, cardiovascular risk, carotid intima-media thickness,
childhood obesity, high blood pressure, pulse wave velocity, TMAO
1 Introduction

Childhood obesity, defined by an excess of adipose tissue

resulting from an imbalance between energy intake and

expenditure, represents an engine of metabolic disruptions (1)

associated with the progression of subclinical vascular damage

that in time, unchecked and unsolved, develops into symptomatic

cardiovascular issues in young adults (2). Childhood obesity has

developed into a public health problem that necessitates ongoing

attention and effort to slow down because of all the variables

contributing to its worsening over time (3–7). Contributing

factors that make up a constellation of obesity-related

complications other than the metabolic syndrome (abdominal

adiposity, high blood pressure, dyslipidemia, glucose intolerance)
of augmentation; AUC,
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minotransferase; GPT,

; HDL-c, high-density

assessment for insulin

e; LDL-c, low-density

e; mg, milligram; ml,

ercury; n, number of

me; PWV, pulse wave

olic blood pressure; SD,

total cholesterol; TG,

ex, triglyceride-glucose

; W, weight; WC, waist

02
(1), are metabolic-associated fatty liver disease (MAFLD),

polycystic ovary syndrome (PCOS), and sleep apnea (8). These

are the primary metabolic factors responsible for the vascular walls’

gradual deterioration in children (9, 10).

In order to combat the long-term effects of childhood obesity

with regard to cardiovascular complications, it’s important to assess

the value of biomarkers that may amend our understanding of the

individual metabolic status and prognosis.

Trimethylamine N-oxide (TMAO) is a metabolite that has

received increased attention in the past years due to its link with

metabolic syndrome (MetS) and cardiovascular disease (11).

Significant data shows the link between serum TMAO

concentrations and cardiovascular diseases and events in adults

with cardio-metabolic comorbidities (12). Both serum levels of

TMAO and its precursors have been shown to have prognostic

value for cardiovascular events (13). We know less about the

situation of metabolically healthy adults, and much less about

children, regardless of their health status (14). However, studies

that evaluated TMAO precursors showed that they are among the

few serum markers with prognostic value for the subsequent

development of cardiovascular disease in patients that are still

free of cardiovascular events (14, 15).

Childhood obesity promotes the progression of subclinical

atherosclerosis and arterial stiffness (16, 17). Due to the possible

associations of serum TMAO with the progression of

atherosclerosis in adults with cardio-metabolic risks (11), we

decided to analyze the value of serum TMAO in our pediatric

patients with chronic primary obesity and insulin resistance. Our

aim is to evaluate any possible association between TMAO serum

levels, adiposity, and vascular biomarkers investigating subclinical

atherosclerosis and arterial stiffness. The vascular biomarkers

included in this study are the carotid intima-media thickness
frontiersin.org

https://doi.org/10.3389/fendo.2023.1253584
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mihuta et al. 10.3389/fendo.2023.1253584
(CIMT), the pulse wave velocity (PWV) and augmentation index

(AIx), the peripheral and central blood pressure values.

TMAO is derived from dietary products like red meat, poultry,

eggs, milk, and whole grains (18). These foods are rich in choline, L-

carnitine, g-butyrobetaine, trimethyl lysine, betaine, and d-
valerobetaine, which are precursors of TMAO (19). These

products are digested and mostly absorbed through the intestinal

mucosa (20). The excessive TMAO precursors are metabolized by

the gut microbiota into trimethylamine (TMA). TMA is

consecutively absorbed from the intestinal lumen into the

bloodstream and oxidized by hepatic flavin monooxygenases

(FMO1 and FMO3), thus resulting in TMAO (21).

Equally as important as the total intake of dietary TMAO

precursors, if not more, is the type of predominant gut

microbiota (22). The bacterial genera that have been shown to

increase the production of TMA are Bacteroidetes, Firmicutes,

Proteobacteria, and Fusobacteria (23). Probiotics and antibiotics

may remodel the composition of the microbiota, thus reducing the

quantities of TMAO substrate (24, 25). Obese individuals have been

shown to have a gut microbiota reduced in diversity (26), with a

relative abundance of Bacteroidetes and Firmicutes (27). Moreover,

it seems that these microbes are involved in the energy acquisition

for the host from the ingested foods (26, 28), probably via

metabolites involved in the regulation of hunger, in order to meet

their own needs by the host (28). Studies have shown that in germ-

free conditions, obesity is reduced by the reduction of energy

acquisition (29, 30). Studies focused on the impact of gut

microbiota on obesity have attributed a low ratio of Bacteroidetes

to Firmicutes to obesity. Intervention studies that found that high-

calorie diets increased energy harvest while increasing Firmicutes

and decreasing Bacteroidetes provide more support for this (31, 32).

There is, therefore, significant data that suggests that a certain

composition of gut microbiota is in fact a favorable factor for

obesity and even insulin resistance and type 2 diabetes mellitus. In

support of these claims are the studies on germ-free mice who

despite being fed high-fat, sugar-rich diets, remained lean and did

not develop insulin resistance, compared to normal-raised mice

(30, 33).

What is TMAO’s role in the intricate mechanisms produced by

MetS and insulin resistance? What we know so far is that

individuals with metabolic disorders such as obesity, type 2

diabetes mellitus (34), MAFLD (22), chronic kidney disease (35),

and gastrointestinal cancers (36–38), present higher levels of serum

TMAO. The mechanisms and pathways in which TMAO, as a

chemical, is involved in oxidative, osmotic, and hydrostatic stress

are only partially understood (1). TMAO is involved in hepatic

glucose metabolism by increasing gluconeogenesis and decreasing

hepatic glucose transport (39) and in insulin resistance, possibly

through TMAO-dependent higher levels of N-Nitroso Compounds

that are promoters of insulin resistance (40, 41). TMAO is involved

in the alteration of vascular health by multiple processes: the

disturbance of bile acid metabolism, inhibition of the reverse

transport of cholesterol, inducement of foam cell formation,

activation of platelets, and overall oxidative stress and vascular

inflammation (22, 42). These processes, along with other metabolic

disturbances promoted by obesity and insulin resistance, directly
Frontiers in Endocrinology 03
promote the development of MAFLD (22), which is an entity

directly associated with atherosclerosis (43).

Practically, the cycle starts with excessive diets that promote

weight gain and the modification of gut microbiota that is both

influenced by obesity and seems to favor obesity as well. The

consequent elevation of serum metabolites like TMAO interferes

with metabolic pathways which promote oxidative stress and

inflammation. Obesity maintains the vicious cycle and, in time,

these intricate pathophysiological mechanisms lead to the

aggravation of metabolic status and vascular health. The younger

the age at which these risk factors appear and the longer the

evolution of obesity, the higher the long-term risk of developing

metabolic and vascular complications.

The reason this study’s design includes non-invasive

biomarkers of arterial dysfunction is that TMAO’s involvement in

vascular wall pathogenesis is linked to superoxide anion-associated

oxidative stress, which leads to the reduction of nitric oxide,

concluding in an increase in the vascular tone. In addition to this

oxidative stress, advanced glycation end products are involved in

the formation of cross-links between collagen and other proteins

involved in the structure of the arterial wall. The causal-effect

connection, however, is not yet undoubtedly proven, as TMAO’s

effects are not exclusive. These alterations are also linked to aging.

Furthermore, it has been observed that TMAO serum levels

positively correlate to age (44).

Evaluating subclinical atherosclerosis and arterial stiffness in

children is not part of the routine. However, studies have shown

that obese children present signs of a more advanced atherosclerosis

process than their lean peers (45). This can be evaluated by

measuring the CIMT (16, 46–49) and the PWV, a marker of

arterial stiffness (49–52). Peripheral and central blood pressure

measurements bring additional data on the status of vascular

health. The CIMT is an ultrasound measurement of the distance

between the smooth muscle cells of the media and the endothelial

cells of the artery’s intima lining. It is a measure that reliably

identifies the degree of generalized atherosclerosis and is frequently

applied to adult patients undergoing cardiovascular diagnostic and

risk assessment (46). It is a non-invasive indicator of subclinical

atherosclerosis that can be helpful in kids who have cardiovascular

risks (16). The elasticity of large arteries is described by the PWV. It

essentially reconstructs the aortic pulse wave and provides an

estimate of the pulse velocity through the arterial tree (50, 51).

Due to its elevated values being associated with myocardial

remodeling, PWV is a trustworthy predictor of cardiovascular

events (53).

Therefore, this study assesses the value of TMAO as a serum

biomarker in correlation to non-invasive markers like CIMT, PWV,

and other vascular biomarkers, to try to enhance our understanding

of the progression of atherosclerosis in obese children with and

without insulin resistance.
2 Materials and methods

The study involved 70 children of both sexes, aged four to

eighteen, and was conducted from November 2022 to May 2023 at
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the Pediatric Endocrinology Department of the “Pius Brinzeu”

Emergency County Hospital in Timisoara.

The Ethics Committee for Scientific Research of the “Pius

Brinzeu” Emergency County Hospital has approved the study

(No. 349/15.11.2022) in accordance with the Helsinki

Declaration. Informed consent was signed by each participant’s

legal guardian after explanations regarding the medical procedures

that would take place.

The participants were recruited from the patients addressed to

our department with weight excess.

Inclusion criteria – all three criteria were mandatory:
Fron
■ chronic primary obesity (caused by the energy intake/

expenditure imbalance and defined by the CDC as

presenting a BMI > 95th percentile) (54);

■ waist circumference (WC) > 90th percentile, measured

using a flexible, non-elastic anthropometric tape,

positioned halfway between the lowest rib and the upper

edge of the iliac crest, at the end of a normal exhalation

(55);

■ diverse diet, including meat, fish, eggs, dairy products, and

grains.
Exclusion criteria:
■ acute illness at the time of examination (56);

■ secondary causes of obesity (57);

■ type II diabetes mellitus;

■ impairment in kidney function or chronic kidney disease

(GFR < 90 ml/min/1.73 m2, CKD EPI) (58);

■ medical history of chronic digestive diseases or acute

digestive diseases within 3 months of serum TMAO

determination;

■ use of antibiotics and probiotics within 2 months of serum

TMAO determination (25);

■ constant exposure to cigarette smoke;

■ special diets: vegetarian/vegan, gluten-exclusion diet.
The Homeostatic Model Assessment for Insulin Resistance

(HOMA-IR) was used to divide the 50 obese participants (BMI >

the 95th percentile) into two groups: obese with HOMA-IR ≥ cut-off

values for individual Tanner development, and obese with HOMA-

IR <cut-off values (see section 2.2. Biochemical assay). Twenty age-

matched normal-weight children (BMI ranging between percentiles

5 and 85) were included in the control group. The same exclusion

criteria were applied to them as well. These participants were

volunteers selected from the families of the medical personnel in

our clinic.
2.1 Physical examination

All participants were physically examined. We measured their

weight, height, and waist circumference (WC). To calculate the

Body Mass Index (BMI) value we used the formula BMI= Weight
tiers in Endocrinology 04
(kg)/Height2 (m) (54) and interpreted it by using the 2022 extended

growth charts for BMI for age and sex (59). The waist-to-height

ratio (WHR) was also calculated by using the formula WHR = WC

(m)/Height (m) (60). WC values were interpreted by using the

percentiles proposed by Zong et al. (54). Only children with a BMI >

95th percentile and a WC > 90th percentile were included in the

study group. Tanner stages were determined for each participant

(Tanner 1 represents pre-puberty; Tanner 2-4 represents puberty;

Tanner 5 represents post-puberty) (61). The presence of acanthosis

nigricans was noted (62). Post-pubertal girls were asked whether

they had regular or irregular menses. Irregular menses were

considered the menstrual cycles <21 or >35 days, or missing ≥ 3

menses in a row, in girls who had their menarche at least 2 years

before (50).
2.2 Biochemical assay

Blood tests were taken within a week of the physical

examination and scheduled between 7:30 and 8:30 a.m. Patients

were asked to fast for at least 12 hours before giving blood. The

serum parameters determinations were carried out in an accredited

laboratory. Serum TMAO was determined through liquid

chromatography-mass spectrometry (laboratory cut-off values:

normal < 270 µg/l; borderline ≥270 µg/l, <380 µg/l; high ≥ 380

µg/l). Other serum parameters determined were insulin

(chemiluminescence immunoassay), fasting glucose, uric acid,

creatinine, lipid profile (total cholesterol, LDL-cholesterol, HDL-

cholesterol, non-HDL-cholesterol), triglycerides (TG), aspartate

aminotransferase (AST), alanine aminotransferase (ALT), and 25-

OH-Vitamin D (spectrophotometry assay).

The HOMA-IR was calculated using the formula HOMA-IR =

[Glucose (mg/dl) × Insulin (µU/mL)]/405 (63). Cut-off values for

pre-pubertal children for insulin resistance detection were

considered 2.3 (64) and for pubertal and post-pubertal children,

3.4 (64, 65).

The Visceral Adiposity Index (VAI) was calculated by sex-

specific formulas: for males VAI = {WC/[39.68 + (1.88 × BMI)]} ×

(TG/1.03) × (1.31/HDL-c), and for females VAI = {WC/[36.58 +

(1.89 × BMI)]} × (TG/0.81) × (1.52/HDL-c), with WC measured in

cm, and TG and HDL-c in mmol/l (64, 66).

The triglyceride–glucose index (TyG index), a marker of

muscular resistance to insulin, was calculated using the formula

TyG index= Ln[(TG × Glucose/2], with TG and glucose measured

in mg/dl (67).
2.3 Carotid intima-media
thickness measurement

The Aixplorer MACH 30 echography device was used to

ultrasonographically measure the carotid intima-media thickness

(Country-SuperSonic Imagine, Aix-en-Provence, France). An

experienced and certified sonographer has performed carotid

ultrasonography on each patient included in this study.

Depending on the amount of adipous tissue in each subject’s
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cervical area, the chosen linear transducer was either the SL 10-2 (2-

10 MHz) or the SL 18-5 (5-18 MHz). The CIMT values can be

calculated by the echography machine software automatically

(SuperSonic Imagine, Aix-en-Provence, France). The images were

acquired during the end-diastole as determined by the R wave on

the electrocardiogram (68). Ten CIMT measurements were

performed for each patient, five on each side, and the mean value

was used in the study.

To enable a better view of the common right and left carotid

arteries, the subject is requested to lie down and stretch their neck

backward as far as possible. The appropriate ultrasound settings and

ultrasound transducer are chosen by the examiner. Transversal

scanning starts from the collarbone upward to locate the carotid

bulb and the subsequent bifurcation of the common carotid into the

internal and external carotids. After locating the carotid bulb, the

examiner turns to longitudinal scanning. On this section, the

carotid bulb appears on the left side of the screen. The

measurements are made on the posterior carotid wall, at

approximately 1-2 cm caudally from the bulb (69, 70). During the

end-diastole, the image is frozen and the software performs the

CIMT measurement in the region of interest selected by the

examiner (71, 72).
2.4 Pulse wave analysis

The Mobil-O-Graph® 24 Hour ABPM oscillometric device

(M26101200, IEM® GmbH, Stolberg, Germany) was used to

perform the pulse wave analysis (PWA). The PWA includes the

following parameters which represent markers of arterial stiffness:

PWV (m/s), augmentation index (AIx, %), heart rate (HR),

peripheral and central blood pressure (BP, mmHg). The mean

arterial pressure (MAP, mmHg) and central pulse pressure (cPP,

mmHg) are also calculated by the device. This device can be used in

children older than three years old, according to the manufacturer.

Details of the methodology and specifics of the device have been

presented in our previous work (50, 73).

The patients were advised to not consume any caffeinated

drinks for a day prior to the PWA measurements, to avoid

exposure to cigarette smoke for at least 4 hours prior, and to

make sure they slept for at least 8 hours the night before. Before

performing the PWA measurements, the patients were explained in

detail the whole procedure in order to make sure the psychological

stress and the consequential potential raise in heart rate values are

reduced. After the discussion, the participants were left to rest and

relax for ten minutes. A single-point brachial measurement was

performed for each participant. The appropriate cuff size was

chosen from four options: extra small: 14-20 cm; small: 20-24 cm;

medium: 24-32 cm; large: 32-38 cm. The cuff was placed on the left

bare arm, with the artery symbol positioned on the region of the

brachial artery. The participants were advised not to speak or move

during the measurement and remain as relaxed as possible.

The device performs two measurements, divided by a thirty-

second pause. Firstly, the peripheral BP values are obtained, and

secondly, the PWV, AIx, HR, and central BP. Should the

measurement be considered inaccurate by the software (in the
Frontiers in Endocrinology 05
case the patient was moving), we repeated it after a five-

minute break.
2.5 Statistical analysis

Data was gathered using Microsoft Excel, and statistics were

performed using MedCalc Statistical Software version 20.111

(MedCalc Software Ltd., Ostend, Belgium) and DATAtab: Online

Statistics Calculator (Graz, Austria). The link between serum

TMAO levels and clinical and paraclinical markers was the main

focus of the analysis. The Shapiro-Wilk test was used to determine

whether the data distribution was normal. Hence, we conducted the

statistical tests that were appropriate for the level of normality of the

data: means, student T-test, Pearson’s correlations for the normally

distributed data, medians, Mann-Whitney test, and Spearman’s

correlation for the non-normal variables. P-values lower than 0.05

were considered significant. When three groups were compared, for

non-normal variables, Krussal-Wallis H-tests were carried out, with

Dunn-Bonferroni tests for the two-by-two comparisons, and for

normal variables, one-way ANOVA post-hoc tests with Bonferroni-

corrected p-values were performed. Linear regression analyses were

performed in order to investigate the influence of TMAO

(independent variable) on the clinical and paraclinical markers

(dependent variables), and multiple regressions for examining the

reverse situation.
3 Results

The participants were divided into two groups of study: obese

(n=50) and controls (n=20). The obese group was further divided

into two groups:
■ obese with HOMA-IR ≥ cut-off values for individual

pubertal development, n=21 (called further on “obese

with IR”);

■ obese with HOMA-IR < cut-off values for individual

pubertal development, n=29 (called further on “obese

without IR”);
Table 1 depicts how the participants were divided into

study subgroups.

Out of the 70 participants, 68.57% presented normal levels of

serum TMAO (45.71% were obese and 22.85% were normal-

weight), 20% presented borderline values (14.28% obese and

5.71%, normal-weight), and 11.43% presented high levels, all of

which were obese (see Table 2).
3.1 Characteristics of all subjects involved
in the study

Table 3 describes the general characteristics of the participants

and the differences noted with regard to the studied parameters

between obese subjects and controls. The clinical markers of
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adiposity (W, BMI, WC, WHR) were significantly higher in the

obese subjects. All vascular markers, except for HR and cPP

displayed significantly higher values in the obese. Blood

parameters depicting IR confirmed extremely significantly higher

values for HOMA-IR and fasting glucose in obese subjects, but not

higher TyG index and VAI. The uric acid and creatinine were also

significantly increased. Regarding the lipid fractions, the obese did

not present dyslipidemic levels compared to the controls, in fact, the

controls presented a significantly lower HDL-c and a significantly

higher TC/HDL-c ratio. 25-OH-Vitamin D presented significantly

lower levels in the obese. Serum TMAO median values were

significantly higher in the obese subjects, compared to normal-

weight ones (p=0.02), see Supplementary Figure 1.

No differences were detected when comparing obese

participants vs. controls according to sex (p=0.44), and neither

between obese boys vs. obese girls (0.32). The girls in the control

group presented significantly lower TMAO levels compared to the

boys in the control group (p=0.002) and also compared to the obese

girls (p=0.0006). No differences were detected between obese boys

vs. normal-weight boys (p=0.62). See Supplementary Table 1.

All subjects were divided into age and puberty-development

subgroups. The Krussal-Wallis tests performed revealed that there

are no significant differences in serum TMAO levels between

children according to age groups (p=0.37), see Supplementary

Table 2. The analysis also revealed no differences between the

TMAO levels between subjects in different stages of puberty

development (p=0.59), see Supplementary Table 3.
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3.2 Characteristics of the obese group:
does insulin resistance make a difference?

No differences between the boys and girls in the obese with IR

group, nor the obese without IR were detected, and neither for the

same-sex participants between the two groups, as depicted in Table 4.

The differences between the TMAO levels of the participants

divided by age into three subgroups were close to meeting the

significance threshold (p=0.05), with the TMAO levels of children

under 12 years old being the highest (Table 5).

No differences were detected between the TMAO levels of the

subjects with regard to their pubertal development. The highest

median value was detected in the pre-pubertal subgroup, but the

statistical difference threshold was not met upon comparing the

data (Table 6).

Table 7 describes the general characteristics of the obese

participants with regard to clinical and paraclinical parameters

and the differences noted with regard to the studied parameters

between obese children with IR and without IR, respectively.

Concerning clinical parameters, the subjects with IR presented

significantly higher W, BMI, WC, and WHR, than did the obese

without IR. All the vascular biomarkers measured showed

significantly increased values in obese children with IR, except for

HR and cSBP. Blood parameters depicting IR confirmed extremely

significantly higher HOMA-IR (p<0.0001), serum insulin

(p<0.0001), and fasting glucose (p=0.005) levels in obese with IR.

However, the other two parameters suggestive for IR, TyG index
TABLE 1 Number of participants in each studies subgroup, by sex, age, and puberty development.

Obese with IR (n=21) Obese without IR
(n=29)

Controls
(n=20)

Sex Male 13 18 10

Female 8 11 10

Age <12 y 10 12 7

12-15 y 8 13 10

> 15 y 3 4 3

Tanner stage Tanner 1 8 7 6

Tanner 2-4 6 13 9

Tanner 5 7 9 5
TABLE 2 Data regarding the mean levels of TMAO and their distribution among participants.

serum TMAO
categories

n Mean TMAO
(µg/l)

SD

total obese controls

Normal
<270 µg/l

48 32 16 173.61 58.6

Borderline
≥ 270, <380 µg/l

14 10 4 325.34 36.54

High
≥ 380 µg/l

8 8 0 597.41 120.25
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and VAI, did not display significant increases in the obese with IR

group. No significant differences were detected between the two

groups with regard to the other blood tests, except for the ALT

(p=0.0008). Although serum TMAO median values were higher in

the obese with IR group (h=294.48 µg/l vs. h=271.83 µg/l), the

threshold for statistical significance was not met (p=0.63).
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3.3 Correlation analysis

Spearman’s correlation analysis between the clinical and

paraclinical parameters and the serum TMAO levels showed

multiple significant correlations. Age does not correlate to TMAO

levels. The BMI,WC, andWHR significantly correlate to TMAO levels
TABLE 3 General descriptive data and comparisons between obese subjects and controls.

Parameter Obese Controls p

Mean/Median SD Mean/Median SD

Age (y) 11.92 3.46 11.7 3.33 0.8

W (kg) 76.18 25.36 43.3 12.7 <0.001

H (cm) 153.8 17.17 150.2 16.3 0.77

BMI (kg/m2) 31.36 6.14 18.51 2.25 <0.001

WC (cm) 98.06 15.81 65.65 8.01 <0.001

WHR 0.64 0.09 0.44 0.03 <0.001

CIMT (mm) 0.47 0.05 0.42 0.04 <0.001

PWV (m/s) 5.02 0.41 4.45 0.38 <0.001

AIx (%) 26.06 9.13 20.95 2.1 0.04

HR (b/min) 84.92 6.47 82.35 6.76 0.14

SBP (mmHg) 128.58 9.59 114.5 8.84 <0.001

DBP (mmHg) 82.48 7.76 76.95 7.06 0.007

MAP (mmHg) 105.53 7.36 95.73 7.43 <0.001

cSBP (mmHg) 116.26 10.4 100.85 10.54 <0.001

cDBP (mmHg) 72.3 8.83 69.05 8.44 0.16

cPP (mmHg) 93.15 12.11 41.8 6.61 <0.001

Serum TMAO (µg/l) 226 163.7 175.15 88.37 0.02

HOMA-IR 3.4 2.53 1.81 0.81 <0.001

TyG index 8.18 0.4 8.16 0.5 0.86

VAI 1.31 0.84 1.23 0.77 0.96

Fasting glucose (mg/dl) 80.95 8.38 76.22 7.46 0.02

uric acid (mg/dl) 5.06 1.5 3.78 0.72 <0.001

creatinine (mg/dl) 0.55 0.16 0.46 0.12 0.02

total cholesterol (mg/dl) 161.22 37.86 162.9 28.93 0.86

LDL-cholesterol (mg/dl) 95.4 29.81 104.4 27.3 0.24

HDL-cholesterol (mg/dl) 48 11.08 41.5 10.84 0.02

non-HDL-cholesterol (mg/dl) 113.22 34.59 121.45 30.3 0.35

Triglycerides (mg/dl) 100.74 37.54 97.4 51.35 0.76

TC/HDL-c ratio 3.45 0.81 4.1 0.95 0.005

TG/HDL-c ratio 2.25 1.09 2.47 1.34 0.46

AST (U/l) 26.94 10.25 22.6 8.35 0.09

ALT (U/l) 28.82 12.26 24 10.34 0.12

25-OH-Vitamin D (ng/ml) 19.8 6.63 24.2 8.82 0.02
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(Table 8). Regarding the vascular markers, significant moderate

correlations were detected between CIMT (Supplementary Figure 2),

PWV (Supplementary Figure 3), peripheral BP values, and serum

TMAO levels (Table 9). Of the blood tests analyzed, only fasting

glucose showed a negative moderate correlation to TMAO, while TG/

HDL-c ratio and ALT revealed moderate positive correlations to

TMAO. Age did not reveal a positive correlation to TMAO (Table 10).

Furthermore, the correlation analysis between the analyzed

parameters and the TMAO levels focused only on obese subjects,

revealed moderate positive correlations between serum TMAO and

CIMT, PWV, HR, and DBP (Table 9). Fasting glucose remains the

only blood parameter to show a significant negative correlation to

TMAO (Table 10).
3.4 Regression analysis

In order to measure the influence of serum TMAO on the

vascular markers, linear regressions were performed between

TMAO (independent variable) and each clinical, vascular, and

blood parameter (dependent variable). According to our analysis,

serum TMAO levels independently predict the values of, W, BMI,

WC, WHR, CIMT, PWV, SBP, central BP levels, HR, and

ALT (Table 11).

When adding other clinical and sanguine markers (HOMA-IR,

fasting glucose, lipid fractions, triglycerides, uric acid, creatinine,

AST, ALT, and 25-OH-Vitamin D) next to TMAO as influencers of

the values of vascular parameters, the following results are observed.
Frontiers in Endocrinology 08
3.4.1 TMAO - CIMT
TMAO remains a significant predictor of CIMT, even when

adding BMI, WC, and WHR in the regression model. When adding

the pubertal development (Tanner stages) into the model (F=20.68,

p<0.001, R2 = 0.73), only TMAO (b=0.37, p<0.001) remains a

significant predictor, while BMI (b=0.27, p=0.08), WC (b=0.44,
p=0.05), and WHR (b=0.3, p=0.11) do not. In this model, we

observed a b=0.37 and p<0.001 for Tanner stage 5. When adding

age into the model, significance does not change (TMAO and

Tanner’s stage remain significant), however, age does not

represent a significant predictor (F=18.08, p<0.001, R2 = 0.73).

The multiple regression including TMAO and the blood

parameters, shows that TMAO remains a significant predictor of

CIMT, along with the uric acid, creatinine, and ALT. See Table 12.

3.4.2 TMAO – PWV
TMAO remains a significant predictor of PWV when adding

BMI, WC, and WHR in the regression model. When adding the

pubertal development (Tanner stages) into the model (F=11.15,

p<0.001, R2 = 0.59), WC (b=0.6, p=0.03) and TMAO (b=0.29,
p=0.002) remain significant predictors, while BMI (b=0.32, p=0.1)
andWHR (b=0.37, p=0.11) and Tanner stages do not. When adding

age into the model (F=24.55, p<0.001, R2 = 0.7), significance

changes and only TMAO remains a significant predictor

(b=0.29, p=0.002).
The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

PWV, along with HOMA-IR, creatinine, and AST. See Table 12.
TABLE 5 Differences between median TMAO values between age groups, including the obese subjects (Krussal-Wallis H-test, Dunn-Bonferroni-Tests
for the two-by-two comparisons).

Median values p

<12 y 12-15 y ≥15 y H-test
p

< 12 y
vs. 12-15 y

<12 y
vs. ≥15 y

12-15 y
vs. ≥ 15 y

Serum TMAO 302.9 201.4 224.8 0.05 0.3 0.94 0.9
TABLE 4 Differences between median TMAO values between sexes, for the obese participants (Mann-Whitney tests).

Sex Serum TMAO median values

Obese with IR Obese without IR p

Male 226.9 218.5 0.56

Female 292.1 287 0.53

p 0.85 0.29
frontiers
TABLE 6 Differences between median TMAO values between stage development groups, including the obese subjects (Krussal-Wallis H-test, Dunn-
Bonferroni-Tests for the two-by-two comparisons).

Median values H-test
p

p

Tanner 1 Tanner 2-4 Tanner 5 Tanner 1
vs Tanner 2-4

Tanner 1
vs. Tanner 5

Tanner 2-4
vs. Tanner 5

Serum TMAO 302.9 213.8 267.8 0.8 0.15 0.85 0.21
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3.4.3 TMAO – AIx
The multiple regression model including TMAO and clinical

parameters showed that while the BMI and WHR are significant
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predictors of AIx, WC (b=0.34, p=0.19) and TMAO (b=0.06,
p=0.58) are not. Only the BMI (b=0.59, p=0.02) remains

significant after adding the pubertal development (Tanner stages)
TABLE 7 Descriptive and comparative data of the obese subjects (T-student tests and Mann-Whitney tests, according to the normality of the data).

Parameter Obese with IR Obese without IR p

Mean/Median SD Mean/Median SD

Age (y) 11.7 3.84 12 3.2 0.69

W (kg) 83.56 30.17 70.83 20.11 0.04

H (cm) 153 0.19 154 0.16 0.85

BMI (kg/m2) 34.48 7.29 29.09 3.9 0.001

WC (cm) 103.33 19.06 94.24 11.92 0.04

WHR 0.67 0.1 0.61 0.06 0.01

CIMT (mm) 0.49 0.04 0.46 0.04 0.02

PWV (m/s) 5.18 0.42 4.91 0.37 0.02

AIx (%) 31.23 7.55 22.31 8.39 0.0003

HR (b/min) 85.57 6.54 84.44 6.48 0.55

SBP (mmHg) 131 9.79 125.65 8.45 0.01

DBP (mmHg) 85.47 6.52 82 7.95 0.01

MAP (mmHg) 109.04 6.78 102.98 6.77 0.003

cSBP (mmHg) 119.61 11.82 113.82 8.66 0.05

cDBP (mmHg) 77 8.33 68.89 7.64 0.0008

cPP (mmHg) 96.5 16.7 91.36 7.01 0.02

Serum TMAO (µg/l) 294.48 175.3 271.83 157.23 0.63

HOMA-IR 4.6 2.9 2.05 0.7 < 0.0001

TyG index 8.28 0.37 8.1 0.4 0.11

VAI 1.51 0.71 1.38 0.93 0.57

Serum Insulin (µU/mL) 23.8 13.66 11.39 3.64 <0.0001

Fasting glucose (mg/dl) 79.61 6.66 73.75 7.11 0.005

uric acid (mg/dl) 5.3 1.64 4.8 1.38 0.23

creatinine (mg/dl) 0.53 0.17 0.56 0.15 0.49

total cholesterol (mg/dl) 159.28 47.04 162.62 30.37 0.76

LDL-cholesterol (mg/dl) 90.45 34.67 98.96 25.77 0.14

HDL-cholesterol (mg/dl) 48.38 13.54 47.72 9.15 0.83

non-HDL-cholesterol (mg/dl) 110.9 41.05 114.86 29.71 0.11

Triglycerides (mg/dl) 105.33 36.37 97.41 38.65 0.46

TC/HDL-c ratio 3.36 0.8 3.5 0.81 0.99

TG/HDL-c ratio 2.36 1.14 2.15 1.06 0.51

AST (U/l) 27.9 7.58 24 11.89 0.1

ALT (U/l) 32 13.57 23 9.17 0.0008

25-OH-Vitamin D (ng/ml) 17.1 7.21 20.12 6.28 0.43
fron
*The significant results in this table were bolded.
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into the model (F=4.38, p<0.001, R2 = 0.36). The same happens

when we add age into the model (F=3.86, p<0.001, R2 = 0.37) – only

the BMI remains a significant predictor of AIx (b=0.6, p=0.02).
The multiple regression including TMAO and the blood

parameters (F=2.06, p=0.001, R2 = 0.32) shows that TMAO does

not remain a significant predictor of AIx (b=0.03, p=0.79), and
neither do any of the other blood parameters. See Table 12.

3.4.4 TMAO – SBP
TMAO remains a significant predictor of SBP when adding

BMI, WC, and WHR in the regression model.When adding the

pubertal development (Tanner stages) into the model (F=14.24,

p<0.001, R2 = 0.65), the significance does not change, BMI (b=0.56,
p=0.03), WC (b=0.63, p=0.01), WHR (b=0.53, p=0.01), and TMAO

(b=0.2, p=0.01) remain significant predictors, while Tanner stages

do not. When adding age into the model (F=12.81, p<0.001,

R2 = 0.66), significance does not change, TMAO, BMI, WC, and

WHR remain significant predictors, while age and puberty

development do not.

The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

SBP, along with HOMA-IR, and creatinine. See Table 12.

3.4.5 TMAO – DBP
TMAO remains the only significant predictor of DBP when

adding BMI, WC, and WHR in the regression model. When adding

the pubertal development (Tanner stages) into the model (F=4.28,

p<0.001, R2 = 0.36), the significance does not change – only TMAO

remains a significant predictor (b=0.23, p=0.04). Tanner stages do
not significantly influence DBP. When adding age into the model

(F=3.95, p<0.001, R2 = 0.37), TMAO remains a significant predictor

(b=0.24, p=0.04), while age and puberty development do not.

The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

DBP, as well as ALT. See Table 12.
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3.4.6 TMAO – MAP
TMAO remains a significant predictor of MAP when adding

BMI, WC, and WHR in the regression model. When adding the

pubertal development (Tanner stages) into the model (F=13.68,

p<0.001, R2 = 0.64), the significance does not change, BMI (b=0.56,
p=0.003), WC (b=0.63, p=0.01), WHR (b=0.54, p=0.01), and
TMAO (b=0.24, p=0.006) remain significant predictors, while

Tanner stages do not. When adding age into the model (F=11.96,

p<0.001, R2 = 0.64), BMI (b=0.56, p=0.004) and TMAO (b=0.24,
p=0.007) remain significant predictors, while WC, WHR, age, and

puberty development do not.

The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

MAP, as well as HOMA-OR, and creatinine. See Table 12.

3.4.7 TMAO – cSBP
TMAO remains a significant predictor of cSBP when adding

BMI, WC, and WHR in the regression model. When adding the

pubertal development (Tanner stages) into the model (F=11.6,

p<0.001, R2 = 0.6), the significance does not change, BMI

(b=0.44, p=0.02), WC (b=0.76, p=0.006), WHR (b=0.55, p=0.02),
and TMAO (b=0.22, p=0.02) remain significant predictors, while

Tanner stages do not. When adding age into the model (F=10.76,

p<0.001, R2 = 0.62), significance does not change, all markers

remain significant predictors, while age and puberty development

do not.

The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

cSBP), as well as HOMA-OR. See Table 12.

3.4.8 TMAO – cDBP
The multiple regression model including TMAO and clinical

parameters (F=7.83, p<0.001, R2 = 0.33), showed that while BMI,

WC, WHR, are significant predictors of cDBP, TMAO does not

(b=0.15, p=0.18). BMI, WC, and WHR remain significant after
TABLE 8 Correlations between serum TMAO and the clinical parameters (Spearman’s correlations).

Parameters Serum TMAO

All subjects Obese subjects

Age (y) r -0.001 -0.19

p 0.98 0.17

W (kg) r 0.17 -0.08

p 0.15 0.55

BMI (kg/m2) r 0.27 0.06

p 0.02 0.65

WC (cm) r 0.25 0.004

p 0.03 0.99

WHR r 0.34 0.25

p 0.004 0.07
*The significant results in this table were bolded.
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TABLE 9 Correlations between serum TMAO and the vascular parameters (Spearman’s correlations).

Parameters Serum TMAO

All subjects Obese subjects

CIMT (mm) r 0.48 0.29

p <0.001 0.04

PWV (m/s) r 0.41 0.4

p 0.0004 0.003

AIx (%) r 0.18 0.15

p 0.12 0.29

HR (b/min) r 0.14 0.43

p 0.21 0.001

SBP (mmHg) r 0.3 0.18

p 0.009 0.19

DBP (mmHg) r 0.35 0.28

p 0.002 0.04

MAP (mmHg) r 0.35 0.25

p 0.003 0.07

cSBP (mmHg) r 0.3 0.2

p 0.009 0.15

cDBP (mmHg) r 0.13 0.08

p 0.25 0.57

cPP (mmHg) r 0.27 0.11

p 0.02 0.42
F
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*The significant results in this table were bolded.
TABLE 10 Correlations between serum TMAO and the blood parameters (Spearman’s correlations).

Parameters Serum TMAO

All subjects Obese subjects

HOMA-IR r 0.14 -0.07

p 0.22 0.6

TyG index r 0.12 -0.002

p 0.3 0.98

VAI r 0.2 0.16

p 0.09 0.24

Insulin (µU/mL) r 0.15 -0.05

p 0.21 0.72

Fasting glucose (mg/dl) r -0.27 -0.3

p 0.02 0.02

uric acid (mg/dl) r 0.01 -0.1

p 0.9 0.46

(Continued)
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adding the pubertal development (Tanner stages) into the model

(F=4.17, p<0.001, R2 = 0.35). When adding age into the model

(F=3.66, p<0.001, R2 = 0.35), only BMI and WHR remain

significant predictors of cDBP, while TMAO, age and puberty

development do not.

The multiple regression including TMAO and the blood

parameters shows that TMAO does not remain a significant

predictor of cDBP (b=0.05, p=0.68), but HOMA-IR does.

See Table 12.

3.4.9 TMAO – cPP
The multiple regression model including TMAO and clinical

parameters showed that only the BMI represents a significant

predictor of cPP, and TMAO, WC, and WHR do not. Only the

BMI (b=0.43, p=0.01) remains significant after adding the pubertal

development (Tanner stages) into the model (F=18.99, p<0.001,

R2 = 0.71). When adding age into the model (F=17.18, p<0.001,

R2 = 0.72), BMI (b=0.4, p=0.01) and WC (b=0.71, p=0.03) are

observed as predictors of cPP, while TMAO, age and puberty

development do not. See Table 12.
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The multiple regression including TMAO and the blood

parameters shows that TMAO remains a significant predictor of

cPP, along with HOMA-IR, fasting glucose, and uric acid.

See Table 12.

A logistic regression analysis was performed to examine the

influence of TMAO on the presence of acanthosis nigricans. The

model was statistically significant (Chi2(1)=5.69, p=0.01), and

showed that an increase in TMAO is associated with an increase

in the probability for the presence of acanthosis nigricans, p=0.03,

B=0, Odds Ratio=1).

In contrast, we performed regression analyses in order to detect

if any of the clinical and blood parameters exert an influence on the

serum TMAO levels.

Although if analyzed separately, through linear regressions, the

clinical markers of adiposity have a significant influence on TMAO

levels, W (F=4.39, R2 = 0.06, b=0.25, p=0.04), BMI (F=8.84,

R2 = 0.12, b=0.34, p=0.004), WC (F=7.89, R2 = 0.1, b=0.32,
p=0.006), WHR (F=9.89, R2 = 0.13, b=0.36, p=0.002), the

multiple regression analysis investigating the same markers as

independent predictors for serum TMAO (dependent variable)
TABLE 10 Continued

Parameters Serum TMAO

All subjects Obese subjects

creatinine (mg/dl) r -0.1 -0.2

p 0.38 0.16

total cholesterol (mg/dl) r 0.06 0.09

p 0.61 0.52

LDL-cholesterol (mg/dl) r 0.13 0.16

p 0.26 0.24

HDL-cholesterol (mg/dl) r -0.17 -0.25

p 0.15 0.07

non-HDL-cholesterol (mg/dl) r 0.13 0.18

p 0.27 0.21

Triglycerides (mg/dl) r 0.18 0.07

p 0.12 0.6

TC/HDL-c ratio r 0.14 0.22

p 0.24 0.12

TG/HDL-c ratio r 0.24 0.17

p 0.04 0.23

AST (U/l) r 0.21 0.03

p 0.07 0.83

ALT (U/l) r 0.25 0.07

p 0.03 0.59

25-OH-Vitamin D (ng/ml) r -0.08 -0.03

p 0.47 0.81
*The significant results in this table were bolded.
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showed that the parameters explained 13.6% of the variance in

TMAO and the ANOVA analysis revealed that this value was

significantly different from zero (F=2.56, p=0.04, R2 = 0.14).

However, none of the parameters were confirmed as significant

independent predictors: W (b=0.39, p=0.68), BMI (b=-0.11,
p=0.88), WC (b=-0.45, p=0.65), WHR (b=0.62, p=0.49).

Linear regressions showed that age does not influence the values

of TMAO (F=0.1, R2 =-0.01, b=-0.04, p=0.75), and neither do
Frontiers in Endocrinology 13
Tanner stages (F=0.5, p=0.73, R2 = 0.03), nor sex (F=0.42, p=0.51,

R2 = 0.01). The presence of acanthosis nigricans exerts a significant

influence on the levels of TMAO (F=5.72, R2 = 0.08,

b=0.28, p=0.02).
The multiple regression model examining the influence of the

blood parameters investigating IR (HOMA-IR, fasting glucose,

VAI, and TyG index) as independent predictors for serum

TMAO (dependent variable), showed that these variables
TABLE 11 Linear regressions depicting the relationship between serum TMAO (independent variable) and the analyzed parameters.

Dependent variable Regression model Regression coefficients and significance

F R2 Variance % B
coefficient

b
coefficient

Std. error t p

W 4.39 0.06 6.07 55.82 0.25 0.02 2.1 0.04

BMI 8.84 0.12 11.5 23.26 0.34 0.01 2.97 0.004

WC 7.86 0.006 10.4 77.97 0.32 0.02 2.81 0.006

WHR 9.89 0.13 12.7 0.51 0.36 0 3.15 0.002

CIMT 22.81 0.25 25.12 0.42 0.5 0 4.78 <0.001

PWV 18.76 0.22 21.62 4.49 0.46 0 4.33 <0.001

AIx 2.32 0.03 3.29 21.77 0.18 0.01 1.52 0.13

SBP 13.41 0.16 16.47 116.97 0.41 0.01 3.66 <0.001

DBP 9.28 0.12 12.01 76.36 0.35 0.01 3.05 0.003

MAP 15.22 0.18 18.29 96.66 0.43 0.01 3.9 <0.001

cSBP 13.81 0.17 16.88 103.36 0.41 0.01 3.72 <0.001

cDBP 4.18 0.06 5.79 67.87 0.24 0.01 2.04 0.04

cPP 8.88 0.18 11.55 58.81 0.34 0.02 2.98 0.004

HR 5.9 0.08 7.99 81.1 0.28 0.01 2.43 0.01

HOMA-IR 3.03 0.04 4.27 2.16 0.21 0 1.74 0.08

fasting glucose 3.37 0.05 4.72 80.43 -0.22 0.01 -1.84 0.7

VAI 3.16 0.04 4.44 1.2 0.21 0 1.78 0.08

TyG index 0.88 0.01 1.28 8.09 0.11 0 0.94 0.35

total cholesterol 0.05 -0.01 0.08 163.3 -0.03 0.03 -0.23 0.82

HDL-c 1.65 0.02 2.36 49.01 -0.15 0.01 -1.28 0.2

LDL-c 0.02 -0.01 0.02 98.7 -0.02 0.02 -0.13 0.9

triglycerides 1.01 0.01 1.46 91.48 0.12 0.03 1 0.31

non-HDL-c 0.04 -0.01 0.05 114.29 0.02 0.03 0.19 0.84

TG/HDL-c 2.23 0.03 3.17 1.97 0.18 0 1.49 0.14

TC/HDL-c 0.66 0.01 0.96 3.49 0.01 0 0.81 0.42

uric acid 0.37 0.01 0.54 4.52 0.07 0 0.61 0.54

creatinine 1.49 0.02 2.14 0.56 -0.15 0 -1.22 0.22

AST 0.42 0.01 0.62 24.42 0.08 0.01 0.65 0.51

ALT 4.58 0.06 6.31 22.52 0.25 0.01 2.14 0.03

25-OH-Vitamin D <0.01 <0.01 0.01 21.16 -0.01 0.01 -0.06 0.95
frontie
*The independent variable for all the linear regression models is serum TMAO.
*The significant results in this table were bolded.
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TABLE 12 Multiple regression analysis between TMAO, clinical markers (BMI, WC, WHR) and blood markers (HOMA-IR, fasting glucose, lipid fractions,
triglycerides, uric acid, creatinine, AST, ALT, and 25-OH-Vitamin D) as influencers of the values of the vascular parameters.

Dependent variable Independent variables Significant independent variables b p Regression model

CIMT TMAO
+

clinical markers

TMAO 0.34 <0.001 F=30.38, p<0.001, R2 = 0.65

BMI 0.42 0.01

WC 0.72 <0.001

WHR 0.62 <0.001

TMAO
+

blood
markers

TMAO 0.41 <0.001 F=5.58, p<0.001, R2 = 0.56

uric acid 0.24 0.03

creatinine 0.3 0.009

ALT 0.28 0.02

PWV TMAO
+

clinical markers

TMAO 0.29 0.002 F=21.58, p<0.001, R2 = 0.57

BMI 0.41 0.03

WC 0.55 0.009

WHR 0.39 0.02

TMAO
+

blood
markers

TMAO 0.38 0.001 F=21.58, p<0.001, R2 = 0.57

HOMA-IR 0.3 0.01

creatinine 0.3 0.01

AST 0.27 0.02

AIx TMAO
+

clinical markers

BMI 0.65 0.008 F=7.54, p<0.001, R2 = 0.32

WHR 0.58 0.008

SBP TMAO
+

clinical markers

TMAO 0.21 0.01 F=30.05, p<0.001, R2 = 0.65

BMI 0.54 0.02

WC 0.61 0.02

WHR 0.51 0.001

TMAO
+

blood
markers

TMAO 0.24 0.002 F=5.48, p<0.001, R2 = 0.56

HOMA-IR 0.45 <0.001

creatinine 0.26 0.02

DBP TMAO
+

clinical markers

TMAO 0.22 0.04 F=8.14, p<0.001, R2 = 0.3

TMAO
+

blood
markers

TMAO 0.24 0.04 F=3.91, p<0.001, R2 = 0.48)

ALT 0.29 0.03

MAP TMAO
+

clinical markers

TMAO 0.24 0.004 F=28.14, p<0.001, R2 = 0.63

BMI 0.57 0.002

WC 0.56 0.004

WHR 0.51 0.002

TMAO
+

blood
markers

TMAO 0.27 0.008 F=6.21, p<0.001, R2 = 0.59

HOMA-IR 0.4 <0.001

creatinine 0.23 0.03

(Continued)
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explained only 14.53% of the variance in TMAO, and this value was

statistically different from zero (F=2.79, p=0.03, R2 = 0.15). HOMA-

IR (b=0.26, p=0.03) and fasting glucose (b=-0.28, p=0.04) were

confirmed as independent significant predictors of TMAO, while

TyG index (b=0.03, p=0.88) and VAI (b=0.12, p=0.51) were not.
The multiple regression model involving total cholesterol, HDL-

c, LDL-c, triglycerides, non-HDL-c, TG/HDL-c ratio, and TC/HDL-c

ratio as independent predictors of TMAO did not reveal significant

results (F=0.59, p=0.76, R2 = 0.06). Neither did the linear regression

analysis performed separately for each lipid fraction and ratio.

The multiple regression model examining the influence of uric

acid, creatinine, and transaminase levels (AST, ALT) on TMAO

levels also showed insignificant results (F=1.94, p=0.11, R2 = 0.11).

Linear regression analysis showed that of these markers, only ALT

is a significant predictor of TMAO levels (F=4.58, R2 = 0.06,

b=0.25, p=0.03).
The linear regression examining the influence of 25-OH-

Vitamin D on TMAO levels showed that the former is not a

significant predictor (F=0.23, p=0.63, R2 =-0.02).
3.5 Serum TMAO in relation to the
menstrual cycle regularity

Out of 29 girls, 14 have finalized their puberty. Seven girls

reported regular menses, and seven, irregular ones. We
Frontiers in Endocrinology 15
performed one-way ANOVA post-hoc analyses with regard to

the possible differences in TMAO levels, clinical markers of

adiposity (BMI, WC, WHR), and HOMA-IR between three

subgroups: girls who have not had their menarche, girls with

regular, and with irregular menses. Although the girls with

irregular menses presented the highest mean values for TMAO

levels and the most significant weight excess, the significance

threshold was not met (Table 13).

Analyzing only the obese girls, we observed that out of 19

obese girls, 11 have had their menarches. Four girls reported

regular menses and six, irregular menses. Similar ANOVA post-

hoc analyses to those depicted in Table 10 were performed in

order to detect any differences within the obese group. Although

TMAO levels remain the highest in obese girls with irregular

menses , the significance threshold was st i l l not met

(Supplementary Table 4).
4 Discussion

This research provides insight into the connections between the

gut-derived metabolite, serum TMAO, and the early vascular

alterations linked to obesity in children. Obesity is a promoter of

an earlier progression of atherosclerosis and arterial stiffness (16, 17,

46–51, 53). Using non-invasive biomarkers like the carotid intima-

media thickness and pulse wave velocity to detect early functional
TABLE 12 Continued

Dependent variable Independent variables Significant independent variables b p Regression model

cSBP TMAO
+

clinical markers

TMAO 0.22 0.01 F=23.54, p<0.001, R2 = 0.59

BMI 0.39 0.03

WC 0.67 0.001

WHR 0.45 0.007

TMAO
+

blood
markers

TMAO 0.26 0.02 F=4.05, p<0.001, R2 = 0.48

HOMA-IR 0.44 <0.001

cDBP TMAO
+

clinical markers

BMI 0.48 0.04 F=7.83, p<0.001, R2 = 0.33

WC 0.55 0.03

WHR 0.69 0.002

TMAO
+

blood
markers

HOMA-IR 0.41 0.002 F=3.3, p=0.001, R2 = 0.43

cPP TMAO
+

clinical markers

BMI 0.35 0.02 F=37.59, p<0.001, R2 = 0.7

TMAO
+

blood
markers

TMAO 0.21 0.04 F=5.45, p<0.001, R2 = 0.56

HOMA-IR 0.36 0.002

fasting glucose -0.31 0.006

uric acid 0.24 0.03
Only the significant results are presented in the table.
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and structural modifications of the arterial walls could be useful

long-term in these children (16, 50, 73). Showing a connection to a

marker like TMAO, which has received much attention in the last

decades concerning its role in numerous pathologies (74),

is important.

Numerous studies on animal models have shown intricate

metabolic connections between TMAO and insulin resistance,

and atherosclerosis respectively, connecting diet, alterations in gut

microbiota, and cardio-metabolic diseases (75–81). In recent years,

TMAO and its precursors have gained increasing attention in

studies involving human adults, as relevant data shows

involvement in the pathophysiology of disorders promoting

insulin resistance (82–85), atherosclerosis (86–89), the risk of

developing chronic kidney disease (90, 91), CV disorders (92–94),

MAFLD (95–97), psoriasis (98), cancer (99), and even Alzheimer’s

disease (100). Data regarding the roles of TMAO in children are

scarce, to say the least. Most of the existing studies focus on linking

serum or urinary TMAO levels or its precursors to dietary habits

(101–103). The few studies that have focused on linking TMAO to

certain pathologies in children have focused on chronic kidney

disease (104) or the CV risk in children with early-stage chronic

kidney disease (105), autism spectrum disorders (106, 107), asthma

(108, 109), phenylketonuria (110). We identified one study on pre-

pubertal obese children with weight excess that showed lifestyle

intervention resulting in weight loss reduces TMAO levels

significantly (111). Given the lack of data regarding TMAO and

vascular damage in obese children, the present study focuses on

detecting possible links between serum TMAO and clinical,

vascular markers, and blood parameters in this type of individuals.

Our findings provide compelling evidence supporting the

association between serum TMAO and obesity in children. We

observed significantly elevated levels of TMAO in obese children

compared to those with normal weight. Using the cut-off values for

serum TMAO proposed by the laboratory, recognizing that these

values were intended for adults, the study showed that

approximately 68% of the participants had normal TMAO levels,

20% had borderline values, and 11% had high levels. All individuals

with high TMAO levels were obese. Furthermore, TMAO levels

presented moderate positive correlations to BMI, WC, and WHR.
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Hence, the more significant the weight excess, especially central

obesity, the higher the TMAO values. Barrea et al. have linked the

increase in TMAO levels to the severity of obesity in adults (112).

The regression analysis revealed that serum TMAO levels

independently predicted BMI, WC, and WHR. On the other

hand, the regression analysis investigating the influence of clinical

markers of adiposity on TMAO levels yielded mixed results. While

the markers were found to have a significant influence on TMAO

levels when analyzed individually, the multiple regression analysis

showed that these parameters explained only a small portion of the

variance in TMAO, and none of them emerged as significant

independent predictors. The elevated levels of TMAO observed in

obese children could most likely be attributed to alterations in gut

microbiota composition and function, which have been previously

implicated in the pathogenesis of obesity (113). Altered brain-gut-

microbiota interactions fuel dysregulated eating behavior and

obesity in a stubborn cycle. The interplay between diet, gut

signals, inflammation, and disrupted brain balance drives a

preference for high-calorie foods, reinforcing gut dysbiosis (114).

Early-life gut imbalance, often due to antibiotics, increases short-

chain fatty acid production, reshaping liver lipid metabolism and

promoting obesity (115). This dysbiosis, linked to reduced

microbiota diversity (116), affects immunity (117) and escalates

cardio-metabolic risks (118, 119). An intervention study on obese

children, regardless of the cause, found that a diet rich in non-

digestible carbs improved microbiota composition, reducing

harmful metabolite-producing microbes (120).

In this study, the obese also displayed significantly higher

CIMT, PWV, AIx, peripheral BP, and central SBP, but not higher

HR or central DBP than controls. These results suggest a close

association between obesity and adverse changes in vascular

function and are in line with previous studies (16, 17, 46–51, 53).

Significant moderate correlations were observed between TMAO

and vascular markers such as CIMT, PWV, and peripheral BP

levels. Moreover, the regression linear analysis revealed that serum

TMAO independently predicts most vascular markers: CIMT,

PWV, systolic BP, and central BP levels. We performed multiple

regressions in order to see if TMAO remains a significant predictor

of the vascular parameters after adding the clinical markers of
TABLE 13 One-way ANOVA posthoc tests comparing data regarding girls’ menstrual cycles (the two-by-two comparisons present Bonferroni-
corrected p-values).

Mean values ANOVA
p

p

Without
menarche

Regular
menses

Irregular
menses

without menarche
vs. regular menses

Without menarche
vs. irregular menses

Regular menses vs
irregular menses

Serum
TMAO

242.8 157.71 309.09 0.18 0.68 1 0.21

BMI 23.71 28.59 34.59 0.01 0.44 0.008 0.39

WC 77.87 91.57 105.14 0.01 0.34 0.009 0.52

WHR 0.55 0.56 0.65 0.24 1 0.32 0.54

HOMA-
IR

2.62 2.91 2.83 0.93 1 1 1
*The significant results in this table were bolded.
*p=1 for the two-by-two comparisons represents the maximum p-value after the Bonferroni correction.
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adiposity, age, puberty development, or other blood tests into the

models – results will be discussed further on.

Andraos et al.’s study on 1166 children and 1324 adults presents

mixed findings regarding TMAO and atherosclerosis. Their

research associates TMAO precursors, rather than TMAO itself,

with cardiovascular traits and inflammatory markers in a

population-based sample, encompassing CIMT, PWV, and BP

levels (121). In adults, TMAO has been linked to increased

CIMT. Randrianarisoa et al. found that elevated TMAO levels

correlated with increased CIMT, even after accounting for

established risk factors. Weight loss intervention was connected

to CIMT reduction, particularly when TMAO levels dropped

significantly (122). While CIMT reversibility after intervention is

limited due to atherosclerosis’s nature, the possibility exists in early

stages, holding significance for obese children with accelerated

atherosclerosis (122).

Regarding arterial stiffness, Brunt et al. investigated the

connection between TMAO, aortic stiffness, and blood pressure,

showing higher TMAO levels in older adults, correlating with

increased carotid-femoral PWV, regardless of traditional risk

factors. However, this link diminished when age was factored in.

Mouse experiments mirrored these findings, with TMAO

supplementation raising aortic PWV. This suggests potential for

preventing early aortic stiffening in young adults with elevated

TMAO and therapeutic options for older adults, though human

studies are required for validation (123). In our study, TMAO levels

did not correlate with age, the analysis did not reveal significant

differences in TMAO levels across the three subgroups divided by

age (<12 y, 12 to15 y, and ≥15 y), and age was not confirmed as an

independent predictor for TMAO. However, not only did TMAO

still correlate with PWV and peripheral BP levels, but it was also

confirmed as an independent predictor of PWV, peripheral BP, and

central SBP levels, even after adding BMI, WC, WHR, puberty

development, and age into the regression model. Although the

linear regressions showed TMAO as a significant predictor of cDBP

and cPP, after adding the clinical markers of adiposity, puberty

development, and age into the model, the significance was lost.

However, with regard to age, other studies have confirmed the fact

that older adults present higher circulating TMAO, but the

mechanisms behind this are not elucidated (124–126). Brunt et al.

have stipulated, however, that the link to age-related vascular

endothelial dysfunction may occur due to a decrease in the

availability of nitric oxide, caused by oxidative stress (126, 127). It

is likely that the connection between TMAO and this age-related

vascular dysfunction is not yet evident in children, but obesity may

aggravate the effects of both TMAO and separate oxidative stress.

TMAO’s link to insulin resistance, glucose metabolism, and

diabetes has been explored extensively, both in animal models (77,

128) and in human adults (34, 129–131). TMAO can impair glucose

tolerance and induce adipose tissue inflammation in high-fat diet-

fed mice (39). FMO3, which contributes to TMAO production, has

been implicated in glucose and lipid metabolism impairment in

mice and atherosclerosis (132). Reduced TMAO production

through FMO3 inhibition can prevent hyperglycemia (80).

Notably, circulating TMAO levels appear to correlate positively
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with fasting glucose levels in humans (133). The connection

between TMAO and IR has been explored, but most studies are

cross-sectional, making it challenging to determine causality. A

longitudinal study reported elevated TMAO was associated with

reduced diabetes risk (134). However, limited data exist on TMAO’s

role in predicting type 2 diabetes development and its relation to

early risk biomarkers like insulin resistance and prediabetes. One

longitudinal study found a nonlinear association between TMAO

levels and prediabetes prevalence, but no significant link to insulin

resistance or fasting glucose change (135).

In the present study the obese subjects were divided into obese

with IR, and without IR, according to HOMA-IR values. Although

children with IR presented a greater weight excess (BMI, WC,

WHR) and significantly higher vascular markers for atherosclerosis

and arterial stiffness (CIMT, PWV, AIx, peripheral and central BP

levels), serum TMAO levels did not differ significantly. No

differences in sex, age, or puberty development were detected

with regard to insulin resistance either. Serum TMAO did not

correlate to HOMA-IR and insulin levels, but presented a negative

moderate correlation to fasting glucose levels. Lower fasting glucose

levels in insulin-resistant obese children might be explained by the

fact that, unlike adults, children with pre-diabetic status present

higher glucose variability, with highs and lows throughout a usual

day (136). The multiple regression showed a significant influence of

the blood parameters investigating IR (HOMA-IR, fasting glucose,

VAI, and TyG index) on serum TMAO, but only HOMA-IR and

fasting glucose were confirmed as independent predictors of

TMAO. Moreover, when investigating the presence of acanthosis

nigricans as a marker of insulin resistance (62), this study showed

that an increase in TMAO is associated with an increase in the

probability of the presence of acanthosis nigricans. Insulin

resistance itself is an aggravating factor for the progression of

vascular disruptions in obese children (137). Assessing the

influence of HOMA-IR and other blood parameters (fasting

glucose, lipid fractions, triglycerides, uric acid, creatinine, AST,

ALT, 25-OH-Vitamin D), along with TMAO, on the vascular

parameters showed interesting results. The multiple regression

analysis showed that of all the blood parameters, only TMAO,

uric acid, creatinine, and ALT are significant predictors of CIMT.

After adding the blood tests into the model regression, TMAO,

HOMA-IR, creatinine, and ALT remained predictors of PWV. As

for the peripheral BP levels, TMAO, HOMA-IR, and creatinine

remained predictors of SBP, while TMAO and ALT remained

predictors of DBP. Although in the case of cSBP, TMAO, and

HOMA-IR remained predictors after adding the other blood

parameters in the model, for cDBP, only the HOMA-IR remained

a significant predictor, while TMAO lost its influence. In the case of

cPP, although TMAO did not keep its significance as a predictor

while adding the clinical markers of adiposity, puberty, and age, it

did not lose it after adding the other blood parameters: TMAO,

HOMA-IR, fasting glucose, and the uric acid remain significant

predictors. Neither TMAO nor the other blood parameters exert a

significant influence on AIx. Hence, we can observe that both

HOMA-IR and TMAO are significant predictors of the

parameters measuring arterial stiffness, but only the TMAO of
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CIMT. This goes to show that a connection between IR and serum

TMAO exists, but further research is needed to establish the causal-

effect connections.

An unexpected finding of this study was the lack of connections

between the lipid fractions and ratios and the TMAO levels and

vascular markers we investigated, respectively. Contrary to our

expectations, the controls presented a significantly lower HDL-c

and higher TC/HDL-c ratio. The rest of the lipid fractions’ mean

values were also higher in the control group, but not significantly so.

We do not believe these results are in any way significant because,

the lipid fractions of the controls, although being the opposite of

what one would expect, did not present dyslipidemic values. A

lower HDL-c in normal-weight children can be explained by

sedentariness and increased consumption of saturated fats,

characteristics that unfortunately can be applied to many children

today, regardless of their BMI (138, 139). However, we must

acknowledge the fact that in this study, the control group was

quite small, and variations in blood tests mean values could be

attributed to this fact also. A particularity of this studied obese

group is that these participants did not present pathological lipid

levels either. In our previous studies on obese children, we detected

significantly lower HDLc levels that correlated negatively to CIMT

values (16), higher LDL-c that correlated positively with CIMT and

arterial stiffness markers, correlations between non-HDL and PWV,

and triglycerides and PWV, BP levels, respectively (137). The

associations between TMAO and lipid metabolism are mainly

related to fatty acids and sugar intake, microbiota composition,

and liver function (140). Several studies in adults have reported a

connection between the makeup of gut bacteria and variations in

blood lipid levels (141, 142). In animal models, metabolites like

TMAO, carnitine, and g-butyrobetaine have been shown to disrupt

cholesterol metabolism (143–145). While one previous study

discovered a negative association between plasma betaine and

lipids such as LDL-c and triglycerides (146), there remains

limited information regarding the links between TMAO-related

metabolites and blood lipids. The results of our study suggest that

the connections between TMAO and lipid metabolism are less

significant than the connections to IR, but stress the importance of

further investigations on larger study groups.

Although showing significantly lower values in obese children,

25-OH-Vitamin D did not present a significant correlation or

influence on serum TMAO. Vitamin D deficiency represents

almost a normality for cardio-metabolically impaired individuals,

indifferently of their age (147, 148). A study on adults investigating

the connections between the levels of vitamin D and TMAO, in

relation to BMI and the presence of MAFLD, showed that low

vitamin D levels (<19.83 ng/ml) are predictive of high serum

TMAO levels, but a relation of causality was not identified (112).

The few studies investigating the role of TMAO in the

pathogenesis of CV risk in women with PCOS have demonstrated

higher levels of serum TMAO in comparison to same-age and BMI

controls (149, 150). Moreover, one study associated these higher

levels of TMAO with hyperandrogenism, as it showed that after a 3-

months contraceptive administration and lifestyle intervention, the

TMAO levels decreased significantly (149). The same team
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compared the microbiota of obese women with PCOS and of

women with simple obesity and showed that those with PCOS

presented a greater abundance of Ruminococcaceae (151), a genre

associated with atherosclerosis and high TMAO levels in animal

models (152). Hence, due to endocrine alterations (probably

hyperandrogenism) and weight excess-related problems, women

with PCOS seem to produce higher serum TMAO levels that may

increase their CV risk (153). In this study, we looked at the cycle

irregularity component of PCOS in the post-pubertal participants.

Only 14 girls had completed their puberty, 50% of whom presented

irregular menses. The ANOVA analysis showed that, although the

obese girls with irregular menses presented a higher weight excess

than the girls without menses and those with regular menstrual

cycles, the TMAO levels among the three groups did not differ. We

conclude that, given the results presented in adult women, further

research is needed for obese adolescent girls associating PCOS, as

our previous work has shown that these girls are likely to present

increased arterial stiffness markers in the context of IR (138). Other

studies have also connected the presence of PCOS to larger values of

CIMT, even after adjusting for BMI, age, and smoking (154, 155).

However, the central obesity of these individuals could also

represent a significant factor in increasing arterial stiffness, hence

correlations between PCOS and arterial damage in obese children

are not definitive (156).

Recent research has emphasized the variations in microbiome

composition between sexes, observed in both animal models and

human studies, along with a reciprocal interaction between the

microbiota and the endocrine system. More information regarding

the connections between gut microbiota, gut-related metabolites,

and sex hormones, in both children going through puberty and

adults, is needed in order to draw conclusions. Both animal and

human models have shown differences in gut microbiota

composition between sexes: women host a higher ratio of the

phyla Firmicutes/Bacteroidetes than men, a ratio that is

significantly influenced by BMI, however; menopausal women

and men present a higher abundance of the phyla Bacteroidetes

and Prevotella. While sex itself may modify diet choices, the host’s

sex hormones profile can also influence the composition of gut

microbiota. Moreover, some bacteria have the capacity of

producing, responding to, and regulate hormones. This is

achieved by gene transcription inhibition and hormone

conversion. Estradiol and testosterone may contribute to the sex-

based differences in gut microbiota composition, potentially

influencing the immune environment of the gut mucosa (157).

Sex-related differences in FMO3 expression have been observed in

mice, with consequent lower production of TMAO in male mice.

These differences have been associated with testosterone levels,

which may downregulate FMO3, explaining lower levels of

TMAO in males compared to females (158). TMA, the substrate

for TMAO, is higher in healthy men compared to healthy women.

Lower TMA in men with cardiovascular disease has been reported

in comparison to healthy men, while higher TMA was reported in

cardiovascular female patients compared to healthy females (159).

These variations could be linked to the redox and metabolic system

because in normal conditions, females are less affected by oxidative
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stress which directly impacts cardiovascular health and

atherosclerosis (160). This study did not detect significant

differences in TMAO levels between sexes in the obese group or

when comparing obese and controls according to sex. Normal-

weight girls did present significantly lower TMAO levels compared

to normal-weight boys and obese girls. Furthermore, the analysis

did not link any differences in TMAO levels to puberty

development. Further studies are needed in order to detect any

connections between sex, the roles of gut microbiota, and TMAO, in

pre-pubertal children, adolescents, and adults respectively, as

differences between sexes have been clearly detected in adults in

previous studies.

This study also revealed no differences between the TMAO

levels of subjects in different stages of puberty development.

Physiological changes during puberty of gut microbiota

composition are cited in the literature, but the results are

inconclusive. While some authors using conventional colony

plating technology have cited no age differences (161), others,

using DNA/RNA sequencing technology have shown clear

differences both related to age (162) and puberty (163). TMA,

TMAO, and other gut-derived metabolites should therefore be

influenced by these changes, but studies are yet to prove that.

The key strength of this study is that it managed to confirm the

connections between serum TMAO, childhood obesity, and early

disruptive modifications of the arterial walls. The highlight of this

work is that, to our knowledge, no other study has approached this

subject as we have. Certain limitations should be considered,

however. Firstly, the cross-sectional design prevents establishing a

cause-and-effect relationship between TMAO, obesity, and vascular

damage. Longitudinal studies are needed to determine the temporal

sequence of these associations. Secondly, our control sample

consisted of only 20 children, and this might be an impediment

in interpreting the results. Lastly, the study did not investigate

potential confounders, such as dietary habits, physical activity

levels, and genetic predisposition, which could influence TMAO

levels and vascular parameter dynamics. In the future, we plan to

integrate these cofounders in our work and investigate the

implications of liver health both in relation to TMAO and to

vascular alterations. Another interesting approach would be to

perform a longitudinal investigation and measure the effect of

lifestyle intervention on both TMAO levels, and on the vascular

parameters, to possibly show whether at young ages the vascular

damage could be reversible.

In conclusion, our study provides compelling evidence

supporting the link between serum TMAO, obesity, and vascular

damage in children. The elevated TMAO levels observed in obese

children suggest its potential as a biomarker for obesity. Moreover,

the positive correlations between TMAO and subclinical

atherosclerosis and arterial stiffness surrogate markers indicate

the detrimental effects of TMAO on the vasculature. These

findings highlight the importance of further research to unravel

the underlying mechanisms and explore the potential of TMAO as a

therapeutic target for obesity-related vascular complications.

Understanding the relationship between TMAO, obesity, and

cardiovascular risk may contribute to the development of

personalized interventions aimed at reducing the burden of
Frontiers in Endocrinology 19
cardio-metabolic diseases in children and young adults struggling

with obesity.
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