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Background: Hip fracture occurs when an applied force exceeds the force that

the proximal femur can support (the fracture load or “strength”) and can have

devastating consequences with poor functional outcomes. Proximal femoral

strengths for specific loading conditions can be computed by subject-specific

finite element analysis (FEA) using quantitative computerized tomography (QCT)

images. However, the radiation and availability of QCT limit its clinical usability.

Alternative low-dose and widely available measurements, such as dual energy X-

ray absorptiometry (DXA) and genetic factors, would be preferable for bone

strength assessment. The aim of this paper is to design a deep learning-based

model to predict proximal femoral strength using multi-view information fusion.

Results: We developed new models using multi-view variational autoencoder

(MVAE) for feature representation learning and a product of expert (PoE) model

for multi-view information fusion. We applied the proposed models to an in-

house Louisiana Osteoporosis Study (LOS) cohort with 931 male subjects,

including 345 African Americans and 586 Caucasians. We performed genome-

wide association studies (GWAS) to select 256 genetic variants with the lowest p-

values for each proximal femoral strength and integrated whole genome

sequence (WGS) features and DXA-derived imaging features to predict

proximal femoral strength. The best prediction model for fall fracture load was

acquired by integrating WGS features and DXA-derived imaging features. The

designedmodels achieved themean absolute percentage error of 18.04%, 6.84%

and 7.95% for predicting proximal femoral fracture loads using linear models of

fall loading, nonlinear models of fall loading, and nonlinear models of stance

loading, respectively.
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Conclusion: The proposed models are capable of predicting proximal femoral

strength using WGS features and DXA-derived imaging features. Though this tool

is not a substitute for predicting FEA using QCT images, it would make improved

assessment of hip fracture riskmore widely available while avoiding the increased

radiation exposure from QCT.
KEYWORDS

hip fracture, proximal femur, finite element analys is , deep learning,
variational autoencoder
1 Introduction

The increasing elderly population and the rise in fracture

incidence have made osteoporosis a considerable public health

issue in U.S. Osteoporosis causes bones to become weak and

brittle, leading to osteoporotic fractures. Osteoporosis affects

about 18% of women and 6% of men globally (1). The economic

burden of osteoporosis has been estimated at between $17 billion

and $20.3 billion (2020 data) (2). Fracture of the proximal femur is a

common and disastrous health outcome that limits previously

functional elderly patients from living independently. Each year

over 300,000 older people in the U.S. are hospitalized for hip

fracture (3). The reported mortality rate is up to 20-24% in the

first year after a hip fracture (4, 5), and a greater risk of dying may

persist for at least 5 years (6). An inexpensive and accurate

prognostic instrument for hip fracture risk assessment would

enable individuals with a high risk for osteoporotic hip fracture to

receive preventative treatment (7).

For the diagnosis of osteoporosis, areal bone mineral density

(aBMD), assessed by dual energy X-ray absorptiometry (DXA), is

the standard diagnostic clinical parameter (8, 9). Although DXA-

derived aBMD correlates with bone weakness and fragility fracture

(10), DXA is a 2D-projection technique that poorly accounts for 3D

bone geometry and size (11), while bone geometry and bone size

have strong genetic determination (12, 13). Further, efforts toward

dissecting the genetic basis of osteoporosis using genome-wide

association studies (GWASs) have been mainly focused on aBMD

traits which have been widely studied, but GWAS results only

explain part of the variance in hip fracture risk (14). Thus, both

DXA-derived features and genetic factors provide limited

information about skeletal factors on fracture risk. It has been

shown that genetic determinants of aBMD, bone geometry and

bone sizes are genetically correlated, sharing some commons

genes (15).

Principles of physics dictate that hip fracture occurs when an

applied force exceeds the force that the proximal femur can support.

This force, the proximal femoral strength or fracture load, can be

computed using subject-specific finite element analysis (FEA),

which incorporates the biomechanically important features of the

hip, i.e. the 3D bone geometry and distribution of bone density from

quantitative computerized tomography (QCT) images (7, 16–19).

Furthermore, FEA-computed proximal femoral strength is
02
associated with incident hip fracture in men and women, and in

men even after accounting for aBMD (18). QCT provides more

accurate quantification of BMD in the lumbar spine and hip than

DXA because QCT provides volumetric BMD (vBMD) while DXA

calculates aBMD (20). In addition, QCT-based FEA describes the

hip mechanical behavior and provides more information about

bone quality and fracture risk than DXA (7, 16, 17, 19, 21, 22).

Although QCT-based FEA has shown significant value in the

assessment of proximal femoral strength, radiation and availability

of QCT limit its clinical usability. DXA images incurs much less

radiation dose, but only describe aBMD, and proximal femoral

shape and size in 2D. Yang et al. demonstrated that supplementing

standard DXA-derived aBMD measurements with sophisticated

femoral trabecular bone characterization from DXA significantly

improved the performance of predicting hip fracture load (23). The

aBMD measured by DXA is currently a standard clinical surrogate

marker of bone strength to diagnose osteoporosis; however,

integrating the heterogeneous distribution of bone material

properties is more powerful for predicting bone strength (24).

However, for predicting bone strength, replacing 3D QCT with

less robust 2D DXA data can potentially be compensated for by

incorporating bone-strength related genetic variants (25). Genetic

markers are important for identifying subjects at risk of hip fracture

through effects on proximal femoral strength/structure. Using

whole genome sequence (WGS) data, GWAS and large-scale

collaborative studies have identified hundreds of genetic markers,

explaining substantial proportions of population variation in

osteoporotic traits (26), such as BMD (27–29) and fracture risk

factors (30). Though aBMD is an important phenotype that is

clinically relevant to osteoporotic hip fracture, it explains limited

variance in hip strength (14, 31–34). Therefore, it is important to

discover how genetics influence FEA-computed proximal femoral

strength, thereby influencing hip fracture risk. Our hypothesis is

that the DXA-derived imaging features and genetic features from

WGS data could be incorporated to predict proximal femoral

strength with high clinical applicability. Further, prediction

models would help integrate the large number of high-

dimensional inter-correlated complicated predictors from genetic

data and image features to draw an overall conclusion regarding

proximal femoral strength in individual patients.

In this paper, we propose a novel model, multi-view variational

autoencoder with the product of expert (MVAE-PoE) for proximal
frontiersin.org
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femoral strength prediction, as shown in Figure 1. The proposed

MVAE-PoE incorporates variational autoencoder (VAE) to learn

feature representation and employs the product of expert (PoE) for

multi-view information fusion. A linear regression estimator is used

to predict proximal femoral strength based on the extracted latent

features. Extensive analyses were performed, leveraging the

combination of whole genome sequence (WGS) data and DXA-

derived imaging features.
2 Materials and methodology

The participant, intervention, comparison, and outcome

(PICO) of this study is shown below.
Fron
• Population (P): A cohort of 931 male subjects, comprising

345 African Americans and 586 Caucasians, with available

QCT images, WGS features, and DXA-derived imaging

features, were included.

• Intervention (I): This is not a clinical intervention study.

However, the goal is to develop a deep learning model for

predicting proximal femoral strength integrating genetic

information fromWGS and imaging data fromDXA so that

the needs of intervention can be assessed.

• Comparison (C): The comparison would be between the

predictive accuracy of the deep learning model when

genetic information and DXA-derived imaging features

are integrated versus the conventional FEA-computed

proximal femoral strength using QCT.

• Outcome (O): The primary outcome is the accuracy of

proximal femoral strength prediction using the proposed

deep learning model, measured in terms of predictive

performance metrics such as MSE, RMSE, MAPE and R2-

score.
tiers in Endocrinology 03
2.1 Enrolled subjects and data generation

In this study, we propose a deep learning model to predict the

proximal femoral strength calculated from QCT-based FEA by

integrating WGS features and DXA-derived imaging features. The

studied cohort was acquired from the LOS (35, 36). The LOS cohort is

an ongoing research dataset (>17,000 subjects accumulated so far) with

recruitment starting in 2011, aimed at investigating both

environmental and genetic risk factors for osteoporosis and other

musculoskeletal diseases (37, 38). All participants signed an informed-

consent document before any data collection, and the study was

approved by the Tulane University Institutional Review Board.

Peak BMD achieved and remained relatively stable at ages 20-50

years is most powerful in predicting BMD and risk to osteoporotic

fractures later in life due to the relatively stable physiological and

hormone status during this age period (39–42). A 10% increase in

peak BMD would delay the onset of osteoporosis by 13 years (40).

In comparison, a 10% increase in the age of menopause, or a 10%

reduction in age-related bone loss would only delay the onset of

osteoporosis by 2 years (40).

Therefore, in this study, we focus on a cohort of 931 male

subjects, aged 20-50, consisting of 345 African Americans and 586

Caucasians, with available QCT images, WGS and DXA-derived

features. The basic demographic information for the enrolled

subjects is shown in Table 1.
2.2 QCT image acquisition and FEA for
calculation of proximal femoral strength

The QCT scans (GE Discovery CT750 HD system; 2.5 mm-

thick slices; pixel size, 0.695–0.986 mm; 512 × 512 matrix) were

acquired at Tulane University Department of Radiology. For each
FIGURE 1

The graphical architecture of the proposed MVAE-PoE model.
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QCT slice, contours of the left proximal femur were labeled by well-

trained operators, in consultation with our experienced researcher

(J.H.K.). We developed in-house software for automated

annotation, containing a previously developed deep learning-

based segmentation model (43) and a thresholding algorithm

with edge tracing (44), in combination with manual visualization

and correction. The deep learning model proposed by Zhao et al.

(43) achieved a Dice similarity coefficient of 0.9888, indicating that

only minor manual modifications are required for annotating new

QCT images. Using the annotated contours, we then used linear

and nonlinear FE models to estimate the strengths of the proximal

femoral under two loading conditions, single-limb stance and

loading from a fall onto the posterolateral aspect of the greater

trochanter (19).

The nonlinear FEA models simulated mechanical testing of the

femur in which displacement is incrementally applied to the

femoral head (7, 16–19). The computed reaction force on the

femoral head initially increases, reaches a peak value (the load

capacity or fracture load), and then decreases. To achieve this

mechanical behavior, the FEA models employ heterogeneous

isotropic elastic moduli, yield strengths, and nonlinear post-yield

properties. These properties are computed from the calibrated QCT

density (rCHA, g/cm3) of each voxel in an element, which are then

u s e d t o c ompu t e t h e a s h d en s i t y (r A S H , g / cm 3 )

(rASH=0.0633 + 0.887 rCHA), and rASH is used to compute

mechanical properties. Each linear hexahedral finite element

measures 2.5 mm on a side and the mechanical properties of the

element are computed by averaging the values of each property over

all voxels in the element, while accounting for the volume fraction

of each voxel within the element. Together, these mechanical

properties describe an idealized density-dependent nonlinear

stress-strain curve for each element (16–19). Material yield is

defined to occur when the von Mises stress exceeds the yield

strength of the element. After yield, the plastic flow was modeled

assuming a plastic strain-rate vector normal to the von Mises yield

surface and isotropic hardening/softening. Displacement is applied

incrementally to the femoral head, and the reaction force on the

femoral head is computed at each increment as the distal end of the

model is fully constrained. For the fall models, the surface of the

greater trochanter opposite the loaded surface of the femoral head

was constrained in the direction of the displacements while allowing
Frontiers in Endocrinology 04
motion transversely. The nonlinear FEA-computed proximal

femoral fracture load was defined as the maximum FEA-

computed force on the femoral head, i.e., the load capacity.

For phenotypes, we calculated three proximal femoral strengths

under the two loading conditions: LF, NLF and NLS. The LF

represents the load at the onset of fracture (7). To determine the

LF, the factor of safety (FOS) at the centroid of each finite element

in the model is calculated as the ratio of the yield strength of the

finite element to the von Mises stress at the centroid of the element.

The LF is defined as the force applied to the femoral head when the

FOS values of 15 contiguous non-surface elements are equal to or

less than 1.0 (7, 19). The NLF and NLS were calculated using the

above-described method and represent the load capacity of the

proximal femur (the maximum force of the femoral head can

support) (19). The basic statistical information for the calculated

proximal femoral strengths is shown in Table 2.
2.3 Whole genome sequence and GWAS
for feature selection

The WGS of the human peripheral blood DNA were performed

with an average read depth of 22× using a BGISEQ-500 sequencer

(BGI Americas Corporation, Cambridge, MA, USA) of 350 bp

paired-end reads (38). The aligned and cleaned WGS data were

mapped to the human reference genome (GRCh38/hg38) using

Burrows-Wheeler Aligner software (45). This process followed the

recommended best practices for variant analysis with the Genome

Analysis Toolkit (GATK) to guarantee precise variant identification

(46). The HaplotypeCaller tool within GATK was employed to

identify genomic variations, and we further enhanced the reliability

of our variant calls through the application of the variant quality

score recalibration method (46).

There were a total of 10,623,292 single nucleotide

polymorphisms (SNPs) in the cohort with 935 subjects. For

quality control, we removed genetic variants with missing rates

larger than 5%, Hardy-Weinberg equilibrium exact test p-values

less than 10-4, and minor allele frequency (MAF) less than 5%.
TABLE 2 Statistical information for proximal femoral strengths under
three loading conditions.

Race LF (N, mean
±SD)

NLF (N, mean
±SD)

NLS (N, mean
±SD)

African
American

2,587.16±831.52
(min: 875, max:

6,138)

4,353.82±570.49
(min: 2,555, max:

5,823)

21,414.04±4,350.22
(min: 11,084, max:

40,904)

Caucasian 2,162.70±782.18
(min: 716, max:

7,247)

4,281.34±562.30
(min: 2,683, max:

6,337)

19,275.38±3,954.22
(min: 10,092, max:

32,818)

All 2,319.99±826.24
(min: 716, max:

7,247)

4,308.20±566.13
(min: 2,555, max:

6,337)

20,067.90±4,231.25
(min: 10,092, max:

40,904)
The mean and standard deviation are illustrated in the parenthesis. N: Newton; SD, standard
deviation; LF, linear fall fracture load; NLF, nonlinear fall fracture load; NLS, nonlinear stance
fracture load.
TABLE 1 Demographic information for the enrolled subjects.

Race Age (year,
mean±SD)

Height (cm) Weight (kg)

African-
American

38.60±7.74
(min: 20 max: 51)

174.69±7.03
(min: 154.00,
max: 190.80)

82.67±17.68
(min: 50.80, max:

135.20)

Caucasian 35.22±8.53
(min: 20, max: 51)

175.37±6.80
(min: 154.94,
max: 198.00)

83.25±16.07
(min: 50.80, max:

135.40)

All 36.47±8.40
(min: 20, max: 51)

175.12±6.89
(min: 154.00,
max: 198.00)

83.04±16.68
(min: 50.80, max:

135.40)
The ranges are illustrated in the parenthesis. SD, standard deviation.
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Individuals with a missing rate larger than 20% were also excluded.

Since subjects from two races were enrolled, principal component

analysis (PCA) was applied to the genotypes and generated

principal component scores (PCs) to perform population

stratification or admixture (47). In addition, the age, weight,

height, and first 10 PCs were used as covariates in GWAS (18,

35, 36).

The genome-wide association analyses were performed to test

the association between each of three phenotypes and SNPs from

WGS. Suppose that there are N subjects in the analyses. Let yi be the

value of the i-th subject for a phenotype and gi be the genotype for

the i-th subject, where gi is the number of minor alleles that the

subject carries at a SNP. We assume that there is a total of C

covariates and the covariates for i-th subject are fv(i)1 , v(i)2 ,⋯, v(i)C  g.
For each SNP, the linear regression model is used to examine the

effect of a SNP on a phenotype, as defined in Eq. 1.

E(yi j gi) = a0 + a1v
(i)
1 +⋯+aCv

(i)
C + bgi (1)

where b is the effect size of the SNP on the phenotype after

adjusting for the covariates. The aim is to test the null hypothesis

that the SNP is not associated with the phenotype, which is

equivalent to test H0: b = 0. The score test statistic under this

model is defined in Eq. 2.

Tscore = UV−1U (2)

where U =oN
i=1~yi~gi and V = 1

NoN
i=1~y

2
ioN

i=1~g
2
i , ~yi and ~gi are the

adjusted phenotype and genotype for i-th subject for the covariates,

indicating that ~yi is the residual of yi under the linear regression

model defined in Eq. 3.

yi = a0 + a1v
(i)
1 +⋯+aCv

(i)
C + ei (3)

where ~gi is the residual of gi under the linear regression model

defined in Eq. 4.

gi = a0 + a1v
(i)
1 +⋯+aCv

(i)
C + ti (4)

Under H0, Tscore follows a standard normal distribution (48).
2.4 DXA and DXA-derived imaging features

For each subject, aBMD (g/cm2) at various skeletal sites (lumbar

spine, hip, forearm, and total body) and body composition (fat/lean

mass) were measured using a Hologic Discovery-A DXA (Hologic Inc.,

USA) by trained and certified research staff at Tulane Center for

Biomedical Informatics and Genomics. To ensure quality assurance,

the machine was calibrated daily using a phantom scan. The accuracy

of BMD measurement was assessed by the coefficient of variation for

repeated measurements, which was approximately 1.9% for femoral

neck BMD (38). In addition, all the DXA images have been reanalyzed

using the TBS iNsight software (Medimaps Group, Geneva,

Switzerland) to obtain trabecular bone score (TBS). As a result, 196

DXA-derived imaging features were obtained and used as the imaging

features in this study.
Frontiers in Endocrinology 05
For quality control purposes: the DXA machine was calibrated

daily, and long-term precision was monitored by phantoms with a

coefficient of variation ≤0.7% for spine aBMD and a coefficient of

variation ≤1.0% for hip aBMD (49). Mechanical malfunction,

radiation quality, absorption coefficient, and tissue-equivalent

materials were also checked and calibrated before the aBMD

examination on a daily basis. The radiologist was licensed in the

State of Louisiana and registered through the American Registry of

Radiologic Technologists. The detailed DXA-derived imaging

features are shown in Table S1.
2.5 Multi-view model for proximal
strength prediction

For each Variational autoencoder (VAE), proposed by Kingma

et al. (50), is a latent variable generative model which learns the

deep representation of the input data. The goal of VAE is to

maximize the marginal likelihood of the data (a.k.a evidence),

which can be decomposed into a sum over marginal log-

likelihoods of individual features, as illustrated in Eq. 5.

log pq x(i)
� �

= DKL qf(z j x(i)) ∥ pq(z j x(i))
� �

+ L q , f; x(i)
� �

  (5)

where x(i) is the feature vector for i-th subject in the dataset

fx(i)gNi=1, N is the number of subjects, z is a random variable in the

latent space, qf is the posterior approximation of z with the

learnable parameters f, pq is the ground truth posterior

distribution of z with the intractable parameters q, and DKL( · ∥ ·)
represents the Kullback–Leibler (KL) divergence between the

approximated posterior distribution and the ground truth

posterior distribution. Because of the non-negativity of the KL

divergence, the log-likelihood log pq(x
(i)) ≥ L(q , f; x(i)). If the

approximated posterior distribution qf(z j x(i)) is identical to the

ground truth posterior distribution pq(z j x(i)), then the log pq(x
(i))

= L(q , f; x(i)). Therefore, L(q , f; x(i)) is called the evidence lower

bound (ELOB), which is defined by Eq. 6.
L(q, f; x(i)) = log pq(x

(i)) − DKL qf(z j x(i)) ∥ pq(z j x(i))
� �

= Eqf z j x(i)ð Þ log pq(x
(i) j z)

h i

− DKL qf(z j x(iÞ) ∥ pq(z j x(i))
� �

(6)

Thus, minimizing the KL divergence is equivalent to

maximizing the ELOB. To train the model explicitly and

implement the loss function in a closed form, we parameterize

the qf as a multivariate normal distribution (multivariate Gaussian

distribution) with an approximately diagonal variance-covariance

matrix. Then the analytical solution for the KL divergence is shown

in Eq. 7.

DKL qf(z j x(i)) ∥ pq(z j x(i))
� �

=
1
2o

D

d=1

(m(i)
d )2 + (s (i)

d )2 − log((s (i)
d )2) − 1

� �
(7)
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where D is the number of the latent variables extracted by the

VAE, and m(i)
d and (s (i)

d )2 are the approximate mean and variance of

the posterior distribution of d-th latent variable for i-th subject.

We extend the VAE from single-view input into multi-view

input fashion. Notably, as the fact that the product of Gaussian

distributions is also a Gaussian distribution, we apply the PoE to

generate the common latent space for the variation inference with

an analytical solution. Suppose that under the multi-view setting,

we have the data inM views, x1, x2,… xM. For the data inm-th view

(m=1,…, M), a nonlinear function implemented by a neural

network is employed as the encoder, denoted as qfm (zm j x(i)m ),

where fm represents the learnable parameters of the nonlinear

function for m-th view. For each encoder, we estimate the mean

vector and the variance-covariance matrix of multivariate Gaussian

distribution for the approximate posterior distribution, denoted as

m(i)
m and S(i)

m for i-th subject, and we assume m(i)
m ∈ RD is a vector

and S(i)
m ∈ RD�D is a diagonal matrix where D is the dimension of

the latent space. In our implementation, we employ multi-layer

perceptron (MLP) as the encoder. To guarantee the positivity of the

covariance, the output of the MLP is denoted as the log S(i)
m first and

then is converted to S(i)
m using the exponential function. Formally,

the encoder is defined in Eq. 8.
qfm zmjx ið Þ

m

� �
= N m ið Þ

m , ∑ ið Þ
m

� �

= 1

2ð ÞD=2
ffiffiffiffiffiffiffiffi
∑ ið Þ
mj j

p exp − 1
2 zm − m ið Þ

m

� �T
S ið Þ
m

� �−1
zm − m ið Þ

m

� �� �

m ið Þ
m = MLPm

m x ið Þ
m

� �
∑ ið Þ
m = exp MLP∑

m x ið Þ
m

� �� �
(8)

where zm is the latent variable extracted by m-th view with the

dimension of D × 1. MLPm
m and MLPS

m are the neural networks for

calculating mean and covariance, respectively. Let T (i)
m = (S(i)

m )−1,

then the multivariate Gaussian distribution for m-th view is

rewritten as Eq. 9.

qfm zmjx ið Þ
m

� �

=
1

2pð ÞD=2
ffiffiffiffiffiffiffiffiffiffi
∑ ið Þ
m

��� ���r exp −
1
2
zTmT

ið Þ
m zm + m ið Þ

m

� �T
T ið Þ
m zm + D ið Þ

m

� �

(9)

where D(i)
m = − 1

2 (m
(i)
m )TT (i)

m m(i)
m − D

2 log 2p + 1
2 log jT(i)

m j.
A PoE models the target posterior distribution of the common

latent variable from multi-view as the product of the individual

posterior distribution of the latent variable from single-view.

According to Eq. 9, D(i)
m is not related to the latent variable zm.

Therefore, for the following analysis, D(i)
m is considered as a constant.

In our MVAE-PoE, the PoE generates the common latent variable z

using Eq. 10.

qf zjx(i)1 ⋯ x(i)M
� �

=
1
M

YM
m=1

qfm zmjx(i)m
� �

(10)
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That is, the multivariate Gaussian distribution of the common

latent variable is defined by the product of the multivariate

Gaussian distribution of the latent variable extracted by m-th

view. According to (51), the approximated posterior distribution

of the common latent variable, z, is shown in Eq. 11.

qf z j x(i)1 ⋯ x(i)M
� �

= N m(i)
z ,  S(i)

z

� 	
,

m(i)
z = o

M

m=1
(m(i)

m )TT (i)
m

� �
oM

m=1T
(i)
m

� �−1

S(i)
z = oM

m=1T
(i)
m

� �−1
(11)

where m(i)
z and S(i)

z are the mean vector and variance-covariance

matrix of the approximated posterior distribution of common latent

variable for i-th subject. To make the neural network differentiable,

we adopt the reparameterization trick (50, 52) to reparametrize the

mean vector and the diagonal variance-covariance matrix of the

multivariate Gaussian distribution, as shown in Eq. 12.

z(i) = m(i)
z + S(i)

z

� �1=2
⨀ ϵz (12)

where ϵz ∼ N (0, I) and ⨀ indicates the element-wise product.

For each view, we employed MLP layers as the decoder to restore

the features, which is denoted as MLPdec
m for m-th view. The

graphical architecture of the proposed MVAE-PoE model is

shown in Figure 1.
2.6 Loss function

Using the multivariate Gaussian distribution, the ELOB for

MVAE-PoE is derived in an explicit form, shown in Eq. 13.

L(q , f; x1,⋯, xM) =o
N

i=1
o
M

m=1
Ez∼ qf (z j x(i)m ) log pq x(i)m jz

� �

−o
N

i
DKL qf zjx(i)1 ,⋯, x(i)M

� �
∥ pq zjx(i)1 ,⋯, x(i)M

� �� � (13)

The first term in the RHS of Eq. 13 is defined as the cross-

entropy between the reconstructed data and the original input, and

the second term in the RHS of Eq. 13 is the KL-divergence between

the approximated posterior distribution and the true posterior

distribution. The analytical form of the KL-divergence is the same

as Eq. 3 since we employ the multivariate Gaussian distribution

with an approximately diagonal variance-covariance as the ground

truth. Thus, the close-form solution for the loss function is shown in

Eq. 14.
L(q , f; x1,⋯, xM) =o

N

i=1
o
M

m=1
x(i)m log x̂ (i)

m

� �
+ 1 − x(i)m
� �

log 1 − x̂ (i)
m

� �� �

−
1
2o

N

i=1
o
D

d=1

m(i)
d

� �2
+ s (i)

d

� �2
− log s (i)

d

� �2
−1

� � !

(14)

where m(i)
d and (s (i)

d )2 are the approximate mean and variance of

the posterior distribution of d-th latent variable for i-th subject, and
frontiersin.org

https://doi.org/10.3389/fendo.2023.1261088
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1261088
x̂ (i)
m represents the reconstructed feature vector for i-th subject from

m-th view.
2.7 Model training and evaluation

20% of the subjects are randomly chosen as the test set, and the

rest of the data are used as the training set. Predicting the proximal

femoral strength is treated as a regression task. As shown in

Figure 1, a linear regression model is employed to predict the

proximal femoral strengths using the extracted latent variables, z.

For model evaluation, mean absolute error (MAE), mean

absolute percentage error (MAPE), root mean squared error

(RMSE) and R2-score are employed. The definitions of MAE,

MAPE, RMSE and R2-score are shown in Eqs. 11-14.

MAE =
1
No

N

i=1
yi − ŷ ij j (15)

MAPE =
1
No

N

i=1

yi − ŷ ij j
yi

� 100% (16)

RMSE =
1
No

N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yi − ŷ i)

2
q

(17)

R2-score  ¼  1- oN
i=1(yi − ŷ i)

2

oN
i=1(yi −oN

i=1yi=N)2
(18)

where yi is the ground truth of the proximal femoral strength

and ŷ i is the model prediction. A lower MAE/MAPE/RMSE and a

higher R2 -score indicate better performance. According to Eqs. 15-

18, 0 of MAE/MAPE/RMSE indicates the perfect match. According

to Eq. 18, R2 -score ranges from -∞ to 1, where 1 indicates the

perfect match.
2.8 Interpretability of feature significance

Similar to (53), a leave-one-out technique is adopted to identify

the feature significance in each view. A feature is significant if the

performance of predicting proximal femoral strength decreases

significantly when this feature is replaced by zero. By ranking the

performance drops, the significance of the feature is obtained.
3 Results

3.1 Data processing results

We performed GWAS analysis for testing the association

between each of the three types of proximal femoral strengths,

including linear fall fracture load (LF), nonlinear fall fracture load

(NLF), and nonlinear stance fracture load (NLS), and each of the

single nucleotide polymorphisms (SNPs) after quality control.
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Manhattan plots of these three types of proximal femoral

strengths are depicted in Figure 2. Since the sample size of the

Louisiana Osteoporosis Study (LOS) cohort was relatively small for

genetic association studies, we expanded our search space to look at

a much wider landscape of associations by selecting top 256 SNPs

with the lowest p-values to extract the WGS features that are

associated with each phenotype. These identified SNPs were used

as WGS features for the downstream task. Meanwhile, 196 DXA-

derived imaging features were employed.
3.2 Model performance for proximal
femoral strength prediction

We trained and tested the MVAE-PoE model using our

workstation with a NVIDIA RTX 3090 GPU and an Intel core I9

CPU. The designed models were implemented using TensorFlow

2.5. We performed the grid search to optimize hyperparameters,

and the searching space included the number of MLP layers in both

encoder and decoder: 1, 2, 3; the dimension of common latent

space: 32, 48, 64, 128 or 256; and the number of hidden units for

each MLP layer: 32, 48, 64, 128, or 256. Table 3 shows the best

performance achieved using our proposed MVAE-PoE model for

predicting three proximal femoral strengths. Also, we performed

experiments using the different combinations of these three views to

test the effectiveness of information fusion. We plotted the model

prediction and the ground truth of the three FEA-computed

proximal femoral strengths with the best performance in Figure 3.

In Figure 3, each subject is represented by a blue dot. The vertical

axis is the predicted strength. The red dashed line indicates a perfect

match, and the green dashed line is the linear regression result of

the prediction.

Integrating information from two views significantly improved

the performance of predicting proximal femoral strength.

According to Table 3, the proposed MVAE-PoE model achieved

its best performance for LF, NLF and NLS prediction using WGS

features and DXA-derived imaging features. For example, the

proposed model improved the R2-score to 0.5569 compared with

0.4866 using DXA features alone for LF prediction.

DXA-derived imaging features are significantly more important

than the WGS features in terms of the prediction performance. For

LF, NLF and NLS, using DXA features alone, the designed models

achieved the MAPEs of 18.04%, 6.84%, and 7.95%, respectively.

Integrating DXA features with WGS features, the MAPEs were

lowered by 1.62%, 0.55% and 0.46%, respectively. This finding was

consistent with clinical practice that DXA-derived imaging features

correlate with bone weakness and fragility fracture (10), with site-

specific DXA explaining approximately 55% of the variability in

predicting proximal femoral strengths (54).

Proximal femoral strengths depend on WGS features; however,

using WGS features alone, the model does not generate satisfactory

prediction results. For predicting LF, using only WGS features

increased the MAPE from 18.04% to 24.47%. For predicting NLF,

using only WGS increased the RMSE from 363.58 to 466.02.
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A

B

C

FIGURE 2

Manhattan plots of the GWAS results for (A) LF; (B) NLF; and (C) NLS. The horizontal axis represents the chromosome index and the positions of the
SNPs; while the vertical axis represents the p-value of GWAS results for each SNP.
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TABLE 3 Fine-tuned best performance for the prediction of three proximal femoral strengths.

Phenotype WGS DXA Number of
MLP layers

Number of
hidden units

Dimension of
latent space

R2 –
score ↑

RMSE
↓

MAE
↓

MAPE
↓

LF ✓ ✓ 3 48 128 0.5569 468.77 355.57 18.04%

✓ 2 256 48 0.4866 504.56 388.65 19.66%

✓ 3 128 128 0.3317 575.68 453.11 24.47%

NLF ✓ ✓ 2 128 128 0.5726 363.58 284.32 6.84%

✓ 2 64 48 0.4778 401.92 306.88 7.39%

✓ 2 128 128 0.2979 466.02 368.17 8.89%

NLS ✓ ✓ 3 256 48 0.7107 1903.58 1441.42 7.95%

✓ 3 32 48 0.6822 1995.16 1539.79 8.41%

✓ 2 256 64 0.2194 3126.87 2430.34 13.94%
F
rontiers in Endoc
rinology
 09
 fron
The check marks in WGS features and DXA-derived features indicate that the corresponding view was used. The symbol ↑ indicates that higher is better and the symbol ↓ indicates that lower is
better. If only one view was enrolled, then MVAE-PoE was degraded into a standard VAE model. For each type of the proximal femoral strength, the performance is sorted by R2 -score. The bold
values indicate the achieved best performance.
FIGURE 3

The predicted FEA-computed proximal femoral strengths and the ground truth (GT, in the horizontal axis) for LF, NLF and NLS. Each subject is
represented by a blue dot. The vertical axis is the predicted strength. The red dashed line indicates a perfect match, and the green dashed line is the
linear regression result of the prediction.
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3.3 Performance comparison

We compared our MVAE-PoE model to other multi-view

integration methods for prediction tasks. The tested models include:
Fron
• Multiview canonical correlation analysis (MCCA) (55).

MCCA extends the canonical correlation analysis (CCA)

into multi-view settings. CCA is a typical subspace learning

algorithm, aiming at finding the pairs of projections from

different views with the maximum correlations. For more

than 2 views, MCCA optimizes the sum of pairwise

correlations.

• Kernel CCA (KCCA) (56). KCCA is based on MCCA,

however, it adds a centered Gram matrix to perform the

nonlinear transformation on the input data.

• Kernel generalized CCA (KGCCA) (57). KGCCA extends

KCCA with a priori-defined graph connections between

different views.

• Sparse CCA (SCCA) (58): SCCA is a method for penalized

CCA, which computes a rank-K approximation for a set of

matrices and generates the sparse vectors for feature

representation and interpretation.

• Multiview adversarial autoencoder (AAE) (59). One

limitation of the variational autoencoder is that the prior

distribution and posterior distribution are required to be

pre-defined, and the KL-divergence is required to be
tiers in Endocrinology 10
differentiable. The AAE can use arbitrary priors to train

the autoencoder.
For the above algorithms, a linear regression estimator was

applied to perform the prediction task using the extracted latent

variables. The overall performance comparison for predicting the

three proximal femoral strengths is shown in Table 4. For the

compared algorithms, the grid search was also performed to find the

best hyperparameters.

Compared to other multi-view information extraction models,

the proposed MVAE-PoE achieved the best performance for

predicting all types of proximal femoral strengths. The MCCA,

KCCA, KGCCA and SCCA are four machine learning-based

methods and the AAE is a deep learning-based method. For the

MCCA, KCCA, KGCCA and SCCA, we trained these models with

different dimensions of latent variables; for KCCA and KGCCA, we

further tested the linear, polynomial and radial basis function (RBF)

kernels. Even with tremendous hyperparameter fine-tuning, these

machine learning-based methods didn ’t generate better

performance than the designed MVAE-PoE models. For the AAE

model, we employed the same grid search settings. However, the

achieved MAPEs were 20.68%, 7.22% and 10.27% for LF, NLF and

NLS prediction, which indicated inferior performance than MVAE-

PoE. The CCA-based methods have been commonly used in data

fusion or integration; however, CCA-based methods treat the

modalities as linearly and multivariately correlated without
TABLE 4 Comparison of hip fracture load prediction between existing multi-view information extraction algorithms and the proposed MVAE-PoE.

Phenotype Method R2 –score ↑ RMSE ↓ MAE ↓ MAPE ↓

LF MCCA 0.2901 596.34 440.39 22.93%

KCCA 0.5212 489.77 391.58 20.43%

KGCCA 0.4215 538.35 423.28 22.34%

SCCA 0.5346 469.62 371.79 19.26%

AAE 0.4563 519.26 403.58 20.68%

MVAE-PoE 0.5569 468.77 355.57 18.04%

NLF MCCA 0.2352 486.30 372.19 8.94%

KCCA 0.4095 427.31 337.09 8.13%

KGCCA 0.2541 480.23 365.32 8.76%

SCCA 0.4758 402.60 309.34 7.48%

AAE 0.5466 374.50 302.68 7.22%

MVAE-PoE 0.5726 363.58 284.32 6.84%

NLS MCCA 0.3980 2739.70 1872.63 10.14%

KCCA 0.5958 2244.82 1700.97 9.38%

KGCCA 0.5178 2451.87 1796.35 9.86%

SCCA 0.6652 2043.08 1584.97 8.71%

AAE 0.5998 2238.89 1820.15 10.27%

MVAE-PoE 0.7107 1903.58 1441.42 7.95%
fro
For each algorithm, the WGS features, and DXA-derived image features were used. Only the results with the best performance achieved by different algorithms are listed. The bold values
represent the highest level of performance achieved.
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considering the direction of the linear relationship (60). In this

study, we demonstrate that MVAE-PoE enables more useful and

generalizable representations by capturing the abstract relationship

between the views for downstream tasks such as prediction tasks.

Our model, which has shown excellent performance in predicting

proximal femoral strength by integrating information from multiple

views, holds promise for other radiogenomics data analysis problems,

such as cancer prediction. By combining radiological imaging features

with genomic data, our model can uncover valuable insights into the

development, progression, and treatment response of diseases.

Leveraging the power of our model, we believe it can effectively

analyze radiogenomics data to enhance prediction accuracy and

contribute to advancements in personalized medicine.
4 Discussion

4.1 Feature importance analysis

We applied the leave-one-out method to determine the feature

importance. The leave-one-out indicated that we replaced one

specific feature by zero for each subject in the test set when

evaluating this feature, and the replaced features are named as

zero-filled features. We compared the MAE changes between using

the raw features and the zero-filled features. If the MAE between the

GT and the model prediction increased significantly, then the

evaluated feature was a significant feature. For each model, we

listed the top 15 most important features in Figure 4.

For the prediction of LF, according to Figure 4A, 10 of the top 15

most important features were WGS features, and 5 feature was a the

DXA feature. The trochanter BMD (TROCH_BMD) was the most

important DXA feature. Trochanteric BMD is associated with

trochanteric fracture in the elderly and is among the best predictors

of femoral strength (61). For NLF prediction, according to Figure 4B,

one of the top 15 most significant features were DXA-derived features

and the remaining 14 were WGS features. For NLS prediction,

according to Figure 4C, 10 of the top 15 most significant features
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were DXA-derived features. This was consistent with the previous

findings that DXA features explained approximately 55% of the

proximal femoral strength while the proximal femoral strength was

also influenced by genetics (25).

For each important WGS feature, we mapped the SNPs into the

corresponding genes. The correspondingly associated clinical traits

that were reported in the GWAS Catalog between each mapped

gene and clinical traits are shown in Table 5. For LF, According to

the meta-analysis using 339,224 subjects from 125 subjects

including African Americans and Caucasians, TSPAN12 show a

positive correlation with BMI (62). COX6C and CAPG showed a

strong correlation with body-shape indices on subjects from UK

Biobank datasets (63). For NLF, the detected most important genes,

CAPG, also showed a strong correlation with body fat distribution

(64). For NLS, ERBB4 was associated with obesity on subjects from

UK Biobank (65), which contained 339,244 individuals.
4.2 Clinical application

Our proposed research not only addressed issues related to multi-

view information fusion, but also leveraged the value of widely used

DXA with information provided by genetic markers for predicting

proximal femoral strength. Therefore, this study has the potential to

significantly impact both research and clinical practice. In the AGES-
A B C

FIGURE 4

Ranked feature importance for (A) predicting LF; (B) predicting NLF; and (C) predicting NLS. Feature significance was determined by MAE changes
between using raw features and zero-filled features. The vertical axis indicates the feature names, where WGS features are annotated by rsid, and
the DXA are annotated by the abbreviations. Detailed explanations for the DXA features are shown in Table S1.
TABLE 5 Previously reported SNPs associated with bone-related clinical
traits.

Phenotype SNP Nearest
Gene

Clinical traits

LF rs120932767 TSPAN12 BMI

rs16897960 COX6C Body-shape index

NLF rs142460654 CAPG Body-shape index, Body
Fat

NLS rs17334842 ERBB4 Obesity
The corresponding gene is listed.
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Reykjavik data set, Fleps et al. demonstrated that using FEA-computed

hip fracture load to predict hip fracture was better than using total

femoral aBMD only (22). In addition, genetic markers are important

for identifying subjects at risk of hip fracture through effects on

proximal femoral strength (25, 66, 10; 21). Due to their biological

nature, genetic factors may also control nano-level bone mechanical

properties and may further facilitate the prediction of bone strength

and the assessment of hip fracture risk.

The most significant scientific impact of this study is the

development and validation of the first comprehensive and

accurate model for patient-specific assessment of predicting

proximal femoral strength using multi-view information fusion by

deep learning. Our multi-view deep learning-based model

incorporates WGS features and DXA-derived imaging features,

which are directly or indirectly related to proximal femoral

strength and hip fracture. Deep learning-based techniques can

automatically extract features and build accurate prediction

models. Further, using the leave-one-out technique, the designed

models are highly interpretable, leading to the identification of

specific factors predictive of proximal femoral strengths.

The most practical clinical impact is the development and

validation of an interpretable prediction model for proximal

femoral strength using WGS features and DXA-derived image

features, rather than using QCT. It is difficult to implement QCT-

based femoral strength and hip fracture risk assessment in clinical

practice due to the high radiation dosage and limited availability of

QCT-based FEA. Lochmüller et al. suggested that clinical

assessment of femoral fracture risk should preferably rely on

femoral DXA (54). Our results suggest that there is a strong

potential for using a combination of DXA and genetic markers to

develop practical models for hip fracture risk assessment in

the future.
4.3 Limitation

Our study primarily focused on a population aged between 20 and

51 years. While this age group provides valuable insights into proximal

femoral strength prediction using DXA and WGS, it is important to

acknowledge that exclusion of older subjects may constrain the

generalizability of our findings to the elderly population. Hence,

future research endeavors should consider incorporating a more

diverse age range to enhance the applicability of our predictive

model across a broader population spectrum.
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