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Treatment of hypothalamic
obesity in people with
hypothalamic injury: new
drugs are on the horizon
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1Seattle Children’s Research Institute, Department of Pediatrics, School of Medicine, University of
Washington, Seattle, WA, United States, 2Division of Endocrinology, Department of Pediatrics,
University of Washington, Seattle, WA, United States
Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple

regulatory pathways of energy intake and expenditure in the brain as well as the

regulation of the autonomic nervous system and peripheral hormonal signaling.

It can be related to monogenic obesity syndromes which often affect the central

leptin-melanocortin pathways or due to injury of the hypothalamus from

pituitary and hypothalamic tumors, such as craniopharyngioma, surgery,

trauma, or radiation to the hypothalamus. Traditional treatments of obesity,

such as lifestyle intervention and specific diets, are still a therapeutic cornerstone,

but often fail to result in meaningful and sustained reduction of body mass index.

This review will give an update on pharmacotherapies of HO related to

hypothalamic injury. Recent obesity drug developments are promising for

successful obesity intervention outcomes.
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1 Introduction

Hypothalamic obesity (HO) is one of the most recalcitrant examples of excessive weight

gain and most commonly caused by hypothalamic lesions and tumors such as

craniopharyngioma (CP), an embryological tumor located in the hypothalamic and/or

pituitary region, and its treatment by surgery and irradiation (1–4). Additional etiologies

include other suprasellar brain tumors, trauma, inflammation, and some genetic syndromes

(2, 4, 5). CP frequently causes not only hypopituitarism, but also damages the medial

hypothalamic nuclei. After surgery, hyperphagia and severe obesity, a major risk factor for

craniopharyngioma-related morbidity and mortality, occurs in 50% of survivors even with

optimal endocrine management of hypopituitarism (6). Mechanisms leading to the

profoundly disturbed energy homeostasis are complex and not well elucidated. Early and

effective management of obesity is vital for this population (7), which is more resistant to

treatment than alimentary obesity (8–16). There are currently no approved drugs for
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treatments of HO (17), but drug interventions that tackle both

reduction of hyperphagia and stimulation of thermogenesis

are promising.

2 Hypothalamic obesity related to
hypothalamic and pituitary tumors

Patients with CP frequently develop obesity following tumor

therapy with surgery and/or radiation, and have more features of

metabolic syndrome compared to matched controls (18, 19).

Furthermore, people with CP have a 3-19-fold higher

cardiovascular mortality (20, 21), as well as increased rates of

cerebral infarction and type 2 diabetes mellitus compared to the

general population (22). In affected patients, both quality of life and

survival are substantially decreased due to these metabolic

consequences (6, 23). For example, the estimated prevalence of

nonalcoholic fatty liver disease in survivors of childhood

craniopharyngioma is 47% (24). HO can also occur due to other

suprasellar tumors, radiation, trauma, or surgical insult to the

hypothalamus. The excessive weight gain following hypothalamic

injury occurs irrespective of pituitary deficiency secondary to

damage to the hypothalamic-pituitary axis and optimal

replacement of hormones. Many, though not all, individuals with

HO also experience hyperphagia (25, 26). Recognized risk factors

for severe obesity include large hypothalamic tumors or aggressive

resections affecting several medial and posterior hypothalamic

nuclei reaching the floor of the third ventricle, the area beyond

mammillary bodies, and several satiety signaling pathways (10, 27–

29). Affected medial hypothalamic nuclei frequently are arcuate

(ARC), ventromedial (VMN) and dorsomedial (DMN) nuclei (30).

Structural damage of these nuclei often leads to hyperphagia, rapid

post-operative weight gain, central insulin and leptin resistance,

decreased sympathetic activity, low metabolic rate, and increased

energy storage in adipose tissue (11, 30). In particular, VMN

damage can lead to disinhibition of vagal tone, resulting in excess

stimulation of pancreatic b-cells, hyperinsulinemia, and obesity.

Several previous studies showed that the secretion of satiety

regulating peptides, such as ghrelin and peptide YY (PYY), may

also be altered in CP patients (31, 32).

3 The hypothalamic obesity
phenotype

Clinical features of the full HO syndrome include excessive

weight gain leading to morbid obesity with uncontrolled appetite,

potentially caused by central leptin resistance and deficient

downstream pathways, fatigue, decreased sympathetic activity,

low energy expenditure, temperature dysregulation, and increased

energy storage in adipose tissue (1–4, 13, 25, 26, 33–37). Similar

clinical features are also observed in patients suffering from HO

syndrome due to a genetic abnormality (i.e. melanocortin-4

receptor defect, leptin or proopiomelanocortin (POMC)

deficiency, Bardet-Biedl Syndrome).
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4 Disturbed energy balance in
hypothalamic obesity

While some patients report hyperphagia, other patients have

lower energy intake compared to relevant controls (25, 26). This

reduction in energy intake is thought to be offset by greater relative

decrease in basal metabolic rate and physical activity that leads to

excessive weight gain in HO (26). Alpha-melanocyte stimulating

hormone (a-MSH) is one of the key weight-regulating

neuropeptides after binding to melanocortin receptor subtypes 3

and 4 in the brain; it is mainly produced in the pituitary and

hypothalamus from the cleavage of POMC (38, 39). Individuals

with hypothalamic lesions related to craniopharyngioma appear to

have significantly decreased serum levels of a-MSH (40, 41),

suggesting a melanocortin pathway deficiency. Compared to

controls, individuals with HO have significantly higher baseline

and post-meal circulating insulin concentrations, potentially

indicating insulin hypersecretion through vagus nerve

hyperstimulation (11, 31, 32). In HO, biochemically, the degree of

hyperleptinemia and hyperinsulinemia are unexpectedly high for

the degree of obesity, and catecholamine levels are low, suggestive of

decreased sympathetic tone (26, 30, 32, 42–44). Chronic

hyperleptinemia, decreased sympathetic tone and deficiency of

downstream outputs of leptin signaling are key features

contributing to the pathogenesis of HO. Furthermore, disturbed

cicadian rhythm and narcolepsy could contribute to decreased

energy expenditure (45).
5 Earlier obesity drug developments

In 2003, the only FDA approved weight loss medication for

adolescents was orlistat, a pancreatic lipase inhibitor, but it was

rarely used due to its low efficacy (46) and unfavorable

gastrointestinal side effect profile (46, 47). Several central

stimulants have been used off label for the treatment of HO such

as methylphenidate, phentermine, dextroamphetamine, mazindol,

caffeine and ephedrine (8, 48–51), but data on these drugs came

from small studies with mixed results. Other medications such as

sibutramine, a norepinephrine and serotonin inhibitor, lorcaserin, a

serotonin 2C receptor agonist, and beloranib, a methionine

aminopeptidase 2 (MetAP2) inhibitor, were discontinued due to

significant adverse events of thromboembolism and other safety

concerns (14). Beloranib was initially developed as a cancer drug

but its use resulted in progressive weight loss in patients and rodents

with HO due to hypothalamic injury (52, 53). Its mechanism for

weight loss is not fully understood, but it is believed that it increases

fat oxidation and lipolysis resulting in reduced fat mass.

Furthermore, it leads to a reduction in caloric intake which is

likely centrally mediated. Finally, the combination of bupropion, a

norepinephrine-dopamine reuptake inhibitor, and naltrexone, an

opioid receptor antagonist (Figure 1), has a black box warning of

increased suicidal risk and ideation in young adults (46). There are

no studies of bupropion-naltrexone in patients with HO.
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5.1 Glucagon-like peptide-1 receptor
agonists (GLP1RAs) for HO

Besides its well described effects on glucose metabolism (54),

GLP-1 also functions as a satiety hormone, promoting reduced food

intake and meal termination through direct action on the vagus

nerve and the brain, including the hypothalamus, hindbrain,

hippocampus and mesolimbic brain reward system (55). In

addition, GLP1RA treatment activates catecholamine neurons in

the area postrema (56). GLP1RAs can be effective weight loss agents

in HO due to their effects outside of the hypothalamus. In addition,

GLP1RAs may change the balance of sympathetic/parasympathetic

tone (57–59), potentially counteracting the abnormalities we have

seen in HO (42). GLP1Rs are widely expressed in peripheral tissues

that are important for energy regulation, such as adipose tissue,

pancreas, liver, and gut (Figure 1). In rodents, GLP1RA semaglutide

modulates food preference, reduces food intake, and causes weight

loss without decreasing energy expenditure (60). In humans,

GLP1RAs, such as semaglutide in the setting of type 2 diabetes

(T2D) treatment, reduce the risk of cardiovascular death, nonfatal

myocardial infarction and nonfatal stroke (61). Liraglutide is

approved in children age 10 years and older for T2D (62), and

recently semaglutide was approved for the treatment of obesity in

adolescents 12 years and older, with 17% decrease in BMI with
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semaglutide compared with placebo (63). Liraglutide causes dose-

dependent and treatment duration-dependent thyroid C-cell

tumors in rodent models, at much higher dose exposures than

those used in humans. Therefore, even if the relevance for humans

of such tumors has not been determined, GLP1RAs are

contraindicated in patients with a family history of medullary

thyroid carcinoma or multiple endocrine neoplasia syndrome

type 2 (64). Otherwise, gastrointestinal adverse effects are

frequent in particular at start of treatment, potentially leading to

discontinuation of treatment (65).

Recently, our group tested weekly exenatide in a multicenter,

randomized, double-blind, placebo-controlled clinical trial in 10- to

25-year-old children and young adults with HO in the context of

hypothalamic injury following intracranial tumor (ECHO trial). In

this trial, study participants were randomized to once weekly

subcutaneous injections of exenatide 2 mg or placebo for 36

weeks, followed by an 18 week open label once weekly exenatide

2 mg extension for all participants. Modest effects were seen on BMI

reduction, while there was a significant reduction of body fat

measured by DXA and waist circumference in the exenatide

group vs. placebo after 36 weeks (66, 67). Overall, exenatide was

well tolerated with the majority of adverse events related to

gastrointestinal problems such as nausea and vomiting. In this

study, the degree of hypothalamic damage was assessed using a
FIGURE 1

Interactions of different anti-obesity agents with orexigenic and anorexigenic pathways of the homeostatic “appetite” center and the “reward”
system. Even if mediobasal hypothalamic structures such as the arcuate nucleus (ARC) and para-ventricular nucleus (PVN) are damaged, these drugs
can interact with peripheral or brain receptors outside of hypothalamic structures. NPY, neuropeptide Y; AgRP, agouti-related peptide; POMC,
proopiomelanocortin; CART, cocaine and amphetamine regulated transcript; NAC, nucleus accumbens; DR, dopamine receptor; DAT, dopamine
active transporter; DVC, dorsal vagal complex of brainstem; IML, intermediolateral nucleus along spinal cord containing MC4R–expressing
preganglionic cholinergic sympathetic neurons; blue, stimulatory and red, inhibitory receptors; TRH, thyrotropin-releasing hormone; CRH,
corticotropin-releasing hormone (created with BioRender.com).
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hypothalamic lesion score (HLS). Patients with more extensive

hypothalamic damage with involvement of the mammillary

bodies showed greater reductions in adiposity following GLP1RA

treatment (68). One possible explanation for these study findings is

that destruction of endogenous ligand sites of action in the

hypothalamus heightens responsiveness of extra-hypothalamic

sites of action to exogenous ligands such as GLP1RAs. A clinical

trial with newer and more potent GLP1RAs has not yet been

performed in patients with HO. Furthermore, incretin-based

multiple agonists, such as dual GLP-1/glucose-dependent

insulinotropic polypeptide (GIP) receptor agonist tirzepatide or

triple GIP/GLP-1, and glucagon receptor agonist retatrutide, are

promising for treatment of HO, as multiple redundant weight

regulatory pathways are simultaneously targeted (see section 1.7),

potentially preventing compensatory weight regain.
6 Recent drug discoveries

6.1 Therapeutic potential of exogenous
oxytocin for “common” obesity and HO

Oxytocin (OXT) is a 9-amino acid peptide made in the

hypothalamic paraventricular and supraoptic nuclei. Its effect has

been tested outside its classical use during labor, and a substantial

body of literature supports its favorable safety profile in a wide

range of conditions, mostly neuropsychiatric (69).

The neuropeptide OXT induces appetite suppression and acts via

brain reward centers and peripheral receptors. OXT-induced weight

loss may also be partly due to increased lipolysis and energy

expenditure by stimulation of the sympathetic tone and adipose

tissue thermogenesis (70). The potential role of OXT as a therapy

for obesity has been recently investigated (71). A recent study

demonstrated that a single dose of intranasal OXT leads to

decreased caloric intake at a subsequent meal in men who are lean,

overweight, and with obesity (72). Moreover, in a randomized

controlled trial of healthy adults with obesity (N=24), 8 weeks of

intranasal OXT (24 IU at mealtimes and bedtime) led to an 8.9 kg

weight loss (73).

OXT status has been investigated in individuals with history of

brain tumors affecting the hypothalamus and pituitary (70). In a

small pilot study, low OXT levels were associated with higher BMI

in men with hypopituitarism and diabetes insipidus, however, this

finding did not reach statistical significance (74). In a separate study

of individuals with craniopharyngioma, the change in salivary OXT

in response to meals (75) and exercise (76) appeared to be related to

BMI and eating behaviors (77), thereby demonstrating a potential

utility of OXT in HO. Furthermore, in a case report of a child with

hypopituitarism, diabetes insipidus, and obesity following therapy

for a craniopharyngioma, low dose intranasal OXT 6 IU daily

combined with carbohydrate restriction, and naltrexone (Figure 1)

led to amelioration of hyperphagia, and a sustained decrease in BMI

(78). A recent randomized placebo-controlled clinical trial was

conducted to determine whether 8 weeks of intranasal OXT (vs 8

weeks of placebo) promotes weight loss in children, adolescents,

and young adults with HO using a cross-over design. In this small
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pilot study with 10 completers, there was no significant effect of

intranasal OXT on body weight change. However, OXT was well

tolerated, and in exploratory analyses, benefits of OXT for anxiety

and impulsivity were noted (79). Preclinical research using labeled

OXT administered intranasally to rhesus macaques or rabbits

reached the cerebrospinal fluid and brain (80, 81). It is unclear, to

which extent weight reduction in response to peripherally or

intranasally administered OXT is related to peripheral or central

effects. Individuals with hypothalamic injury might lack the ability

to respond to intranasal OXT because key hypothalamic nuclei that

impact appetite and energy balance are missing. In animal models,

however, administration of OXT outside the hypothalamus, in the

hindbrain or peripherally, decreases weight gain via decrease in

food intake and activation of catecholamine neurons in nucleus

tractus solitarius (NTS, see Figure 1) (70, 82–84).

Therefore, OXT is promising, as it has the potential for reducing

energy intake but also increasing energy expenditure by increased

brown adipose tissue thermogenesis which is important for

avoiding compensatory adaptations to weight loss. However,

there are many open questions regarding the mechanisms of

action, optimized dosing, and individual factors such as genetics,

which might have an impact on responses to OXT treatment.
6.2 The combination of oral phentermine
and topiramate (Ph/T)

The combination of oral phentermine and topiramate (Ph/T) is

another promising option, which is FDA-approved for people with

obesity ≥12y (85, 86). However, this drug has not yet been tested in

HO. Ph/T is a sympathomimetic amine combined with a GABA-

ergic drug used to treat epilepsy (Figure 1). Children and adolescents

with HO have low sympathetic tone (42, 87), thus may benefit from

the stimulant-induced decrease in appetite (15, 50). Individuals with

HO can also have excess daytime sleepiness (87, 88) which may

contribute to impaired regulation of eating behavior and decreased

physical activity (26), and may be targetable with stimulants. Reports

of other types of stimulant use in individuals with HO have generally

demonstrated weight loss or attenuation of weight gain (48, 87, 89).

Sibutramine, a compound related to Ph, led to a decrease in BMI in

children with HO (14). However, these previous reports

demonstrated heterogeneity between participants, and an overall

modest effect. Thus, combining Ph with T, may increase the

potential maximal weight loss for treatment of HO.
6.3 Tesofensine for treatment of
hypothalamic obesity

Tesofensine is a centrally acting triple monoamine reuptake

inhibitor that tackles low sympathetic tone in patients with HO.

Tesofensine results in reduction of caloric intake and weight loss by

inhibiting the presynaptic reuptake of dopamine, serotonin, and

noradrenaline, and inhibiting the dopamine active transporter (90)

(Figure 1). It is combined with the b-blocker metoprolol to reduce

potential adverse effects due to adrenergic stimulation. Results from
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rodent studies suggest that indirect a-adrenergic and D1-

dopaminergic stimulation contribute to reduction of food intake

and body weight (91). In a recent randomized, double-blind,

placebo-controlled Phase 2 trial, Tesomet (tesofensine 0.5 mg +

metoprolol 50 mg) or matching placebo was administered daily

following a 2:1 randomization for 24 weeks, followed by an open-

label extension of another 24 weeks for a total of 48 weeks of

treatment. Twenty-one adults with HO (16 females) were

randomized, and 18 patients completed 24 weeks of treatment.

Tesomet treatment resulted in significant reductions in body

weight, waist circumference and glucose levels compared to

placebo (92), which were the main efficacy endpoints. The study

results also showed that Tesomet was safe and well tolerated and

drug-related adverse events were mostly mild sleep disturbances,

dry mouth, and headache. There were no significant differences in

heart rate or blood pressure between Tesomet and placebo groups

(92). A larger clinical trial has not yet been performed testing

Tesomet in HO, but a Phase 3 clinical trial is planned.
6.4 Melanocortin (MC) pathway in the
regulation of energy homeostasis and
glucoregulation

The MC pathway plays a central role in the regulation of energy

homeostasis (93). The MC system consists of two distinct neurons

expressed in the arcuate nucleus that express POMC and agouti-

related protein (AgRP). These neurons mediate opposing effects on

downstream neurons that express the MC-4 receptor (MC4R).

POMC neuron activation induces synaptic release of a-melanocyte

stimulating hormone (a-MSH - an MC4R agonist), while AgRP is an

inverse agonist that binds to and blocks signaling by MC4R (38, 39).

The MC4R is one of five human MC receptor subtypes (MC1−5R)

that share class A G-protein-coupled receptors (94). The receptors

are critically involved in the regulation of energy homeostasis,

pigmentation, cardiovascular function, and sexual functions (94).

The MC4R plays a key role in energy balance and appetite regulation

and is expressed in different brain areas including the paraventricular

nucleus of the hypothalamus, areas of the brain reward system, the

dorsal motor nucleus of the hindbrain, the preganglionic cholinergic

sympathetic neurons of the spinal cord and vagal afferent nerves

(Figure 1) (95, 96). When activated, it reduces food intake, increases

energy expenditure, and regulates gut hormone secretion such as the

potent anorexigenic hormone PYY3-36 via enteroendocrine cells (97).

Consequently, administration of pharmaceutical agents that agonize

MC4R cause weight loss by suppressing energy intake and

stimulating energy expenditure, whereas genetic or pharmacological

inhibition of MC4R results in hyperphagia and obesity. While most

of the effects of a-MSH are mediated by the brain, it is also released

into circulation from the pituitary gland (41, 98, 99), and can act on

peripheral tissues, such as the enteric nervous system (100), and

brown adipose tissue (101, 102). Systemic a-MSH increases muscle

thermogenesis and glucose clearance by increased muscle glucose

uptake (41, 97). Moreover, further evidence suggests that the MC

pathway is important in the regulation of glucose metabolism,

independent of its effects on energy balance. Restoring expression
Frontiers in Endocrinology 05
of leptin receptors in POMC neurons normalizes blood glucose and

ameliorates hepatic insulin resistance independent of changes in body

weight (103).

Synthetic MC receptor agonists are promising for treatment of

genetic and surgery-induced HO affecting the MC4R pathway (104)

as there is clear evidence that central MC signaling is deficient (40,

41, 44, 105–107) in patients with hypothalamic lesions. Thus,

treatment with a MC receptor agonist could present as targeted

treatment supplementing a deficiency. For example, setmelanotide,

a MC4R agonist is FDA approved for treatment of monogenic

obesity related to POMC deficiency, leptin receptor (LEPR)

deficiency (108, 109), and Bardet Biedl syndrome (110). Most

recently setmelanotide has also been shown to be effective in

reducing hunger and BMI in patients with HO due to

hypothalamic injury (111, 112), which could mark a

breakthrough for the treatment of aquired HO. Side effects

included nausea and vomiting. A large international multicenter

Phase 3 clinical trial over 1 year investigating the use of

setmelanotide in HO is currently underway.
7 Summary

HO is a complex and rare disorder that is characterized by

excessive weight gain and difficulty in losing weight due to

disruptions in the hypothalamus with resultant dysregulation of

appetite and metabolism. Its treatment involves a multidisciplinary

approach including dietary modifications, physical activity, and

behavioral interventions, but they often fail to result in meaningful

and sustained reduction of body mass index. Thus, anti-obesity

pharmacotherapy has been increasingly used to promote further

weight loss. The anti-obesity drugs for HO that were featured in

this review were oxytocin, oral phentermine and topiramate,

exenatide, tesofensine, and setmelanotide. Apart from one phase 3

randomized controlled trial that enrolled 42 participants testing

weekly exenatide (66), most studies in HO are small case reports or

series with fewer than 10 individuals given the rarity of this condition.

Thus, current weight loss drugs for HO are being used off label with

variable results and require close monitoring. New clinical trials,

however, are underway to investigate the use of promising anti-

obesity pharmacotherapy for treatment of HO.
8 Outlook

The landscape of obesity pharmacotherapy is evolving quickly

with frequent development of new drugs. Examples are dual and triple

agonists that target multiple receptors simultaneously to enhance the

effects of various hormones involved in appetite regulation and

metabolism to promote weight loss (113). Tirzepatide, a GLP-1 and

GIP receptor agonist is an example of a dual agonist that was recently

FDA approved for the treatment of adults with type 2 diabetes with its

clinical trials showing up to 20% weight loss in participants on the 15

mg dose (114). Retatrutide is an agonist of GIP, GLP-1, and glucagon

receptors making it a “triple agonist.” Recent Phase 2 trial results

showed 48 weeks of retatrutide treatment resulted in substantial
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reductions in body weight of -24.2% in the 12-mg group (115). For

successful intervention of this treatment-resistant form of obesity,

personalized treatment approaches appear to be necessary.

Individualized based on pathophysiology and initial treatment

responses, Iersel et al. developed algorithms which may be the right

direction for the treatment of HO based on phenotypic spectrum (17).

If there is no beneficial effect on weight reduction after 3 months of

treatment, switching to another antiobesity drug or a combination of

drugs might be indicated. Currently, MC4R agonism, i.e.

supplementing melanocortin deficiency, could represent a new

benchmark for the treatment of HO.
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