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Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine

malignancy with a high rate of recurrence, a poor prognosis, and a propensity

for metastasis. Currently, only mitotane has received certification from both the

US Food and Drug Administration (FDA) and the European Medicines Agency for

the therapy of advanced ACC. However, treatment in the advanced periods of

the disorders is ineffective and has serious adverse consequences. Completely

surgical excision is the only cure but has failed to effectively improve the survival

of advanced patients. The aberrantly activated Wnt/b-catenin pathway is one of

the catalysts for adrenocortical carcinogenesis. Research has concentrated on

identifying methods that can prevent the stimulation of the Wnt/b-catenin
pathway and are safe and advantageous for patients in view of the absence of

effective treatments and the frequent alteration of the Wnt/b-catenin pathway in

ACC. Comprehending the complex connection between the development of

ACC and Wnt/b-catenin signaling is essential for accurate pharmacological

targets. In this review, we summarize the potential targets between

adrenocortical carcinoma and the Wnt/b-catenin signaling pathway. We

analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway.

Finally, we provide new insights into how drugs or inhibitors may improve the

treatment of ACC.
KEYWORDS

adrenocortical carcinoma, Wnt/beta-catenin, therapeutic targets, tumor progression,
cross talk
1 Introduction

Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy

originating from the adrenal gland, influencing 0.5 to 2 persons/million individuals

annually worldwide (1, 2). A 5-year survival rate of about 35% following diagnosis,

dropping to only 13-16% for stage IV patients, and a significant risk of recurrence and

metastasis are all indicators of its typically dismal prognosis (3–5). Currently, only
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Mitotane received certification from both the US Food and Drug

Administration (FDA) and the European Medicines Agency for the

medication of advanced ACC. However, it has minimal therapeutic

efficiency and hazardous side effects in the advanced stages of the

disease (6, 7). Despite advances in other treatment options, the

survival rate of patients with ACC has not altered over the past 40

years (8). Various Wnt signaling inhibitors, acting on different

targets, have been discovered. Many of them have shown effective

and potential roles in anti-cancer. However, up to now, there are no

Wnt inhibitors approved for the treatment of ACC. Previous

literature reviews only described the major findings about the

relationship between ACC and the Wnt/b-catenin signaling

pathway. There is still a gap in the comprehensive description of

drugs with relevant potential target effects.

Based on the relationship between ACC and Wnt signaling, our

study summarizes the main findings of biological mechanisms. At

the same time, we first describe the new drugs that act on the Wnt

signaling and its relative inhibitors, providing new insights into how

drugs or inhibitors may improve the treatment of ACC.
2 Overview of the WNT
signaling pathway

TheWnt signaling pathway is one of the evolutionarily conserved

signaling pathways that control a variety of physiological processes,

including cellular apoptosis, proliferation, cellular polarity fate,

determination, stem cell maintenance, and migration during

development (31, 32). The key factor in the emergence and

development of several tumors is the dysregulation of Wnt

signaling (33–35). The signaling cascade consists of different

branches: the Wnt/b-catenin or canonical Wnt signaling pathway,

the Wnt/Ca2+ signaling pathway, and the planar cell polarization

(Wnt-PCP) pathway. Recently conducted studies have concentrated

on the Wnt/b-catenin signaling pathway, which is involved in the

emergence of several diseases (36). Table 1 showed the Overview of

the WNT signaling pathway. Figure 1 showed the Wnt/b-catenin
signaling pathway and crosstalk involved in this review.
2.1 Canonical Wnt/b-catenin
signaling pathway

For Wnt/b-catenin signaling to occur, the Wnt ligand must

attach to its coreceptor complex, which is composed of the Frizzled

(FZD) protein family and low-density lipoprotein receptor-related

protein 5 (LRP5) or LRP6 (37). Casein kinase I(CKI), glycogen

synthase kinase 3 (GSK3b), Adenomatous polyposis coli (APC),

and Axin form a complex that phosphorylates b-catenin located in

the cytoplasm in the absence of Wnt ligands. In this instance, Axin

supports the formation of a complex with GSK3b and APC (38–41).

Once the complex is formed, GSK3b promotes the phosphorylation

of cytoplasm b-catenin, and APC facilitates the combination of the

ubiquitin-mediated protein hydrolysis pathway to phosphorylated b-
catenin in the cytoplasm. When Wnt ligands are present, they attach

to their coreceptor complex and then trigger the Wnt signaling by
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enlisting Dvl proteins in the cytoplasm and preventing or

interrupting the fabrication of the Axin/GSK3/APC complex. This

prevents b-catenin from being degraded and causes it to build up in

the cytoplasm. The Accumulated proteins translocate into the

nucleus, combining with T-cell Factor/Lymphoid Enhancing Factor

1 (TCF/LEF1) thereby regulating the specified genes’ transcription

(42–44). In addition, the Wnt/b-catenin signaling pathway interacts

with multiple other pathways. In gastrointestinal and breast cancers,

it synergizes with TGFb to enhance fibrosis and EMT (epithelial-

mesenchymal transition) at the transcriptional level (45, 46). Other

research demonstrated that the Hippo and Notch signaling networks

can interact with the Wnt/b-catenin pathway. Several malignancies,

such as endometrial carcinoma, hepatocellular carcinoma, and

adrenocortical carcinoma, involve CTNNB1 genetic mutations that

encode b-catenin (47–49). Phosphorylation sites necessary for the

degradation of b-catenin function as mutational hotspots, leading to

b-catenin translocation and accumulation to the nucleus, which in

turn regulates genetic transcription (50).
2.2 Non-canonical pathways

The homeostasis of both adult and embryonic tissues is connected

to the non-canonical planar cell polarity (PCP) pathway, uninvolved

by the co-receptor LRP5 or b-catenin. The pathway is initiated

through the interaction of Wnt with co-receptors such as ROR2

(receptor tyrosine kinase-like orphan receptor 2), Ryk (RYK receptor-

like tyrosine kinase), and FZD and then subsequently triggers the

recruitment of protein Dvl to activate c-Jun-N-terminal kinase (JNK)

and/or Rho family GTPases (51, 52). The Wnt/Ca2+ pathway is an

extra non-canonical pathway that also disregards b-catenin.
The interaction of Wnt ligands with FZD leads to the transient

escalation of Ca2+ concentration and then increases the production of

inositol 1,4,5-trisphosphate under the condition of activated PLC

(phospholipase C). The interaction between IP3 and calcium

channels located on the surface of the endoplasmic reticulum

causes the elevation of Ca2+ concentration and the activated

CaMKII (Calcium-CaM-dependent protein kinase II). Several

regulatory proteins, such as NF-kB, CREB, and NFAT, are

activated by the Ca2+-PLC pathway (53). Further research is

required to confirm the reports that FYN-STAT and YAP-TAZ are

connected to the non-canonical Wnt pathway (54–56). In addition,

sFRP (secreted Fzd-related proteins), Dickkopf family (Dkks), and

WIFs (Wnt inhibitory factors) can antagonistically affect

tumorigenesis and development mediated by the Wnt pathway (33).
3 Alterations in Wnt

3.1 Wnt ligands

WNT proteins are a class of cysteine-rich secreted glycoprotein

signaling molecules. They are involved in tumor development

through biological processes such as cell proliferation, apoptosis,

migration, and differentiation. According to different biological

functions, they are classified into two categories, non-canonical
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signaling substances and canonical WNT/b-catenin signaling ones

(57, 58). High expression of Wnt4 was detected in primary

adrenocortical carcinoma cells and tissues (9). Bioinformatic

analysis revealed that in ACC tumor tissues, overexpressed

Wnt5A was associated with poorer prognostic survival, including

progression-free interval (PFI), disease-specific survival (DSS), and

overall survival (OS). In ACC, Wnt5A overexpression was

positively correlated with microsatellite instability and tumor

mutational load, suggesting that it may be a prognostic marker

for immunosuppressive checkpoints (10).
3.2 Wif1

In kidney and bladder tumors, dysregulation of Wnt

antagonists has been identified as an alternate mechanism for the

abnormally activated Wnt signaling pathway (59, 60). Promoter

CpG methylation leads to the downregulation of Wif-1 in
Frontiers in Endocrinology 03
adrenocortical tumors. The epigenetic dysregulation might

activate the Wnt/b-catenin pathway, which would then stimulate

downstream target gene CCND1 expression to participate in

tumorigenesis (11). However, concrete proof is scarce for the

mechanism of Wif-1 regulation in adrenocortical carcinoma.
3.3 DKK3/FOXO1

A 38 kDa secreted glycoprotein called dickkopf-associated

protein 3 (DKK3), with a signaling peptide at its N-terminal, is

dependent on co-expressed ligands and cell surface receptors to exert

inhibitory effects in Wnt signaling (61, 62). The level of DKK3

expression is low in the majority of solid tumors and mediates cell

apoptosis and/or cycle arrest in over-expression research of various

cancer cell types (63–66), exerting a tumor-suppressive role of Wnt

signaling regulators. Additionally, ectopic expression of DKK3

suppresses malignant invasion and migration and reverses EMT
FIGURE 1

Wnt/b-catenin signaling pathway and crosstalk involved in this review.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1260701
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tai and Shang 10.3389/fendo.2023.1260701
effects in multiple cancer cell types, indicating that DKK3 also has a

dedifferentiation-blocking function (67, 68). DKK3 is weakly

expressed in most adrenocortical carcinoma tumor tissues (12),

suggesting a possible oncogenic role in ACC. However, no

correlation between clinicopathological features such as age, sex,

ENSAT stage, size and weight of the tumor, hormone-secreting

phenotype, and expression levels has been observed to correlate

significantly (12, 69). Epigenetic modifications, such as chromatin

condensation and promoter methylation, are both the mechanisms of

DKK3 silencing in the majority of other cancers (66). According to

Joyce Y Cheng et al, promoter hypermethylation may contribute to

the suppression of DKK3 expression in adrenocortical carcinoma

(12). Gene copy number variations have reportedly been linked to

adrenocortical carcinogenesis (70, 71). Gene copy loss downregulates

DKK3 expression in most ACC samples. However, only a small

percentage of these samples concurrently had promoter methylation.

This implies that gene copy loss can downregulate DKK3 expression

independently from promoter methylation. Furthermore, in ACC

tumorigenesis, copy number alterations might manifest more

precious than gene-specific methylation (12). Due to the mutations

of CTNNB1 and AXIN2, constitutively active Wnt/b-catenin
Frontiers in Endocrinology 04
signaling is generated in the NCI-H295R cell line. This cell type is

unaffected by DKK3 partial silencing or exogenous recombination in

terms of viability, clonal growth, or migration, possibly due to the

resistance generated by constitutively activated Wnt signaling. The

endogenous DKK3 is expressed by the SW13 cell line. Silencing

DKK3 expression promotes cell motility and inhibits tumor clonal

development, but has little effect on cell viability (13, 14). Exogenous

DKK3, in contrast, promotes migration, proposing that endogenous

and secreted DKK3 represent distinct functions and may have

cellular signaling targets distinct from the traditional Wnt/b-
catenin transmission (61). Additionally, constitutive overexpression

of DKK3 prevents the clonal expansion and invasive activity of ACC

cells, maybe because of the morphologically differentiated lobular

pseudopods’ increased attachment to the stroma (72–74). The

function of DKK3 in promoting the ACC cell redifferentiation

phenotype and/or anti-invasive signaling is partially mediated

through FOXO1 (12). FOXO1 is discovered as a potential

downstream target of the TGF-b signaling pathway, which also

contributes to the pathophysiology of ACC. FOXO1 is weakly

expressed in adrenocortical carcinomas. In vitro, silencing of

FOXO1 resulted in apoptosis-mediated suppression of viability in
TABLE 1 The overview of this review.

No. Categorizations Expression Functions References

1 Overview of the WNT signaling pathway

1.1 Canonical Wnt/b-catenin signaling pathway

1.2 Non-canonical pathways

2 Alterations in Wnt

2.1 Wnt ligands Overexpressed Activation of Wnt/b-catenin pathway (9, 10)

2.2 Wif1 Downregulated Activation of Wnt/b-catenin pathway (11)

2.3 DKK3/FOXO1 Downregulated Cell motility and clonal development (12–14)

2.4 b-catenin Transcriptionally active Cell proliferation and apoptosis (15–17)

3 Transcription factor regulation

3.1 BCL9 Overexpressed Tumor progression (18)

3.2 YAP1 Overexpressed Cell migration and cell viability (19)

3.3 AURKA Overexpressed Cell proliferation, viability, invasion, and cortisol release (20, 21)

3.4 MED27 Overexpressed Cell proliferation, invasion, apoptosis, and cycle (22)

4 Growth factor signaling

4.1 FGFR2 Overexpressed b-catenin phosphorylation and response to WNT protein (23, 24)

4.2 IGF2 Overexpressed Cell proliferation and viability (25)

4.3 SF-1 Overexpressed Inhibition of Wnt/b-catenin pathway (26)

5 Epigenetic regulation

5.1 EZH2 Overexpressed Cell viability, clonal expansion, and apoptosis (27, 28)

5.2 AFF3 Overexpressed Inhibition of Wnt/b-catenin pathway (29)

5.3 RARRES2 Downregulated Cell proliferation and cell invasion (30)

6 Drugs and inhibitors

7 Conclusion and prospect
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SW13 cells along with enhanced cell migration behavior. These

findings point to a specific function for FOXO1 in controlling the

vitality and motility of adrenocortical cells (12, 75). The tumor-

suppressive effect of viability inhibition due to gene downregulation

contradicts the enhanced migratory behavior, which may be related

to the complex signaling crosstalk in SW13 cells. The enhanced

migratory behavior may be due to the involvement of FOXO1 inWnt

signaling-mediated motility restriction, which needs to be verified by

separate downstream signaling experiments. Summarily, the research

of DKK3/FOXO1 signaling in the adrenal cortex may contribute to

the generation of novel medications with a focus on re-differentiation.
3.4 b-catenin

Adrenocortical carcinogenesis is fueled by the abnormally active

Wnt/b-catenin signaling pathway (76), whose vital component is b-
catenin and researchers have demonstrated a substantial association

between the extent of b-catenin nucleus staining and higher Weiss

scores, greater ENSAT tumor stage (stage III and IV), CTNNB1/APC

mutations, more frequent mitosis and necrosis, and as well as with

poorer OS and PFI in patients (49). In adrenocortical carcinoma,

aberrant b-catenin status correlates with upregulation of its target

genes LEF1, AXIN2, and ISM1, which are not increased in ACA,

indicating that transcriptionally active b-catenin influences

proliferative phenotype and the transcriptional level of TCF/LEF

target genes (15, 16). Silencing CTNNB1 inhibits H295R cell

proliferation and stimulates apoptosis by reducing Wnt/b-catenin-
LEF/TCF-dependent transcription (15). Additionally, as a Wnt/b-
catenin pathway antagonist, PNU-74654 (PNU) functions through

competitively binding TCF to interfere with protein-protein

interactions. It has been demonstrated that PNU promotes

apoptosis and prevents proliferation by blocking the TCF/b-catenin
complex (15). Another study revealed that PKF115-584 dose-

dependently promotes NCI-H295R cell apoptosis and also

suppresses cell proliferation and b-catenin-dependent transcription
(17). The primary cause of dysregulated cell proliferation is abnormal

cell cycle progression. Different cell cycle inhibitors and proteins

work together to regulate the cell cycle. CCND1, CDK1, and CDK2

are significant proteins that regulate the G1/S transition of the cellular

cycle and are also repressed as downstream targets of Wnt signaling

according to the aforementioned mechanism study (77). The same

regulatory phenotype was observed for silencing CTNNB1 in a

xenograft mouse model (16). The abnormally activated Wnt/b-
catenin pathway in the adrenal cortex of the mouse models alone

results in tissue hyperplasia. A malignant phenotype occurs in the

adrenal cortex when p53 is simultaneously deleted (78).
4 Transcription factor regulation

4.1 BCL9

As a transcriptional co-activator of Wnt/b-catenin signaling, the

oncogenic gene B-cell lymphoma 9 (BCL9) is essential for the

formation and progression of a variety of malignancies (79).
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Targeted disruption of the BCL9/b-catenin complex inhibits

oncogenic Wnt signaling (80, 81). Current studies have observed

the association between the overexpression of BCL9 and tumor

formation, including breast cancer, renal cell carcinoma,

hepatocellular carcinoma, and colorectal cancer (82–85). BCL9 is

elevated in adrenal malignancies, and its upregulation level is

s i gn ifican t l y a s soc i a ted wi th tumor aggres s i venes s .

Immunohistochemical techniques revealed higher expression status

in ACC tumor tissues with the distinct cytoplasm and nucleus diffuse

expression pattern (18). Prior research has shown that BCL9

enhances tumor cell proliferation in vitro (83). Silencing BCL9

expression significantly inhibited the clonal growth of SW13 cells.

But in H295R cells which have the CTNNB1 mutation, silencing

BCL9 did not interfere with the potential for clonal growth. This

phenomenon indicates that high expression of BCL9 may accelerate

ACC tumor progression by triggering the Wnt tumorigenic pathway

(18). Earlier research has revealed the potential functions of BCL9 in

tumor metastasis and invasion in colorectal cancer (85, 86) and

significant upregulation was observed in ACC. Only 5.8% of the ACA

cohort revealed more than a double increase of BCL9 expression

levels, while 40 percents of the ACA tissues displayed a double

expression upregulation, indicating that upregulation of BCL9

expression in adrenocortical carcinoma is correlated to the

malignant characters. Taylor C Brown et al. attempted to identify

the relationship between the different clinical characteristics and

BCL9 expression patterns. However, no significant correlation was

found, but there was a propensity towards elevated expression status

for elderly individuals, although not reaching significance (18), which

may be due to the limited cohort sample. The activity and/or stability

of both molecules may be enhanced by the capacity of BCL9 to

connect with the b-catenin, while the overexpression of b-catenin
may have this same benefit (87). Regarded as the co-activator of b-
catenin located in the nucleus, BCL9 can translocate b-catenin to the

TCF and promotes the activation of Wnt-responsive transcription

genes (cyclinD1, c-Myc), several of which are strongly associated with

carcinogenesis and the progression of malignancy (88). Currently, a

growing quantity of research initiatives have concentrated on

medications that are protein-protein interaction inhibitors that

disrupt interactions between b-catenin and Bcl9 in the tumor Wnt/

b-catenin pathway in an attempt to uncover promising candidates for

enhancing immunity and inhibiting tumor growth (89).
4.2 YAP1

As the Hippo pathway-associated transcription factor-like

protein, Yes-associated protein1 (YAP1) is an oncogenic gene and

it is involved in tissue regeneration, cell embryogenesis, and

proliferation (90–92). In cancer cell lines, overexpressed YAP1 is

correlated with the formation and growth of tumors. Furthermore,

YAP1 can engage with multiple signaling pathways including Wnt/

b-catenin, Notch, and Sonic Hedgehog (SHH), in addition to the

Hippo pathway (91, 93, 94). For instance, YAP1 synergizes with b-
catenin to activate genes necessary for epithelial repair and stem cell

proliferation (90). Previous research has demonstrated that YAP1

can participate in inhibiting Wnt/b-catenin signaling by regulating
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the subcellular localization of DVL2 or blocking DVL2 (94–96).

Immunofluorescence reveals overexpressed YAP1 both in the

adrenocortical tumors (ACTs) of children, as well as in the

cytoplasm and nucleus of fetal adrenal cells, while diminished

expression of YAP1 is observed in the postnatal adrenal cortex,

pointing to the potential involvement of YAP1 in promoting tissue

dedifferentiation and proliferation (19). Treatment of the NCI-

H295R cell lines with a TCF/b-catenin complex inhibitor (PNU-

74654) observed a lessened protein expression but an increased

mRNA expression. This phenomenon can be attributed to post-

transcriptional regulation. The decrease in protein expression may

result in negative feedback triggering an increase in mRNA

expression. In vitro experiments involving the silencing of YAP1

demonstrated an increase in CTNNB1 nucleus and protein

expression, without any noticeable alteration in Dishveld2

(DVL2) mRNA expression. This observation can be attributed to

the ability of YAP1 to either sequester DVL2 in the cytoplasm or

facilitate its translocation to the nucleus, depending on the b-
catenin phosphorylation status (15, 19). In response to alterations

in the different extracellular matrix (ECM), YAP1 participates in

cellular mechanotransduction by interacting with cell adhesion

molecule-bound a-catenin. In the hard ECM, activated YAP1

accumulates in the nucleus. Conversely, in softened ECM, YAP1

is accumulated and degraded in the cytoplasm (97–99).

Additionally, increased ECM stiffness causes a deficiency of

intercellular connections, which promotes metastasis and

epithelial-mesenchymal transition (EMT) (100). Loss of

intercellular junctions during EMT can block Hippo signaling

and thus activate YAP1 (97). In the NCI-H295 cell line, the

knockdown of YAP1 inhibited cell migration and cell viability,

implying that YAP1 contributes to adrenocortical cell growth and

metastasis. Furthermore, the mRNA expression of YAP1 was

upregulated in patients with recurrence and/or metastasis (R/M)

and death. The overexpression was correlated with worse OS of

patients (19). These results highlight the correlation of YAP1 in

relapsed and/or metastatic disease.
4.3 AURKA

The protein Aurora kinase (AURK) regulates the cell cycle and

controls cell growth through involvement in DNA damage and

kinase overexpression, with three subunits involved in cell division

in the G1-M phase (101). In comparison to normal adrenal tissues,

AURKA and AURKB expression was upregulated in adrenocortical

carcinoma and three cell lines (CU-ACC1, CU-AAC2, and NCI-

H295R), while no discernible differences were observed for

AURKC. In both pediatric and adult patients, the over-

expression of AURKA and AURKB was correlated with a worse

prognosis, implying that kinases may be implicated in the

tumorigenic effects of ACC (20). AMG900 is a highly selective

and orally bioavailable pan-aurora kinase inhibitor that effectively

reduces cell proliferation and is effective against multi-drug

resistant cell lines. Treatment of the NCI-H295R cell line with

AMG900 alone reduced cell viability, promoted apoptosis, and

suppressed cell invasion and metastatic capacity and also inhibited
Frontiers in Endocrinology 06
cell proliferation, increased the chemosensitivity of the NCI-

H295R cell lines to a variety of drugs including mitotane,

doxorubicin and etoposide, among other anticancer drugs (20,

21). The considerable increase of CTNNB1, MYC, and c-MYC was

observed after the application of the NCI-H295R cell lines with

AMG900, suggesting that AMG900 may contribute to activating

the Wnt/b-catenin pathway (20). The combination with PNU-

74654, the Wnt/b-catenin signaling pathway inhibitor, had a

greater impact on the suppression of cellular proliferation and

viability, indicating that enhanced expression of c-Myc and

CTNNB1 resulting in AMG900 treatment could be interdicted by

PNU-74654, thus resulting in a synergistic antitumor effect. The

inhibition of Aurora kinase caused by AMG900 prevented colony

production and cell invasion in NCI-H295R cells, and the

combination with PNU-74654 did not enhance this effect.

Conversely, blocking the Wnt/b-catenin pathway had a better

impact on reducing cortisol release from NCI-H295R compared

to inhibiting Aurora kinase. The AURKA inhibitor Alisertib

demonstrated good efficacy in phase I/II/III clinical trials and

several tumor types. Compared to the combination of PNU-

74654 and AMG900, the impact on, the combination of PNU-

74654 and Alisertib was observed more effective in suppressing the

cell viability of NCI-H295R cells, implying that the function

generated by AMG900 on cell viability of adrenocortical

carcinoma may be caused by the inhibition of AURKA.

According to these studies, targeting ACC malignancies may be

accomplished by inhibiting aurora kinase activity and blocking the

b-catenin pathway simultaneously (20, 102).
4.4 MED27

The MED complex is a family of transcriptional co-activators

consisting of multiple proteins that can participate in the regulatory

process of genes dependent on RNA polymerase II transcription by

interacting with transcription factors to turn on the assembly of

transcription initiation complexes and consequently gene

transcription (103–106). Overexpressed MED27 in ACC tissues is

associated with low survival rates in patients. In vitro cellular and in

vivomouse models, silencing of MED27 decreases proliferation and

cell invasion and induces apoptosis and cellular cycle organization.

Additionally, suppressed MED27 resulted in altered expression

levels of EMT-related proteins, suggesting that MED27 may

mediate ACC invasiveness by stimulating the EMT procedure.

Hongchao He et al. discovered that downregulated transcription

of b-catenin and its target gene was observed by the knockdown of

MED27, suggesting that Wnt/b-catenin pathways might contribute

to the phenotypic regulation mediated by MED in ACC (22).
5 Growth factor signaling

5.1 FGFR2

Different fibroblast growth factors can stimulate the

proliferation and expansion of adrenocortical cells (107–109). As
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a tyrosine kinase receptor, FGFR2 (Fibroblast growth factor

receptor type 2) consisting of an intracellular tyrosine kinase

structural domain and an extracellular immunoglobulin-like

structural domain is encoded on human chromosome 10q26

(110, 111). The basic fibroblast growth factor-regulated

transcriptional co-activator CITED2 (Cbp/p300 interaction trans-

activator 2) participates in adrenal development in adrenocortical

cells (23). Research has revealed that FGFR2 is associated with the

growth and development of adrenal glands in mice. Absence of this

receptor subtype leads to impaired adrenal differentiation and

growth during the development of adrenal (112). Adrenocortical

progenitor cells are stimulated to proliferate and prevent apoptosis

by FGFR2 signaling (113). Current studies identified abnormal

FGFR2 signaling as an essential factor in carcinogenesis and a

possible therapeutic approach for various tumor types (114). The

activated WNT/b-catenin pathway is one of the main mechanisms

involved in the pathophysiology of adrenocortical carcinoma.

Approximately 10 to 15 percent of patients have CTNNB1

activating mutations, which lead to aberrant nucleus

accumulation of b-catenin (115). While FGFR signaling has been

determined to trigger the canonic WNT signaling through b-
catenin phosphorylation and increased cellular response to Wnt

in other cell types (24),. The majority of adrenocortical carcinomas

had diverse degrees of FGFR2 expression in the cytoplasm and

nucleus, according to Matthias Haase et al. However, due to

insufficient sample size, no significant correlation was discovered

between CTNNB1 mutation status and other clinical characteristics

(116). Alternatively, FGFR signaling may promote adrenocortical

tumors by triggering WNT signaling upstream of growth,

independent of CTNNB1 activating mutations. Additionally, there

are two separate isoforms of FGFR2, namely FGFR2b (epithelial

variation) and FGFR2c (mesenchymal variant), which differ in their

immunoglobulin-like structural domain. Variable expression and

splicing of FGFR2 isoforms may promote tumor progression under

the mechanism of EMT (117). Therefore, further experiments

might concentrate on the differential expression and intracellular

localization of FGFR2 isoforms in adrenocortical cancer cells.
5.2 IGF2

As a key growth factor for adrenocortical growth, insulin-like

growth factor 2 (IGF2) (117), acts as a mitogen binding with cell

surface receptor IGF-1R, auto-phosphorylates and activates

downstream signaling cascades and participates in processes such

as cellular proliferation, and the regulation of cell cycle (118). IGF2

expression is upregulated in ACC, and in vitro, high concentrations of

IGF2 promote H295R cell proliferation and increase cell viability

while having no effect on invasive capacity (25). The overexpression

of IGF2 is normally correlated to constitutive activation of b-catenin
in ACC patients, implying that variations in both signaling pathways

might expedite the development of malignancy. However, in the

IGF2 transgenic adrenal tissues, Coralie Drelon et al. failed to detect

activatedWnt/b-catenin signaling (119). Provided thatWnt signaling

is activated, overexpressed IGF2 moderately accelerates cancer
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development but is insufficient to initiate the progression of

malignant tumors (120).
5.3 SF-1

Steroid growth factor 1 (SF-1) is a nuclear receptor and it is

involved in the expression of cell cholesterol homeostasis genes and

steroid hormone synthesis (121) and also involved in the growth

and development of steroid-producing glands such as adrenal and

gonadal tissues (122, 123). By interacting with particular response

components in target gene promoters, SF-1 recruits repressor

complexes to silence target genes or activator complexes to

activate target gene transcription by regulating histone

modifications to activate target gene transcription (124–126).

Anna Ehrlund et al. found that SF-1 may regulate target gene

expression by adversely influencing Wnt/b-catenin pathways

through the inhibition of b-catenin transcription (26), but the

impa c t on on co l o g i c a l p h eno t y p e s h a s no t b e en

elucidated completely.
6 Epigenetic regulation

6.1 EZH2

Figure 2 showed the epigenetic regulation and Wnt/b-catenin

signaling pathway in ACC. Histone methyltransferase (EZH2) is

one of the primary catalysis enzymes in the polycomb repressor

complex (PRC2) and catalyzes the trimethylation of histone H3

lysine 27 (H3K27me3) to mediate target genes silencing (127). In

adrenocortical carcinoma, EZH2 is the most dramatically

dysregulated histone modifier, and its overexpression is correlated

to poor prognosis and tumor proliferation in patients (27). In vitro,

RNA interference with EZH2 inhibits H295R cell viability and

clonal expansion and induces apoptosis (28). In other tissues, EZH2

stimulates Wnt signaling by inhibiting WNT antagonists (AXIN2,

NKD1, PPP2R2B, PRICKLE1, SFRP5, CXXC4) (128–130), but its

role in Wnt signaling in ACC has rarely received attention.
6.2 AFF3

AFF3 is expressed in the adrenal tissue of mice throughout

embryonic development and may be involved in the formation of

adrenal glands. According to the immunohistochemical results, B

Ragazzon et al. found that AFF3 expression was significantly higher

in nuclear b-catenin-stained positive cohorts than in nuclear-

stained negative and normal adrenal tissue, while high expression

of AFF3 is correlated to poorer OS of patients. Additionally,

suppression of either Wnt/b-catenin/TCF or LEF1 decreases

AFF3 mRNA levels (29). Regulation of downstream target genes

by Wnt/b-catenin generally involves the binding of the

transcription factors LEF/TCF to the Wnt response element

(WRE), as well as the accumulation of b-catenin. AFF3 has two
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transcriptional start sites (TSS). In H295R cells, the WRE site,

located at nucleotide position -1408 of the AFF3 TSS, participates in

regulating Wnt/b-catenin signaling. Earlier studies have discovered

that AFF proteins are present in nuclear patches and involved in

mRNA shearing (131). The super elongation complex (SEC)

composed of the protein AFF (AF4/FMR2), posi t ive

transcriptional elongation factor b (P-TEFb), and other

elongation factors modulate RNA polymerase II’s transcriptional

elongation (132). AFF3 exists in the SEC of adrenocortical cells and

its interaction with CDK9 and cell cycle protein T1 (a crucial

component of P-TEFb) changes the nuclear distribution of the latter

(29). The results above suggest that in adrenocortical cells AFF3

can regulate the activity of P-TEFb. Therefore, the discovery and

development of potential antagonists that interfere with the stability

or organization of SEC and affect the accumulation of cancer genes

to chromatin would be promising anticancer medicines.
6.3 RARRES2

Regarded as a secreted ligand of the G protein-coupled receptor

chemokine-like receptor 1 (CMKLR1), Retinoic acid receptor

response protein 2 (RARRES2) (133, 134) participates in the

immunological defense by acting as a chemokine that recruits

CMKLR1-expressing immune cells to the positions of injured

lympho id t i s sue s and organs (133) . In ACC, CpG
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hypermethylation silences the expression of RARRES2 with

significantly decreased and correlated mRNA and protein

expression levels. In vitro, overexpression of RARRES2 through

transient transfection inhibited cell proliferation and cell invasion

but had no significant effect on cell migration. In addition, stable

overexpression of RARRES2 resulted in reduced colony formation in

clone formation assays and wall-independent cell growth in soft agar

colony formation assays. The degree of inhibition was directly

proportional to the level of RARRES2 expression, indicating that

RARRES2 has a dose-dependent growth inhibitory effect.

Mechanistic studies revealed that overexpression promoted b-
catenin phosphorylation at Ser33/Ser37/Thr41, leading to increased

degradation of b-catenin, thereby reducing total b-catenin levels.

Furthermore, the excessive expression of RARRES2 inhibited the

activity of the transcription factor TCF/LEF, which in turn inhibited

the Wnt/b-catenin signaling pathway and downstream gene

expression. Phosphorylated p38 signaling is present in most ACC

tumor samples (30). Overexpression of RARRES2 inhibits p38

mitogen-activated protein kinase phosphorylation, which is

considered a promising treatment target for adrenocortical tumors

(135). Previously conducted studies found that RARRES2 acts as a

secreted protein that recruits CMKLR1-expressing NK cells to tumor

sites to exert tumor suppressive effects indirectly (133). However,

endogenous receptors were not detected in adrenocortical carcinoma

cell lines, suggesting that the observed tumor suppressive effects may

be independent of immune mechanisms.
FIGURE 2

Epigenetic regulation and Wnt/b-catenin signaling pathway.
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7 Drugs and inhibitors

From the mechanism aspect, the transmission of the Wnt/b-
catenin pathway is regulated at four levels. This also provides new

directions for the development of clinical medicine treatment.

Including extracellular and cell membrane (expression of WNT

ligand, WIF1, DKK), cytoplasm (expression level and stability of b-
catenin), cell nucleus (involvement of TCF/LEF, SF1 transcription

factors), and crosstalk of other signaling pathways (FGFR, IGF2).

Curcumin, as a natural product derived from turmeric, has been

used in the treatment of other cancers (145). Several preclinical

studies and clinical applications have reported its therapeutic effect

(146, 147). In vitro, it has been demonstrated that curcumin has

significant antiproliferative effects on a variety of cancer cells

through the inhibition of Wnt signaling. EF24, a more soluble

curcumin derivative, has similar safety efficiency and higher

anticancer activity (148). According to Loris Bertazza’s study,

EF24 exerts antiproliferative effects in ACC through multiple

pathways, including the Wnt/b-catenin signaling, NF-kB
pathway, MAPK pathway, and PI3k/Akt pathway (140).

Nutlin-3a, a classical MDM2 inhibitor, has unexpected

pharmacological effects in cancer cells with mutations in

CTNNB1. CTNNB1 is a subunit of the calmodulin complex,

encodes b-catenin, and acts as an intracellular signaling molecule

to activate the Wnt signaling pathway (149). Activating mutations

or overexpression of CTNNB1 results in the activation of the Wnt/

b-catenin pathway, and is also associated with tumorigenesis in

ACC (150). Wen Hui used bioinformatics analysis, and in vitro and

in vivo experiments to demonstrate that Nutlin-3a inhibits several

characteristics of H295R cells, including proliferation, EMT,

hormone production, and tumorigenesis, making Nutlin-3a an

attractive drug for the treatment of CTNNB1-mutated ACC (142).
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Rottlerin is a natural plant polyphenol. In recent years, it has been

shown anticancer activity in several cancers, such as prostate cancer

and pancreatic cancer (151). Yi Zhu demonstrated Rottlerin inhibits

cell proliferation, invasion, and metastasis and induces apoptosis and

cell cycle arrest by inhibiting Wnt/b-catenin signaling (143).

Abiraterone Acetate is a potent inhibitor of 17alpha-hydroxylase/

17,20-lyase (CYP17A1) (152). Due to its inhibition of the synthesis of

adrenal androgen, it has been used in metastatic castration-resistant

prostate cancer (CRPC). In Sandra Sigala’s view, abiraterone exerts a

cytotoxic effect through the progesterone receptor (PgR). In the

H295R cell line, abiraterone inhibits nuclear translocation of b-
catenin, thereby inhibiting the Wnt/b-catenin signaling (144).

Tegavivint, a newly developed inhibitor of TBL1, is in clinical

trials now. On the one hand, it disrupts the binding of b-catenin and
the transactivator protein b-like protein 1 (TBL1, a key bridging

protein for b-catenin binding and transcriptional activation). On

the other hand, it promotes SIAH-1-mediated degradation of

nuclear b-catenin (153–156). Tegavivint inhibits the Wnt/b-
catenin signaling pathway, decreases the expression of

extracellular matrix components, and inhibits cell viability and

tumor growth (136). PKF115-584 is a T cell factor/b-catenin
antagonist, that dose-dependently inhibits b-catenin-dependent
transcription and cell proliferation (17).

Vitamin D receptor is overexpressed in H295R cells due to

hypermethylation. By inhibiting Wnt/b-catenin signaling through

the activation of VDR, calcitriol inhibits tumor proliferation and

growth (137). The combination role of mitotane and calcitriol,

regulates the VDR and Wnt/b-catenin signaling, exerting

antiproliferative effects (139). Mechanistically, calcitriol, the activated

form of vitamin D, promotes b-catenin binding to VDR and reduces

binding with the transcription factor TCF/LEF. Current drugs and

inhibitors that modulate Wnt/b-catenin are shown in Table 2.
TABLE 2 The current drugs and inhibitors.

No. Name Target Intervention mechanism References

1 Tegavivint TBL1 Inhibits tumor growth by interfering with b-catenin binding to TBL1 (136)

2 PKF115-584 TCF Inhibits cell proliferation by interfering with b-catenin binding to TCF (17)

3 Calcitriol/Seocalcitol VDR
Suppresses cell proliferation and tumor growth by activating VDR signaling and

inhibiting Wnt/b-catenin signaling
(137)

4 Telomelysin TERT Inconclusive (138)

5
Mitotane + 1a,25-dihydroxy

vitamin D3
VDR+Wnt/
b-catenin

Inhibits cell growth and viability synergistically (139)

6 EF24
Multiple
pathways

Inhibits cell viability, invasion, and clone through multiple pathways (140)

7 Progesterone Wnt/b-catenin Promotes apoptosis (141)

8 Nutlin-3a MDM2 Inconclusive (142)

9 Palbociclib/Ribociclib CDK4/6 Induces apoptosis, cell cycle arrest, and senescence (138)

10 Rottlerin Wnt/b-catenin
Inhibits cell proliferation and invasive metastasis. Induces apoptosis and cell-

cycle arrest
(143)

11 Abiraterone CYP17A1
Inhibits cortisol and androgen, and increases progesterone secretion. Inhibits cell

viability and proliferation via PgR
(144)
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Telomerase reverse transcriptase (TERT) and regulator of

telomere elongation helicase 1 (RTEL1) play key roles in telomere

homeostasis (157). Studies have shown that they present in ACC

with an increasing number of gene copy and promoter mutations,

and relate to clinicopathologic features and poor prognosis.

Bioinformatics analysis indicated that high TERT and RTEL1

mRNA levels were associated with the Wnt/b-catenin signaling

pathway (158), but there is no experimental proof. Studies of

combination therapy of Telomelysin and pembrolizumab for

various solid tumors are currently undergoing (NCT03921021,

NCT04685499, NCT02293850, NCT03190824). However, whether

Telomelysin (OBP-301 and INO5401) can play a role in the

treatment of ACC remains to be confirmed.

As an inhibitor of CDK6, Palbociclib has been approved by the

FDA and used for the first-line treatment for advanced or metastatic

breast cancer with HR+ or human epidermal growth factor receptor

2-negative (HER2-) (159). Djihad’s vitro experiments demonstrated

that palbociclib induced the reduction of active b-catenin, and also

inhibited the induced transcription and b-catenin-dependent
apoptosis (138).
8 Conclusion and prospect

In recent years, there has been significant progress in the studies

of targeted drugs and molecular inhibitors as a means to inhibit

tumor progression. This has provided a new perspective on the

treatment of ACC and opened up exciting possibilities for more

effective therapies. Given that ACC pathogenesis has been linked to

prolonged stimulation of the Wnt/b-catenin signaling pathway, it is

crucial to investigate its involvement as a driving factor. From

aspects of Wnt signaling pathway alteration, transcription factor

regulation, growth factor signaling pathway, and epigenetic

regulation, our review describes the interaction of different

molecules and complexes with the Wnt signaling pathway in
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ACC. At the same time, we summarize the new drugs and

inhibitors that regulate the Wnt signaling pathway. In conclusion,

obstructing Wnt/b-catenin signaling could be an appropriate

alternative treatment for ACC patients and it is crucial to identify

methods that can safely and effectively prevent the activation of the

b-catenin pathway for patients.
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