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The role of C-peptide in diabetes
and its complications: an
updated review

Jintao Chen †, Yajing Huang †, Chuanfeng Liu, Jingwei Chi,
Yangang Wang* and Lili Xu*

Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
Worldwide, diabetes and its complications have seriously affected people’s

quality of life and become a serious public health problem. C-peptide is not

only an indicator of pancreatic b-cell function, but also a biologically active

peptide that can bind to cell membrane surface signaling molecules and activate

downstream signaling pathways to play antioxidant, anti-apoptotic and

inflammatory roles, or regulate cellular transcription through internalization. It

is complex how C-peptide is related to diabetic complications. Both deficiencies

and overproduction can lead to complications, but their mechanisms of action

may be different. C-peptide replacement therapy has shown beneficial effects on

diabetic complications in animal models when C-peptide is deficient, but results

from clinical trials have been unsatisfactory. The complex pattern of the

relationship between C-peptide and diabetic chronic complications has not

yet been fully understood. Future basic and clinical studies of C-peptide

replacement therapies will need to focus on baseline levels of C-peptide in

addition to more attention also needs to be paid to post-treatment C-peptide

levels to explore the optimal range of fasting C-peptide and postprandial C-

peptide maintenance.

KEYWORDS

C-peptide, diabetic kidney disease, diabetic retinopathy, diabetic peripheral neuropathy,
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1 Introduction

Globally, the incidence of diabetes is rapidly increasing, affecting almost 537million people,

with approximately 109.6 million in China (1–3). Under hyperglycemic conditions, protein and

lipid glycosylation, overproduction of reactive oxygen species (ROS), tissue expression of pro-

inflammatory factors, and damage to vascular endothelium all promote the occurrence of

diabetic complications (4). As diabetes progresses, a variety of complications occur, such as

retinopathy, kidney disease, neuropathy, cardiovascular disease, and so forth. The complications

of diabetes have become a serious global health issue that significantly impacts people’s quality

of life (5) The leading cause of end-stage renal disease is diabetic kidney disease (DKD), as

diabetes prevalence increases, the global incidence of end-stage kidney disease is on the rise (6).
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Diabetes is a leading cause of death due to myocardial infarction, and

The risk of coronary heart disease in diabetic patients without a history

of coronary disease is similar to that in non-diabetic patients with a

history of coronary disease (7). Current clinical trials are increasingly

focused on the impact of novel hypoglycemic drugs on cardiovascular

events and renal prognosis, and the focus of diabetes management has

shifted from merely controlling blood glucose to impacting

cardiovascular and renal prognosis. However, there is still no

definitive treatment to reverse diabetic complications. Even if

diabetic patients are given intensified glycemic control at an early

stage, the occurrence of complications is still unavoidable. Therefore,

finding treatments to prevent and reverse diabetic complications is a

key focus of the comprehensivemanagement of type 2 diabetesmellitus

(T2DM). As beta cells secrete C-peptide and insulin at equimolar levels,

C-peptide can serve as an indicator of beta-cell reserve function. In the

years following C-peptide’s discovery, the traditional view is that its

biological activity promotes the folding of proinsulin within beta cells.

However, according to research evidence collected over the past 20

years, C-peptide is also a biologically active peptide that may influence

diabetic complications (8). A normal result of a C-peptide test ranges

from 0.5 ng/mL to 2.0 ng/mL (or 0.17 to 0.83 nmol/L), which may

differ slightly from lab to lab. C-peptide can bind with cell membrane

surface signaling molecules, activate downstream signaling pathways,

play anti-oxidative, anti-apoptotic roles, regulate inflammatory

responses, or regulate cellular transcription through internalization

(9). In type 1 diabetes mellitus (T1DM), C-peptide and insulin are

deficient, and progressive beta-cell dysfunction can also be observed in

the late stage of T2DM. Evidence from animal and in vitro experiments

shows that when C-peptide is deficient, C-peptide replacement therapy

can improve renal lesions (10), retinopathy (11), and peripheral

neuropathy (12) by exerting anti-inflammatory, anti-apoptotic, and

anti-oxidative effects. In the early stages of T2DM, C-peptide secretion

is higher than physiological concentration, and C-peptide can also exert

a pro-inflammatory effect, damaging vascular endothelium, and

promoting vascular lesion occurrence (13, 14). On one hand, further

research is needed to determine the relationship between C-peptide

and diabetic complications. Both deficiency and over-secretion of C-

peptide can promote the onset of diabetic complications, but the

underlying mechanisms might differ. On the other hand, the

biological activity of C-peptide can be a new breakthrough for the

treatment and prevention of diabetic complications. As a result, we

have summarized the current research progress on the relationship

between C-peptide and diabetic complications as follows:
2 Physiological functions of C-peptide

2.1 C-peptide and cell signal transduction

Some studies indicate that C-peptide can function as a classical

peptide hormone, binding to G-protein-coupled receptors on the

cell surface to initiate cascading cellular signal transduction

reactions (15). However, other research suggests that C-peptide

also has some non-classical intracellular functions. C-peptide

demonstrates a specific binding affinity towards the cell
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membrane, thereby initiating intracellular signal transduction via

G-protein receptors and Ca2+-dependent pathways. This process

consequently enhances the activity of endothelial nitric oxide

synthase (eNOS), Na+/K+/ATPase, and phosphatidylinositol-3

kinase (PI-3-K). Furthermore, it activates the mitogen-activated

protein kinases (MAPK) pathway and augments the activation and

expression of particular transcription factors. These outcomes hold

significant implications for anti-inflammatory, anti-oxidative, and

cellular protective mechanisms (16). The signaling pathways

involved in C-peptide mainly include: Ca2+ dependent pathway,

p38 mitogen-activated protein kinase, extracellular signal-regulated

kinase-1/2 (Erk-1/2), Akt phosphorylation, and production of

endothelial cell nitric oxide (NO) (17, 18).

Lindahl’s research indicates that C-peptide can be internalized

in target cells. C-peptide is internalized and located in the cytoplasm

of Swiss 3T3 and HEK-293 cells and can bind with cytoplasmic

proteins. Labeling revealed that C-peptide is transported into the

cell nucleus (19). Subsequent investigations revealed that C-peptide

is capable of associating with histones present in the nucleolus,

thereby enhancing the acetylation at the lysine residue 16 of histone

H4 located in the promoter region of ribosomal RNA genes. This

particular interaction facilitates the transcription of genes

responsible for encoding ribosomal RNA (20).

The cellular biology of C-peptide is largely unknown, especially

concerning the peptide’s pathway across the cell membrane for

internalization. Research by Luppi and colleagues demonstrated the

co-localization of C-peptide with early endosome markers that

support endocytosis (8). The pathway of C-peptide internalization

is still in need of further exploration, and understanding its

internalization pathways can further assist us in understanding

the mechanisms through which it exerts intracellular activity.
2.2 Antioxidant and anti-apoptotic
effects of C-peptide

Current research evidence on endothelial cells suggests that C-

peptide can directly reduce the generation of ROS (21). C-peptide

exhibits the ability to influence the nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase that is activated on the plasma

membrane by high glucose levels. It achieves this by curtailing

excessive ROS production through the restoration of mitochondrial

electron transport chain activity within endothelial cells (22, 23).

Research by Bhatt and colleagues indicates that C-peptide can

activate AMP-activated protein kinase-a (AMPK-a), an enzyme

that can reduce the production of NADPH and ROS in

mitochondria and endothelial cell apoptosis (23). As AMPK-a
plays a core role in energy metabolism and diabetes, this target

could have broad therapeutic implications.

Animal experiments have demonstrated that C-peptide can reduce

cellular apoptosis in the aorta, heart, and kidneys of diabetic mice by

downregulating the activation of transglutaminase 2 (TGase2), an

apoptosis-promoting enzyme mediated by ROS, in endothelial cells

exposed to a high-glucose environment (24). Studies conducted in vitro

have demonstrated that the supplementation of C-peptide exogenously
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has the capacity to diminish apoptosis in pancreatic islet cells induced

by high glucose concentrations (25)..

C-peptide can downregulate the activation of transcription

factor p53 and mitochondrial adaptor protein P66 caused by high

glucose memory, thus reducing the apoptosis of vascular

endothelial cells. Exogenous supplementation with C-peptide can

prevent vascular endothelial damage caused by high glucose

memory (26).

Conditions characterized by prolonged high glucose and

elevated ROS levels may lead to a reduction in insulin gene

expression. This is potential ly mediated through the

downregulation of transcription factors such as pancreatic

duodenal homeobox 1 (PDX-1) and musculoaponeurotic

fibrosarcoma oncogene family A (MafA) (27). Furthermore, such

conditions may also accelerate the rate of cell apoptosis.
2.3 C-peptide and inflammatory response

C-peptide at physiological concentrations has anti-inflammatory

effects, but some reports also suggest that C-peptide has pro-

inflammatory effects, which may be related to its over-secretion. C-

peptide has been observed to significantly attenuate the secretion of

inflammatory factors, including IL-6, IL-8, MIP-1a, andMIP-1b, in U-
937 monocytes under conditions of high glucose stimulation.

Additionally, it decreases their adhesion to human aortic endothelial

cells. This could potentially be attributed to the inhibition of excessive

ROS production, thereby reducing the activation of nuclear factor-kB
(NF-kB) (28). C-peptide also has the potential to lower the expression
of adhesion molecules, such as P-selectin and intercellular adhesion

molecule 1, in rat mesenteric arteries. As a result, the interaction

between leukocytes and endothelial cells is diminished (29).

Clinical research has uncovered that in obese patients suffering

from type 2 diabetes, there exists a positive correlation between the

concentration of C-peptide and pro-inflammatory chemokine

ligand-2 (C-C chemokine ligand -2, CCL2), as well as E-selectin.

Conversely, a negative correlation has been observed between C-

peptide concentration and the anti-inflammatory factor IL-10 (30)..

In the initial stages of T2DM, there is an observed increase in the

secretion of C-peptide. In vitro investigations suggest that excess C-

peptide can accumulate within vessel walls. C-peptide instigates the

chemotaxis of CD4(+) lymphocytes and monocytes in a

concentration-dependent manner, thus encouraging their

migration into the vessel wall. This chemotactic process is

associated with pertussis toxin-sensitive G-proteins and a

mechanism that is PI-3k-dependent (13, 14). C-peptide above

physiological concentrations can stimulate the production of

nitrite in mouse macrophages through the activation of the

calcium/JAK2/STAT1 pathway (31).

When C-peptide is deficient, exogenous supplementation of C-

peptide can play an anti-inflammatory role and prevent the apoptosis

of endothelial cells. However, when C-peptide is higher than the

physiological dose, excess C-peptide can promote inflammation by

stimulating the chemotaxis of CD4(+) lymphocytes and monocytes, as

well as promoting the pro-inflammatory role of macrophages.
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3 C-peptide and diabetic
kidney disease

DKD is acknowledged as a severe microvascular complication

prompted by chronic hyperglycemia, resulting in structural and

functional alterations in the kidney. Mitochondrial dysfunction

leading to an elevated production of ROS and superoxide in

states of high glucose is a principal initiating factor in the onset

of diabetic complications (32). Excess ROS inhibition suppresses

inhibition of mammalian rapamycin complex 1 (mTORC1),

AMPK, and activation of the NF-kB, protein kinase C (PKC)

pathway (33). mTORC1 and AMPK are central to the regulation

of autophagy, which plays an important protective role in the

kidney by preventing fibrosis and inflammation (34). PKC

pathway activation affects vascular function by regulating

endothelial permeability, vasoconstriction, extracellular matrix

(ECM) maintenance, cell growth, angiogenesis, cytokine

activation and leukocyte adhesion to influence vascular function

(33). Activation of NF-kB further promotes the expression of

inflammatory factors and adhesion molecules, triggering

inflammation and fibrosis (35). On the one hand, elevated PKC

induces endothelial-type nitric oxide synthase (eNOS) and increases

nitric oxide (NO) utilization in early DKD (36). Increased NO

contributes to vascular endothelial growth factor (VEGF)

activation, which leads to endothelial dysfunction (37, 38). In

addition, PKC can lead to activation of transforming growth

factor-b (TGF-b) and plasminogen activator inhibitor 1 (PAI-1),

resulting in fibronectin deposition, fine increased extracellular

matrix deposition, causing glomerulosclerosis and renal fibrosis

(36). A cross-sectional analysis conducted in Korea, which involved

1410 type 2 diabetes patients stratified based on quartiles of fasting

C-peptide, revealed an increased prevalence of DKD in the group

that fell within the highest quartile as compared to the lowest (OR=

2.65, 95% CI, (1.71, 4.12)) (39). Certain studies propose that C-

peptide replacement therapy could represent a novel treatment

approach for DKD. Several small clinical studies have suggested that

short-term C-peptide supplementation in patients with T1DM can

reduce eGFR and urinary protein excretion rates, without impacting

glycemic and blood pressure control (40, 41). In 2000, a study of 21

normotensive patients with microalbuminuria found a significant

reduction in urinary protein excretion rate following 3 months of

combined insulin and C-peptide treatment, with no significant

change in eGFR (42). In a subsequent cohort study of islet-kidney

transplantation in T1DM, improved islet b-cell function post-

transplantation was also found to enhance patient renal outcomes

(43).A Meta-analysis (44) incorporating 4 human trials, and 18

animal trials, showed that DKD patients treated with C-peptide did

not have a significant difference in GFR after treatment, but two

studies reported a reduction in glomerular hyperfiltration. While, in

diabetic rodent models, C-peptide led to a reduction in GFR

reflecting a partial reduction in glomerular hyperfiltration.

Renal tubular cell membranes host G-protein coupled receptors

(GPCR) with a high affinity for C-peptide (45). These peptides

instigate a cascade of reactions upon binding to GPCR. In renal

cells, the elements of signaling pathways influenced by C-peptide
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comprise Na+/K+/ATPase activity, endothelial calcium inward flow,

PKC, ERK, c-Jun amino-terminal kinase (JNK), TGF-b/Smad,

Inducible nitric oxide synthase (iNOS), Peroxisome proliferator-

activated receptor (PPAR-g), and PI-3k activity (46, 47).

It is suggested that C-peptide has the capacity to alleviate

albuminuria and glomerular hyperfiltration by mitigating

histological damage, which includes glomerular hypertrophy,

glomerular thylakoid expansion, tubular interstitial inflammation,

and tubular epithelial interstitial transformation. Furthermore, C-

peptide is also believed to reduce tubular sodium reabsorption and

glomerular hyperfiltration. Additionally, C-peptide can inhibit

cellular apoptotic processes and tissue damage in renal tissues

under high glucose conditions, thereby offering renal protection

(46, 47).

The protective mechanisms of C-peptide on the kidney are

mainly summarized as follows:

① Modulation of endothelial cell function to ameliorate

hemodynamic disturbances

C-peptide replacement therapy was found to effectively rectify

diabetic nephropathy in diabetic rat models, with nitric oxide (NO)

likely serving as a key medium for the renal protective effects of C-

peptide (10). C-peptide was observed to directly enter the nucleus of

mesangial cells and inhibit the binding of NF-kB to p300 and the

iNOS promoter, reducing the acetylation of histone H3K9ac,

thereby repressing the expression of iNOS induced by NF-kB/
p300 (48).

C-peptide demonstrated vasodilation capabilities for small

arteries, and inhibited the Na+/K+/ATPase activity on renal

tubules, lessening the reabsorption of sodium, thereby reducing

the hyperfiltration induced by diabetes in the glomerulus (49).

② Inflammation and Fibrosis

In studies of type 1 diabetes mellitus (T1DM) mouse models,

exogenous supplementation of C-peptide was found to aid in the

reduction of pro-inflammatory cytokines such as IL17 and tumor

necrosis factor-alpha (TNFa), and anti-inflammatory cytokines,

like IL4 and IL10, in the urine (P <0.05). Additionally, an increase in

the expression of the IL10 gene and a decrease in the expression of

the TNFa gene were observed in the kidneys (50).

C-peptide also can alleviate renal fibrosis, thereby exerting renal

protective effects. The activation of the TGFB1/SMAD3 signaling

pathway can lead to the over-synthesis of type IV collagen protein

(COL4), and deficiency in matrix metalloproteinases (MMP)-9 and

MMP-2, which promote ECM deposition in renal cells. Islet

transplantation showed a beneficial effect on the glomerular

filtration membrane structure of early-stage diabetic nephropathy

rats, reducing the thickness of the glomerular basement membrane,

decreasing TGF-b1 and connective tissue growth factor (CTGF),

increasing the expression of anti-fibrotic factors. This anti-fibrotic

mechanism might be dependent on the restoration of C-peptide

levels (51). Moreover, C-peptide was able to inhibit the expression

of Col4 a1- a5 mRNA in the kidney, reducing COL4 and TGF-b1
protein levels, preventing the binding of SMAD3 to its sites in the

promoters of Col4a1a2, Col4a3a4, and Col4a5, thereby repressing

the production of COL4 (52). Finally, cell experiments showed that

early C-peptide exerts a dual effect on MMP-9. As the observation

time extended, C-peptide could induce an increase in MMP-9
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expression, thereby reducing ECM accumulation and reversing

DKD (53).

Although C-peptide replacement therapy significantly reduced

the rate of urinary protein excretion in DKD in some early

preclinical and clinical studies, the impact of C-peptide on eGFR

remains contentious. Due to the small size, short duration, and lack

of large-scale clinical trials, the evidence for C-peptide replacement

therapy as a treatment for DKD remains limited within the scope of

evidence-based medicine.
4 C-peptide and diabetic retinopathy

Chronic hyperglycemia incites a range of pathophysiological

alterations within retinal cells. These alterations encompass an

upsurge in the expression of matrix proteins such as collagen and

fibronectin, thickening of the basement membrane, heightened

retinal vascular permeability, and modifications in retinal blood

flow (54). Beyond the potential for vision loss, diabetic retinopathy

(DR) intensifies the risk of systemic vascular complications, thereby

elevating the mortality rate among patients diagnosed with T2DM

(55). Despite the role that the duration of diabetes and glycemic

levels play in influencing DR (56), rigorous glycemic control does

not entirely inhibit the evolution and progression of retinopathy.

Existing research on T1DM has revealed that residual fasting C-

peptide exhibits protective qualities against the onset of DR (57). In

a 2015 cross-sectional investigation involving 2062 patients with

type 2 diabetes, it was demonstrated that C-peptide levels were

inversely related to the prevalence of DR, irrespective of eGFR (39).

Another cross-sectional study conducted in Shanghai,

encompassing 4793 community-based patients with type 2

diabetes, reported that elevated fasting C-peptide levels acted as a

protective factor against the prevalence of DR. It was observed that

the prevalence of DR decreased as C-peptide levels increased

(OR=0.73, 95% CI (0.62, 0.86), P<0.001) (58). Within the

Veterans Affairs Diabetes Trial (VADT) (59), every increment of

1 pmol/mL in baseline C-peptide was correlated with a substantial

67.2% decrease in the prevalence of DR, coupled with a 47%

reduction in the risk associated with DR progression. A

prospective cohort study further demonstrated that patients who

underwent islet transplantation experienced improved glycemic

control and their progression of DR was considerably slower

compared to those receiving intensive drug therapy (60). Moon

et al. (61) managed to maintain C-peptide within the physiological

concentration range for 16 weeks in diabetic mice by injecting ultra-

long-lasting human C-peptide delivery into the vitreous body of the

mice. The results indicated that maintaining the physiological

concentration of C-peptide improved the formation of retinal

neovascularization induced by high blood sugar in diabetic mice.

The protective role of C-peptide is attributed to the following

mechanisms. Firstly, C-peptide enhances microvascular blood flow

and improves microvascular endothelial function. It increases

microvascular blood flow and mitigates vascular permeability by

activating eNOS (62). It also counters ROS production by activating

AMPK-a, which in turn inhibits VEGF’s increase in NADPH

oxidase-dependent ROS production (63). C-peptide, along with
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ROS scavengers, diminishes VEGF-induced stress fiber formation

that escalates vascular permeability (64). Moreover, C-peptide

decreases the VEGF-induced breakdown of VE-cadherin, an

endothelial cell-specific adhesion molecule responsible for

connecting adjacent endothelial cells, thus maintaining

endothelial cell integrity and reducing vascular permeability (65).

Therefore, C-peptide may shield against retinopathy by inhibiting

intracellular ROS production, reducing stress fiber formation,

maintaining endothelial cell integrity, and decreasing VEGF-

induced increases in microvascular permeability (11). High

glucose conditions can trigger vascular leakage by activating

TGase2 in the retina, but C-peptide can restrain this activation in

the mouse retina, thereby decreasing vascular leakage (66).

Secondly, C-peptide also participate in regulating the

composition of extracellular matrix proteins. Animal experiments

have indicated that exogenous C-peptide supplementation can

mitigate retinopathy by inhibiting the hyperglycemia-induced

increase in fibronectin and reducing ECM deposition (67).

Additionally, C-peptide exhibits insulin-mimetic properties,

enhancing insulin action by increasing phosphorylation of insulin

receptor substrate 1 and the activity of MAPK and PI-3k when

insulin concentrations are low (68). Nevertheless, the current body

of research on C-peptide replacement therapy in retinopathy is

limited, and further investigation is warranted to explore its

therapeutic effects.
5 C-peptide and diabetic
macrovascular complications

The relationship between fasting C-peptide levels and

macrovascular complications remains ambiguous, necessitating

further investigation. In 2012, a cross-sectional study from Korea

reported no association between C-peptide and macrovascular

complications in T2DM patients (39). However, a contrasting

result was obtained from a 2018 community-based T2DM study

from Shanghai (58), which demonstrated that the prevalence of

cardiovascular disease (CVD) escalated with increasing C-peptide

levels. The risk of developing CVD correspondingly increased with

rising C-peptide levels in a logistic regression analysis (OR = 1.27,

95% CI (1.13, 1.42), P<0.001).

In a cohort study (69)involving 2306 patients subjected to

baseline coronary angiography and categorized according to the

tertiles of C-peptide levels, the highest C-peptide group displayed

an increased risk of all-cause mortality (HR = 1.46, 95% CI (1.15,

1.85), P = 0.002) and cardiac-cause mortality (HR = 1.58, 95% CI

(1.15, 2.18), P = 0.002) when compared to the group with the lowest

C-peptide levels. Additionally, the group with the highest C-peptide

levels demonstrated elevated degrees of endothelial dysfunction,

increased atherosclerotic markers, and more severe coronary artery

lesions (69). A meta-analysis, including sixteen observational

studies, eight cohort studies, and seven cross-sectional studies,

showed the association between C-peptide and increased

cardiovascular events was only observed in cross-sectional studies

but not in cohort studies (70).
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A study including 8 male T1DM,before and during

dipyridamole administration using a randomized double-blind

crossover protocol with infusion of C-peptide on two different

days, suggested that short-term replacement of C-peptide

improves myocardial function and myocardial perfusion (71).

Endothelial cell damage and subsequent apoptosis in a state of

high glucose are precipitated by oxidative stress, mitochondrial

dysfunction, and abnormalities in calcium regulation (30). In

addition, the adhesion and migration of monocytes beneath the

endothelium are also among the key events in the early stages of

atherosclerosis. In such an environment, C-peptide displays a

protective effect on endothelial cells, mainly through the

following mechanisms:

(1) Physiological concentrations of C-peptide can alleviate high

glucose-mediated endothelial dysfunction, by reducing the

expression of the cell surface protein VCAM-1 and decreasing the

secretion of chemokines IL-8 and monocyte chemoattractant

protein-1 (MCP-1) (72). However, this effect is not evident in

environments with normal glucose levels; when C-peptide is in

culture media with normal glucose levels, it does not significantly

reduce the expression of VCAM-1 and chemokines (72).

Furthermore, C-peptide combats high glucose-induced

endothelial dysfunction by reducing NF-kB activation, potentially

due to C-peptide induced phosphorylation of protein substrates in

the cytoplasm or its interaction with NF-kB p65/p50 subunit,

preventing DNA binding, impacting the expression of VCAM-1

and the secretion of MCP-1 and IL-8 (72, 73).

(2) C-peptide also exerts a protective effect by inhibiting the

generation of ROS, reducing endothelial cell death, and preserving

mitochondrial structure and function (46).

(3) In bovine and rat aortic endothelial cells, C-peptide

demonstrates a concentration and time-dependent increase in

endothelial NO release, which is induced by C-peptide through

calcium internal mediation, thereby activating eNOS or ERK-1/-2

induced by C-peptide (74). In addition, studies have shown that C-

peptide has inhibitory effects on endothelial cell proliferation in

great saphenous vein bypass grafts. Insulin promotes neointima

thickening, smooth muscle cell proliferation, and migration, while

C-peptide can inhibit these effects (75).

These mechanisms collectively explain the protective effects of

C-peptide on endothelial cells in a hyperglycemic environment.

In obese patients with type 2 diabetes, higher concentrations of

C-peptide are associated with inflammation and exacerbation of the

atherosclerotic process (30). In non-diabetic patients, it has been

found that C-peptide levels are positively correlated with the

incidence of several cardiovascular diseases, such as coronary

artery disease and myocardial infarction (76). Conversely, in the

early stages of T2DM, C-peptide secretion increases and can be

deposited into the vascular endothelium, potentially promoting

atherogenesis by initiating or facilitating the migration of

monocytes to the endothelium (13). C-peptide can also induce

lipid deposition and promote vascular smooth muscle cell (VSMC)

recruitment and proliferation, all of which contribute to the

development of atherosclerosis (13, 77). C-peptide can promote

the transcriptional activity of PPAR-g, as observed in renal tubular
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and lung injury, although most studies indicate that PPAR-g has

anti-inflammatory and anti-atherosclerotic effects, some research

suggests that increased expression of PPAR-g in macrophages can

promote the occurrence of atherosclerosis, possibly related to the

upregulation of CD36 expression in macrophages, which is deeply

involved in the differentiation of monocytes into macrophages and

the accumulation of oxidized LDL particles (78–81). In addition, C-

peptide also can induce VSMC proliferation through the activation

of SRC-kinase, PI-3K, and extracellular signal-regulated kinase 1/

2 (82).

C-peptide plays different roles in T1DM, T2DM, or non-

diabetic individuals, indicating that the regulation of

atherosclerosis by C-peptide may be jointly influenced by blood

glucose, insulin, and C-peptide concentrations. However, current

research is not in-depth enough to further elucidate its mechanism.

Therefore, further exploration of the regulatory effects of C-peptide,

insulin, and the high-glucose environment on atherosclerosis is of

significant importance.
6 C-peptide and diabetic
peripheral neuropathy

A cross-sectional study enrolled 14,908 patients with T2DM

showed that fasting C-peptide is negatively associated with diabetic

peripheral neuropathy (DPN) (83). A predictive model that

included 1278 T2DM patients showed that 2-hour postprandial

C-peptide/fasting C-peptide was a protective factor for DPN (84).

In a type 1 diabetic rat model, C-peptide replacement therapy has

been observed to prevent the development of deficits in nerve

conduction velocity (NCV) and alleviate both acute and chronic

DPN as T1DM naturally progresses (12). Furthermore, in BB/Wor

rats characterized by reduced intraneural perfusion and increased

oxidative stress, C-peptide also prevents neurovascular defects and

decreases thermal nociceptive hypersensitivity (85). The

mechanism by which C-peptide ameliorates neuropathy might

involve the stimulation of the NO system by C-peptide, acting

directly on nerve fibers or mediating vasodilation via NO, rather

than by improving oxidative stress (73, 85).

The Na+/K+/ATPase, a prevalent membrane enzyme, exhibits

reduced activity in peripheral nerves, leading to Na+ channel

inactivation and myelin swelling (12). In BB/Wor rats, two

consecutive months of C-peptide replacement treatment

diminished myelin swelling and improved neural Na+/K+/ATPase

defects (12). Thus, current findings indicate that in a T1DM mouse

model, physiological concentrations of C-peptide can provide

neuroprotective functions by enhancing neuroperfusion through

NO-sensitive neurovascular mechanisms and ameliorating Na+/K+/

ATPase deficits.

In a 2003 clinical trial conducted by Ekberg et al. (86), which

included 46 patients, C-peptide replacement therapy for three

months significantly improved sensory nerve conduction velocity

(SCV) in the C-peptide treatment group, along with enhanced

vibrotactile sensation, although no temperature and motor nerve

conduction velocity (MCV) improvements were recorded. In 2007,
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the study scope was broadened to incorporate a six-month period of

C-peptide replacement therapy and to include a population of

T1DM patients exhibiting DPN symptoms. Findings indicated

that C-peptide replacement therapy significantly improved SCV

among patients displaying DPN symptoms, particularly noticeable

in those with less compromised neurological function at baseline

(87). In 2016, a clinical study that included 250 patients with DPN

who received long-acting C-peptide (2.4 mg, 0.8 mg) weekly to

DPN for 52 weeks, found significant improvements in patients’

vibration perception threshold (VPT). However, sural nerve

conduction velocity (SNCV), other electrophysiological variables,

or modified Toronto Clinical Neuropathy Score (mTCNS) were not

significantly different from placebo control patients (88). It is worth

noting that, the C-peptide of patients increased to 1.8-2.2 nmol/L

(low dose) and 5.6-6.8 nmol/L (high dose), which is higher than the

physiological concentration of C-peptide. As previously articulated,

the infusion of ultra-long-lasting human C-peptide into the vitreous

body of mice, maintaining C-peptide within the physiological

concentration range, yielded favorable therapeutic outcomes. In

this clinical investigation, the failure to achieve significant

improvement in SNCV, other electrophysiological variables, or

mTCNS in DPN patients may be attributed to the elevated C-

peptide concentrations, which exceeded physiological levels. This

observation leads us to conjecture that the optimal therapeutic effect

may lie within a specific concentration range. Consequently, we

propose that future basic and clinical research into C-peptide

replacement therapies should focus on the meticulous monitoring

of post-treatment C-peptide levels. Additionally, these studies

should explore the optimal range for maintaining both fast C-

peptide and post-radical C-peptide concentrations, as this may be

pivotal in enhancing the efficacy of the treatment.

In T2DM rats, sensory NCV slowing or nociceptive

hyperalgesia was only observed with reduced neurovascular

perfusion and was not accompanied by increased oxidative stress,

and C-peptide replacement therapy did not improve neuropathy

(85). A study in a community-based population (89) discovered a

negative association between C-peptide levels and the development

of diabetic peripheral neuropathy in a T2DM population. Given the

disparate mechanisms underpinning DPN in T1DM and T2DM, it

is noteworthy that the present study specifically demonstrated no

significant amelioration of DPN in T2DM patients via C-peptide

replacement. This underscores the need for further investigation

into the association between overproduction of C-peptide and DPN

in T2DM patients, necessitating additional animal experiments.
7 C-peptide and diabetic emergencies

Diabetic emergencies include diabetic ketoacidosis (DKA),

hyperglycaemic hyperosmolar state (HHS) and hypoglycemia

(90). Serum C-peptide is negatively correlated with the risk of

DKA (91) and hypoglycemia (92), but there is currently no research

exploring the relationship between C-peptide and HHS. A

retrospective study (91) involving 234 children and adolescents

with T1DM, based on serum C-peptide levels at diagnosis and 15
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years post-diagnosis, compared laboratory results and diabetes

complication incidence between the two groups after 15 years.

Results showed that patients with higher C-peptide levels (after

15 years) used lower doses of insulin, and in the group with lower

C-peptide levels, the incidence rate of DKA was higher, consistent

with the conclusions of the previous studies (93, 94). A study (95)

based on clinical and biochemical characteristics to predict the risk

of diabetic ketosis (DK) in patients with T2DM shows that 2-hour

postprandial C-peptide levels are negatively correlated with the risk

of diabetic ketosis. However, the number of relevant studies is

relatively small, and more clinical studies are needed to support the

relevant conclusions. Additionally, whether C-peptide replacement

therapy has a preventive effect on ketoacidosis poisoning remains to

be further researched.

A study involving 1565 patients with T2DM from the Veterans

Affairs Diabetes Trial showed that measuring fasting C-peptide levels at

baseline was negatively correlated with the risk of severe hypoglycemia

(96). Zenz et al. (97) found that under hypoglycemic conditions,

retained b-cell function (C-peptide positive) may help to regulate

blood glucose levels more effectively. C-peptide positive patients have

higher glucagon concentrations and endogenous glucose production

(EGP) during hypoglycemia, suggesting better response mechanisms

under hypoglycemic conditions Hope et al. (98) conducted continuous

glucose monitoring on 17 insulin-treated T2DM patients and matched

controls, and surveyed 256 insulin-treated T2DM patients and 209

T1DM patients. The results showed that patients with lower random

C-peptide levels (rCP <200 pmol/l) were more prone to hypoglycemia,

with more frequent and prolonged episodes. Patients with preserved C-

peptide had fewer hypoglycemic events at night. This finding suggests

that low rCP levels can serve as a practical, stable, and economical

biomarker for hypoglycemia risk assessment, aiding the management

and treatment of T2DM. C-peptide may protect against hypoglycemia

by increasing a-cell response to low blood sugar and promoting
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glucagon secretion (99). In adult T1DM patients, b-cell
responsiveness to hyperglycemia and a-cell responsiveness to

hypoglycemia were only observed when residual C-peptide levels

were higher. Residual C-peptide may assist in blood glucose control,

and a clinical trial in Japan also showed that C-peptide is independently

associated with glucagon levels (100). Moore et al. (101) explored the

role of C-peptide in insulin-induced hypoglycemia by testing the effects

of C-peptide infusion on glucagon secretion under isoglycemic and

hypoglycemic conditions in dogs (5 males/4 females). In the

experiments, glucagon secretion remained unchanged in the

isoglycemic-hyperinsulinemic response in the C-peptide infusion

group, whereas it increased twofold during hypoglycemia. These data

suggest that the presence of C-peptide maintains glucagon secretion

during isoglycemia and enhances it during hypoglycemia, which

explains why T1DM patients with residual insulin secretory capacity

are less susceptible to hypoglycemia. However, the regulatory

mechanism of C-peptide on glucagon is yet to be reported. Lower C-

peptide levels have been observed to be associated with greater glucose

fluctuation and higher hypoglycemia risk, leading to attention to its p

otential vital role in blood sugar stability regulation. Although C-

peptide, as a byproduct of insulin synthesis, has not been fully revealed

in terms of its biological functions in diabetes treatment and metabolic

regulation, more and more experimental data support that the

maintenance and stability of C-peptide levels are important in blood

sugar control and diabetes-related complications prevention.

Therefore, C-peptide could be considered an important clinical target

for glucose control in diabetes treatment.
8 Conclusion

C-peptide, a bioactive peptide with a plethora of functionalities,

has a profound biological significance. It exhibits antioxidant, anti-
FIGURE 1

Regulation mechanism of C-peptide on Diabetic Chronic Complications.(By Figdraw.) ROS, reactive oxygen species; ECM, extracellular matrix; SMC,
smooth muscle cell.
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apoptotic, and anti-inflammatory effects primarily through binding

with cellular surface signaling molecules to activate downstream

pathways or regulating intracellular transcriptional processes.

The complex pattern of the relationship between C-peptide and

diabetic chronic complications (Figure 1) has not yet been fully

understood. The underlying mechanisms might be associated with:

1) dose-dependent effects of C-peptide; 2) varied affinities with

different receptors under physiological and pathological conditions;

3) divergent responses in different cells and tissues; and 4) potential

interactions with other molecules altering C-peptide’s effects.

Future basic and clinical studies of C-peptide replacement

therapies will need to focus on baseline levels of C-peptide in

addition to more attention also needs to be paid to post-treatment

C-peptide levels to explore the optimal range of fasting C-peptide

and postprandial C-peptide maintenance.

In conclusion, a deeper understanding of the role of C-peptide

in the pathogenesis of diabetic complications could be key to their

prevention and treatment. This would not only help to clarify the

differences in the mechanisms underlying the onset of

complications in type 1 and type 2 diabetes but also provide

practical implications for clinical treatments.
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