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Université Catholique de Louvain, Belgium

REVIEWED BY

Chunheng Mo,
Sichuan University, China
Valentina Caputi,
University College Cork, Ireland

*CORRESPONDENCE

Yan Liu

liuy806@163.com

Yuehan Song

songyuehan1981@126.com

RECEIVED 28 July 2023
ACCEPTED 06 November 2023

PUBLISHED 23 November 2023

CITATION

Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y
and Song Y (2023) Bile acid signalling
and its role in anxiety disorders.
Front. Endocrinol. 14:1268865.
doi: 10.3389/fendo.2023.1268865

COPYRIGHT

© 2023 Chen, Shao, Chen, Lv, Ji, Liu and
Song. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 23 November 2023

DOI 10.3389/fendo.2023.1268865
Bile acid signalling and its
role in anxiety disorders

Simin Chen, Qi Shao, Jiayi Chen, Xinyi Lv, Jing Ji,
Yan Liu* and Yuehan Song*

College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0%

of the world’s population. Bile acids are synthesized by hepatocytes and

modulate metabolism via farnesoid X receptor (FXR), G protein-coupled

receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract

but also extend to tissues and organs such as the brain, where they regulate

emotional centers and nerves. A rise in serum bile acid levels can promote the

interaction between central FXR and TGR5 across the blood-brain barrier or

activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19)

and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals

to the brain via these indirect pathways. This review aimed to summarize

advancements in the metabolism of bile acids and the physiological functions

of their receptors in various tissues, with a specific focus on their regulatory roles

in brain function. The contribution of bile acids to anxiety via sending signals to

the brain via direct or indirect pathways was also discussed. Different bile acid

ligands trigger distinct bile acid signaling cascades, producing diverse

downstream effects, and these pathways may be involved in anxiety regulation.

Future investigations from the perspective of bile acids are anticipated to lead to

novel mechanistic insights and potential therapeutic targets for anxiety disorders.
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1 Introduction

As is well documented, anxiety disorder is a common neuropsychiatric disorder

affecting 7.3% to 28.0% of the world’s population (1, 2). Its incidence has increased by

2.3 times in recent years due to the impact of COVID-19 (3), making it the sixth-largest

disability disease globally. Of note, it is associated with an increase in the risk of suicidal

behavior and cardiovascular disease (4). To date, the pathogenesis of anxiety disorders

remains elusive.

However, metabolic disorders, encompassing bile acid (BA) disorders, have recently

garnered extensive attention in anxiety research (5). Bile acids are multifunctional endocrine

factors that govern lipid and energy metabolism by coordinating the activation of FXR and

TGR5 to modulate cellular signaling. Additionally, bile acids also communicate with the
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central nervous system, traversing the blood-brain barrier (BBB) to

bind to their cognate receptors within the brain parenchyma (6).

Emerging evidence from clinical and preclinical studies suggests

that bile acid dysregulation may contribute to the development of

mental health disorders like anxiety. Earlier clinical investigations have

established a direct correlation between bile acid concentration and

anxiety symptoms. Moreover, this relationship extends beyond anxiety,

as bile acids have been shown to influence anxiety-like behavior in

patients with irritable bowel syndrome and other gastrointestinal

disorders (7, 8). Earlier studies have also described that bile acids

transmit signals to the brain through both direct or indirect pathways

and participate in the development of brain diseases, thereby implying

a correlation between bile acids and mental illnesses. Elevated serum

bile acids have been proven to increase BBB permeability and transmit

signals to the central nervous system via FXR, TGR5, etc., eventually

elevating the risk of mental disorders (9).However, the underlying

mechanisms by which bile acid signals affect the occurrence of anxiety
Frontiers in Endocrinology 02
behavior have not been fully elucidated (10). The article is divided into

two main sections. The first section provides an overview of the

metabolism of bile acids and their different functions and

corresponding receptors. The second section consolidates the

available evidence on bile acids exerting their effects and transmitting

signals through distinct pathways and tissues/organs to influence

anxiety, offering a direction for the development of novel treatment

strategies from the perspective of bile acids.
2 Synthesis, metabolism, and
circulation of bile acids

Primary bile acids such as cholic acid and chenodeoxycholic

acid are synthesized from cholesterol in hepatocytes by two

pathways, namely the classic or neutral pathway and the

alternative or acidic pathway (11) (Figure 1). The former is
FIGURE 1

Classic and alternative pathways for bile acid synthesis. Cholesterol undergoes multiple enzymatic reactions to form primary bile acids CA and
CDCA. The solubility of these bile acids is increased, and their cell toxicity is reduced by coupling with glycine or taurine. The primary bile acids are
then stored in the gallbladder and secreted into the intestine after food consumption. In the intestine, they are further metabolized into secondary
bile acids by the intestinal flora. While approximately 95% of bile acids enter the enterohepatic circulation and return to the liver, the remaining 5%
are excreted through feces.
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initiated by cholesterol 7a-hydroxylase (CYP7A1) in the liver, while
the latter is triggered by sterol 27-hydroxylase (CYP27A1) in the

liver, macrophages and adrenal glands, and cytochrome P450 46A1

(CYP46A1) in the brain (12). In the classic pathway, CYP7A1

catalyzes the conversion of cholesterol to 7a-hydroxycholesterol,
which is then converted to 7a-hydroxy-4-cholesten-3-one by 3b-
hydroxysteroid dehydrogenase type 7 (HSD3B7). The latter is

thereupon converted to cholic acid (CA) by 12a-hydroxylase
(CYP8B1) or to chenodeoxycholic acid (CDCA) by Aldo-keto

reductase Family 1 Member D1 (AKR1D1). In the alternative

pathway, CYP27A1 generates 3b-hydroxy-5-cholenoic acid, which
is subsequently converted to CDCA by 7a-hydroxylase (CYP7B1)
(11). CDCA is also generated under the action of Cytochrome P450

Family 39 Subfamily A Member 1(CYP39A1) by CYP46A1 (12).

Bile acid production is strictly controlled by cytochrome CYP8B1,

which determines the amount of cholic acid and chenodeoxycholic
Frontiers in Endocrinology 03
acid in the bile acid pool. It is worthwhile emphasizing that in mice,

CDCA is converted to ursodeoxycholic acid (UDCA), a-muricholic

acid (a-MCA), and b-muricholic acid (b-MCA) by the cytochrome

P450 2C70 (CYP2C70) enzyme (13).

Bile acids are conjugated with glycine (primarily in humans) or

taurine (primarily in mice) by bile acid-CoA synthase (BACS) and

bile acid CoA:amino acid N-acyltransferase (BAAT) before

secretion in the liver increases solubility and reduce cellular

toxicity (12). This process involves the conjugation of CA to

generate glycocholic acid (GCA) or taurocholic acid (TCA) and

the coupling of CDCA to yield glycochenodeoxycholic acid

(GCDCA) or taurochenodeoxycholic acid (TCDCA). In mice,

coupling generates tauro-a-muricholic acid (TaMCA), tauro-b-
muricholic acid (TbMCA), and tauro-ursodeoxycholic acid

(TUDCA), which are then transported and stored in the

gallbladder by the bile salt export pump (BSEP) (12).
FIGURE 2

Bile acids entering different regions of the brain directly regulate anxiety by binding to FXR and TGR5. (A) CA activates FXR in the prefrontal cortex,
which inhibits the expression of NLRP3 inflammasomes and restores AMPAR levels, thereby affecting LTP and synaptic plasticity; (B) CDCA activates
FXR on hippocampal neurons and targets CREB and BDNF through a CREB-dependent mechanism, reducing neural function. TUDCA activates
TGR5 on hippocampal neurons to relieve neuroinflammation by lowering NF-kB and increasing BDNF levels, thus exerting neuroprotective effects;
(C) TUDCA activates TGR5 in astrocytes in the cerebral cortex, upregulates AKT expression, and decreases NF-kB levels; (D) INT-777 activates TGR5/
cAMP/PKA on microglia to counteract neuroinflammation and promote CREB phosphorylation.
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Following food intake, the duodenum secretes cholecystokinin

(CCK), which promotes gallbladder contraction and the release of

bile acids into the intestine. Bile salt hydrolase (BSH) secreted by

specific intestinal bacteria oxidizes and epimerizes specific hydroxyl

groups on bile acids, affecting their physicochemical properties and

biological toxicity, and converts primary bile acids to secondary bile

acids, including deoxycholic acid (DCA), UDCA, and lithocholic

acid (LCA), which promote the metabolism of fat and fat-soluble

vitamins (14). Approximately 95% of bile acid molecules remain

unbound and proceed to the distal end of the ileum, whereby they

are reabsorbed by the ileal epithelium via the apical sodium-

dependent transporter (ASBT). The reabsorbed BAs are

transported through intestinal epithelial cells to organic

solute transporter alpha/beta (OSTa/b) on the sinusoidal

membrane and are transported back to the liver via sodium

(Na+)-taurocholate co-transporting polypeptide (NTCP) and

organic anion transporters (OATP) through the portal vein to

complete the enterohepatic circulation. Noteworthily, a small

proportion of BAs (up to 10%) escape into the systemic

circulation without undergoing hepatic reabsorption (15) and

reach the brain by simple diffusion (16) or active transport (17)

across the BBB.

Bile acid synthesis and enterohepatic circulation primarily

occur in the liver, gallbladder, intestine, and brain. Evidence of
Frontiers in Endocrinology 04
bile acid production in the brain has also emerged. In addition to

those taken up from systemic circulation, BAs synthesized by the

brain have been detected in rodent and human brains. For instance,

CA, CDCA, and deoxycholic acid (DCA) were detected in rat brain

tissue cytoplasm (18), whereas other bile acids were identified in the

cortex of Alzheimer’s disease patients, including glycocholic acid

(GCA), LCA, and UDCA, among others (19). However, the

pathological and physiological processes involved in brain-

synthesized bile acids are currently unclear, making it difficult to

describe their function.
3 Various bile acids and
corresponding receptors are
involved in systemic metabolism
and immune regulation

The metabolism of bile acids is contingent upon the interaction

between bile acids and their receptors, which are expressed in the

liver, intestine, brain, etc. Nuclear receptors include FXR, pregnane X

receptor (PXR), vitamin D receptor (VDR), and constitutive

androstane receptor (CAR), while membrane receptors include

TGR5 and sphingosine-1-phosphate receptor 2 (S1PR2) (20). They
FIGURE 3

Bile acids modulate anxiety by indirectly transmitting signals to the brain via the FXR-FGF19 and TGR5-GLP-1 pathways upon entering the intestine.
Bile acids enter the intestine and activate FXR in ileal enterocytes to upregulate FGF19 expression. In addition to returning to the liver through the
portal vein, a portion of FGF19 crosses the BBB to interact with FGFRs in the brain and affect the BDNF-TrkB signaling pathway. Bile acids can also
stimulate intestinal L cells to release GLP-1. A proportion of GLP-1 reaches the portal vein, and a smaller amount reaches the brain to interact with
GLP-1R, thereby affecting the CREB/BDNF signaling pathway.
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strictly govern the synthesis, absorption, and excretion of bile acids.

Variations in the source and structure of bile acids impart unique

physicochemical properties and functional characteristics that

naturally translate into diverse effects on their corresponding

receptors. To explore these differences, the functions of various bile

acids were detailed based on their receptor targets, as illustrated

in Table 1.
3.1 FXR

FXR is a ligand-activated transcription factor that plays a crucial

role in regulating bile acid homeostasis and participates in

enterohepatic circulation. FXR can be activated by several bile

acids, with hydrophobic bile acid CDCA being the most effective

ligand for FXR. The order of affinity of bile acids to FXR is as

follows: CDCA > DCA > LCA > CA (41). FXR is largely expressed

in the liver, intestine, kidney, adrenal gland, etc. (42), as well as in

cortical neurons of the brain (43, 44).

Intestinal FXR is a crucial regulatory factor that maintains

physiological enterohepatic circulation. Indeed, FXR acts as a
Frontiers in Endocrinology 05
sensor for elevations in bile acid levels (especially CDCA).

Specifically, intestinal FXR stimulates fibroblast growth factor 15

(FGF15) in mice or FGF19 in humans located at the distal portion

of the ileum. After crossing the portal vein, it activates the liver

fibroblast growth factor receptor (FGFR) to inhibit cholesterol 7a-
hydroxylase (CYP7A1) and mediate bile acid synthesis in liver cells

(21). This is the primary pathway of bile acid negative feedback.

Interestingly, FGF15/19 has been found to enter the systemic

circulation and cross the blood-brain barrier to reach the brain,

where it binds with FGFR4 in the brain and regulates brain function

(6). Meanwhile, FGFR4 has been detected in the hypothalamus and

cholinergic neurons located in the nucleus accumbens (45). The bile

acid-mediated FXR-FGF15/19 pathway not only establishes a

connection between the liver and intestine but also extends to

various brain regions.

Hepatic FXR is a key molecule for synthesizing bile acids. Under

physiological conditions, activation of FXR by the CDCA and CA

primary bile acids plays a decisive role in maintaining hepatic bile

acid homeostasis. This process involves hepatic FXR inhibition of 7-

ketocholesterol synthesis through the small heterodimer partner

(SHP) a Hydroxylase enzyme, resulting in the suppression of bile
TABLE 1 Functional involvement of different bile acids and their corresponding receptors.

Bile Acid Ligands Receptor
Cellular

Localization
Main Function References

CDCA, DCA, LCA, CA

FXR

Intestine Controlling bile acid synthesis by inhibiting CYP7A1 via FGFs/FGFRs (21)

CDCA, DCA, LCA, CA
Liver

Suppressing CYP7A1 and CYP8B1 via SHP-induced inhibition of bile
acid synthesis

(22)

CA, TCA Regulation of lipid metabolism by SHP inhibition of SREBP-1c (23)

CDCA, DCA

Hippocampus

Promoting depression by inhibiting BDNF/TrkB (24)

CDCA
Regulation of glucose metabolism by enhancing insulin sensitivity in the
brain

(25)

CDCA Prefrontal cortex Relieving depression through the NLRP3/GluA1 signaling pathway (26, 27)

CA

TGR5

Kupffer cells Mediating the inflammatory response through JNK-dependent pathways (28)

Taurine
Sinusoidal

Endothelial Cell
Preventing oxidative stress by inducing ENOS (29)

HCA Intestine
Stimulating the secretion of GLP-1 by intestinal L cells and regulating
glucose metabolism

(30, 31)

TUDCA Neuron Regulating Sirtuin3 signaling to protect against apoptosis (32)

TUDCA Microglia Upregulating cAMP expression and inhibiting microglial activation (33)

TCDCA Astrocyte Through AKT/NF k B signaling pathway inhibits neuroinflammation (34)

TLCA Ventricle Increase fat oxidation and regulate lipid metabolism (35)

DCA, TDCA, TCA Hypothalamus Activating SNS to promote energy metabolism and reduce fat content (36)

LCA

PXR, VDR Liver
Alleviating liver toxicity of LCA through enzymes that regulate bile acid
metabolism

(37)

CAR, PXR,
VDR

Intestine
Maintaining bile acid homeostasis by inhibiting CYP7A1 through
FGF15/FGF19

(38)

TCA, GCA, GDCA, TDCA,
TUDCA S1PR2

Liver
Promoting liver inflammation through ERK1/2/NF- k B/COX-2 (39)

TCA Neuron Upregulating CCL2 expression and aggravating neuroinflammation (40)
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acid synthesis and prevention of hepatic bile acid accumulation

(22). This negative feedback loop involving bile acids and FXR

represents the second bile acid regulatory pathway. CA and TCA

have also been determined to play key roles in the regulation of lipid

metabolism. In other words, these bile acids activate the FXR-SHP

pathway to inhibit Sterol Regulatory Element Binding Protein-1c

(SREBP-1c), a transcription factor that controls hepatic lipid

biosynthesis (23).

FXR expression has been detected in cortical neurons of both

humans and mice. In vitro cultured neurons express FXR in their

nuclei, whereas in vivo neurons express FXR in the cytoplasm (43).

Moreover, FXR is present in various brain tissues, such as the

hippocampus, cerebellum, and frontal cortex. Experimental data

indicate that CDCA and DCAmay downregulate hippocampal FXR

expression, which in turn increases the level of brain-derived

neurotrophic factor (BDNF), thereby exerting anti-depressant

effects (24). However, CDCA exerts anti-depressant actions in the

mouse prefrontal cortex by upregulating FXR expression to inhibit

NOD-like receptor protein 3 (NLRP3) inflammasome activation

and increase GluA1 levels (26, 27), highlighting the diverse regional

effects of bile acid-FXR interactions in the brain. Additionally,

CDCA binding to FXR in the hippocampus of AlCl3-treated rats

can also enhance insulin sensitivity (25).
3.2 TGR5

TGR5 is a G protein-coupled receptor implicated in bile acid

metabolism (6)and is activated by hydrophobic bile acid LCA,

which has the highest affinity for TGR5 among other bile acids

such as DCA, CDCA, and CA (6). TGR5 is abundantly expressed in

various tissues and cells, including the intestine, gallbladder, liver

sinusoidal endothelial cells (SEC), etc. (46), and its expression in the

brain has also been gradually recognized (47, 48). It affects glucose

and energy metabolism and plays a role in immune regulation.

Activation of TGR5 signaling in Kupffer cells and SEC has been

noted to promote anti-inflammatory responses. Specifically, CA

principally plays a pro-inflammatory role in Kupffer cells, driving

the production of pro-inflammatory cytokines in the liver through

the TGR5/c-Jun N-terminal kinase (JNK)-dependent pathway (28).

As a protective bile acid, taurine is more likely to bind to TGR5 in

SECs to stimulate endothelial nitric oxide synthase (ENOS) and

prevent oxidative stress-mediated inflammatory reactions (29).

TGR5 has a wide range of functions in the intestine. Hyocholic

acid (HCA) activates TGR5, triggering the secretion of GLP-1 from

intestinal L cells to regulate glucose metabolism (30). Notably, HCA

has been proposed as a biomarker for glucose metabolism disorders

in clinical trials (31). Additionally, only a quarter of GLP-1 enters

the portal vein of the liver. Among them, 10-15% enter the body

circulation to activate GLP-1 receptors (GLP-1R) located in the

terminal bed nucleus, hippocampus, and paraventricular nucleus of
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the hypothalamus (6) or transmit signals to CNS through the vagus

nerve-brainstem-hypothalamus pathway (6).

TGR5 in the brain is chiefly expressed in cortical neurons,

astrocytes, and microglia. Unlike brain FXR, the activation of TGR5

exerts a positive effect on brain function. Known for its

neuroprotective effects, TUDCA has been shown to mitigate cell

apoptosis through activation of the TGR5/Sirtuin3 signaling axis in

neurons (32). Besides, the neuroprotective actions of TUDCA

extend beyond its impact on neurons, as it has also been

documented to regulate neuroinflammation by modulating the

TGR5/cAMP pathway and prevent microglial activation (33).

Similarly, taurocholic acid deoxycholic acid (TCDCA), another

conjugated bile acid, has been observed to possess anti-

inflammatory and immune regulatory properties that mainly

operate within astrocytes. Its actions are mechanistically linked to

the TGR5/threonine kinase (AKT)/nuclear factor kB (NF-kB)
signaling axis and suppressing neuroinflammation (34).

Comparable to the CNS FXR receptor, TGR5 within the CNS also

regulates lipid and energy metabolism. The administration of

taurolithocholate (TLCA), the most potent natural TGR5 agonist,

through intracerebroventricular infusion in mice has been found to

increase fat oxidation and limit fat mass (35). Additionally, three

bile acids, namely DCA, taurine deoxycholic acid (TDCA), and

TCA, target hypothalamic TGR5 to promote energy metabolism

through the sympathetic nervous system (SNS) to reduce fat

content (36).
3.3 PXR, CAR, and VDR

Although there is no specific bile acid ligand that binds with

CAR, PXR, CAR, and VDR can all promote the clearance of

hepatotoxic LCA. Accumulation of LCA leads to activation of

PXR and VDR, and CAR acts as an indirect sensor of bile acids

to transcriptionally regulate the expression of bile acid-related

enzymes and transporters (37). In the intestines, PXR, CAR, and

VDR inhibition of CYP7A1 action occur through the FGF15/FGF19

pathway to maintain BA homeostasis (38).
3.4 S1PR2

S1PR2 has been essentially implicated in promoting

inflammatory responses, with heightened expression levels

observed in the liver. S1PR2 activation by ligands such as TCA,

GCA, Glycodeoxycholic acid (GDCA), TDCA, and TUDCA leads

to membrane trafficking and activation of ERK1/2 kinases, which

results in the nuclear translocation of NF-kB transcription factors.

This nuclear translocation then drives the transcriptional

upregulation of cyclooxygenase-2 (COX-2), an enzyme involved

in hepatic inflammation (39). In addition to its hepatic expression,
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S1PR2 is also abundantly expressed in neurons within the CNS.

Circulating TCA has been theorized to penetrate the CNS and bind

S1PR2 on neurons, potentiating chemokine ligand 2 (CCL2)-

induced neuroinflammation and microglia activation, resulting in

hepatic encephalopathy that is exacerbated by hepatic

dysfunction (40).
4 Signal transduction of bile
acids and their receptors in
patients with anxiety disorders

Clinical studies have reported that in patients with anxiety

disorders, certain metabolically abnormal bile acids excessively

activate FXR and promote the secretion of FGF19 in intestinal

cells. The latter enters the brain through systemic circulation and

participates in the neuroinflammatory process, thereby promoting

anxiety (49). A large number of studies have consistently

demonstrated that anxiety related to abnormal bile acid

metabolism is frequently accompanied by intestinal diseases (7, 8,

10, 50), particularly irritable bowel syndrome (IBS). Therefore, it is

essential to emphasize that changes in bile acids are closely related

to anxiety disorders in IBS patients. Excessive CA and DCA affect

the expression of TGR5 in colonic mucosa, activate the TGR5-JNK

pathway of intestinal epithelial cells, and cause an abnormal

number and distribution of cell connections, leading to damage to

the intestinal mucosal barrier and increased permeability. On the

other hand, activating the TGR5/5-hydroxytryptamine (5-HT)

signaling axis of intestinal enterochromaffin cells conduces to

visceral hypersensitivity, which is particularly relevant to the

occurrence of IBS (51, 52). These effects of intestinal mucosal

barrier impairment and visceral hypersensitivity due to the

influence of the gut-brain axis ascend along the afferent nerves in

the intestine to the central nervous system, affecting the release of 5-

HT and g-aminobutyric acid, thereby exacerbating anxiety in IBS

patients. Indeed, compelling evidence suggests that bile acids affect

anxiety through different pathways (53). As previously mentioned,

FXR and TGR5 are the most extensively researched and distinctive

receptors of bile acids. These two receptors are widely expressed and

play a crucial role in the liver-gut axis and brain. In light of the

discussions in Sections 3.1 and 3.2, this article exclusively focused

on anxiety and offered a more comprehensive explanation of the

mechanisms by which bile acids and their receptor signaling

pathways influence anxiety.
Frontiers in Endocrinology 07
4.1 Bile acids transmit signals that affect
anxiety via the direct pathways

According to earlier studies, unconjugated bile acids such as

CA, DCA, and CDCA (54) can diffuse across the BBB in a

concentration-dependent manner. At the same time, experimental

studies have identified a positive correlation between the levels of

CA, CDCA, and DCA in the brain and their serum levels (18). At

high concentrations (≥1.5 mM), bile acids can function as

detergents to dissolve endothelial cell membranes and thus

disrupt the lipid layer of the BBB (16). At low concentrations

(0.2-1.5 mM), bile acids enhance BBB permeability by a rac1-

dependent phosphorylation mechanism related to tight junction-

associated proteins (55)and diffuse into the brain. Conjugated bile

acids require active transport across the BBB with the help of

transport proteins such as NTCP, OATP, OSTa/b, and BSEP in the

blood-brain barrier and choroid plexus. This is ascribed to the

presence of both hydrophilic hydroxyl and carboxyl groups and

hydrophobic methyl groups (17, 56, 57). BAs interact with FXR and

TGR5 in the brain through the aforementioned mechanisms.

Although the primary objective of this process is to transport

excess cholesterol from the brain to the circulatory system (58),

BAs also affect brain functions such as emotions (58). The

regulation of emotions is fundamentally dependent on different

parts of the brain cortex, such as the prefrontal cortex and

hippocampus. Of note, different bile acid ligands and receptors

have varying effects when acting on different parts (Table 2 and

Figure 2).

CDCA activates FXR in hippocampal neurons after diffusing

through the BBB. This activation inhibits the activity of the cAMP

response element-binding protein (CREB) and the expression of

BDNF (25). The former is a transcription factor that regulates gene

transcription and is an important transcription element necessary

for long-term memory and neuronal survival. Furthermore, it can

regulate the transcription and expression of BDNF and induce

anxiety-like behavior. Contrastingly, the latter is a protein with

neurotrophic effects that can enhance learning and memory

abilities. It is also a downstream molecule of CREB and affects

anxiety and other mental illnesses. Studies have evinced that CREB

and BDNF expression levels are down-regulated in the

hippocampus of rats with anxiety-like behavior (59, 60),

suggesting that the overactivation of FXR in hippocampal

neurons by excessive CDCA may target and inhibit the CREB/

BDNF pathway via a CREB-dependent mechanism to impair neural

function and promote anxiety.
TABLE 2 Different bile acids transmitting signals to affect anxiety.

Bile Acid Ligands Cellular Localization Pathways Mechanisms References

CDCA Hippocampal neurons FXR/CREB/BDNF CREB dependency (25, 59, 60)

CA Prefrontal cortex FXR/NLRP3/AMPARs Synaptic plasticity (27, 61, 62)

INT-777 Microglia TGR5/cAMP/PKA/CREB Microglia activation (63–66)

TUDCA
Hippocampal neurons TGR5/NF-kB/BDNF Neuroprotection (67–71)

Astrocyte TGR5/AKT/NFkB Neuroinflammation (34, 72–75)
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CA, a natural ligand of FXR (76), can activate FXR in the

prefrontal cortex (PFC) and suppress the expression of NLRP3

inflammasome, thereby restoring the level of a-amino-3-hydroxy-

5-methyl-4-isoxazole-propionic acid receptors (AMPARs) (27).

NLRP3 is an inflammasome sensor protein that aggravates

anxiety-like behavior by inducing the activation of microglia in

PFC (61, 62). It is noteworthy that NLRP3 also participates in long-

term potentiation (LTP) mediated by AMPARs (77), which are

tetramers composed of four homologous core subunits. The

dynamic expression of AMPARs in the postsynaptic membrane is

associated with LTP. Their synaptic transmission efficiency is a

crucial factor in the LTP process that is responsible for synaptic

plasticity. The weakening of this efficiency can impair LTP (78),

reducing synaptic activity and quantity, especially in the PFC, which

can cause anxiety (79, 80). It is evident that CA activates the

prefrontal cortex FXR and dynamically balances anxiety via the

NLRP3 inflammasome/AMPARs signaling pathway.

INT-777 is a modified bile acid analog that acts as a specific

TGR5 agonist. The activation of the TGR5-cAMP-protein kinase A

(PKA) axis exerts an anti-inflammatory effect on microglia, which

in turn promotes the phosphorylation of the target protein CREB.

The cAMP/PKA/CREB signaling pathway is closely associated with

anxiety (63–66). The anti-anxiety effect of INT-777 is elicited

through the activation of microglial cells, which modulate the

TGR5/cAMP/PKA/CREB axis.

TUDCA is an agonist of TGR5 and confers neuroprotective

effects on the central nervous system. It activates TGR5 in

hippocampal neurons to mediate NF-kB/BDNF signaling and

mitigate neuronal apoptosis (67). NF-kB is a transcription factor

that swiftly responds to harmful stimuli and is highly expressed in

inflammatory reactions (68). Its expression is negatively correlated

with BDNF expression in hippocampal neurons and impairs

neuronal development and synaptic plasticity (69–71), resulting

in anxiety-like behavior.

TUDCA is known to activate the TGR5/AKT/NF-kB signaling

pathway in astrocytes in the cerebral cortex (34). AKT, also referred

to as protein kinase B, is a widely expressed protein in the cerebral

cortex with a molecular weight of approximately 60 kDa (72). Its

upregulation in astrocytes is associated with anxiety-like behavior in

mice (73). Moreover, it can lead to NF-kB phosphorylation and

participate in the occurrence and development of anxiety disorders

(74, 75). TUDCA regulates the TGR5/AKT/NFkB signaling

pathway through astrocyte-mediated inflammatory processes,

thus playing a role in anxiety.
4.2 Bile acids transmit signals affecting
anxiety via indirect pathways

In addition to direct pathways, bile acids can also affect anxiety

via indirect pathways. As aforestated, bile acids initiate the FXR-

FGF19 and TGR5-GLP-1 pathways following their release into the
Frontiers in Endocrinology 08
intestine to transmit signals to the central nervous system. This

section aimed to focus on the mechanisms by which these two

pathways affect anxiety in the brain (Figure 3).

Activation of FXR by fasting serum CDCA has been shown to

independently modulate FGF19 in clinical studies (81, 82). FGF19 is

a member of the FGF family that is predominantly expressed in the

intestinal epithelial cells located at the terminal ileum (83, 84). FGFs

are widely distributed throughout the central nervous system and

are known to play a central role in neuronal function, development,

and metabolism. Recent studies have revealed that FGFs have a

significant impact on the occurrence and development of mental

illnesses such as anxiety disorders, depression, schizophrenia,

bipolar affective disorder, etc., and are anticipated to serve as

novel biomarkers for the diagnosis and prognosis of mental

illnesses (85, 86). The intestinal FXR-FGF19 complex partially

diffuses into the hepatic portal vein and binds with the auxiliary

receptor b-Klotho in the liver to activate FGFRs, thereby mediating

the negative feedback pathway of bile acids. The remaining part of

the complex subsequently circulates throughout the body and binds

with FGFRs of the brain. Among the four types of FGFRs, FGFR4 is

mainly distributed in the hypothalamus (87) and cholinergic

neurons (45) in the medial habenula, with a lower proportion of

b-Klotho receptors (88). FGFR4 mainly participates in emotional

regulation (89). An unbalanced FGFs/FGFRs system can cause

g lucose metabol i sm disorders , neura l inflammat ion ,

hypothalamic–pituitary–adrenal axis hyperfunction, BBB damage,

neuroplasticity reduction, neuronal apoptosis, etc., which affect the

structure and function of the cerebral cortex, hippocampus,

hypothalamus, pituitary and other tissues, ultimately resulting in

emotional disorder (89). Among them, aberrant glucose

metabolism is closely related to anxiety; that is, insulin resistance

may play a pivotal role in the development of emotional disorders

(90–92). Similarly, HPA axis dysfunction caused by endocrine

disorders is an inducing or aggravating factor for anxiety (93–95).

Recent studies have shown that regulating FGFR can affect BDNF

expression (96) and that the BDNF-TrkB signaling pathway plays

an important role in anxiety (96, 97). The overexpression of serum

CDCA over-activates intestinal FXR receptors, resulting in an

imbalance in the FGFs/FGFRs system that impacts the BDNF-

TrkB signal pathway, which finally culminates in anxiety-

like behavior.

Several studies have indicated that bile acid can stimulate

intestinal TGR5 to release GLP-1, with LCA being the most potent

agent in this process (98–101). GLP-1 is a type of enterotropic insulin

produced by specific intestinal endocrine cells (L cells) and secreted in

large quantities after food intake. It can regulate glucose uptake and

insulin resistance in the brain, thereby improving neuroinflammation

and neurogenesis (102). Additionally, GLP-1 plays a crucial role in

synaptic plasticity and emotion regulation (103) and may be a

potential key regulator of anxiety behavior (104–106). The indirect

TGR5-GLP-1 signaling pathway can interact with GLP-1R in the

brain through systemic circulation to affect central nervous system
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function (6). This interaction can concurrently stimulate CREB/

BDNF to modify brain synaptic plasticity and participate in anxiety

regulation (106). Alternatively, it can regulate anxiety emotions

through the vagus nerve-brainstem-hypothalamus pathway. The

vagus nerve is a regulator of mental illness (107–109), and its

incoming fibers stimulate the monoaminergic brain system in the

brainstem (107), which then plays a key role in anxiety emotions in

the hypothalamus (110).
5 Conclusion and perspectives

Anxiety may be associated with bile acids and their signaling

pathways. Different bile acids and their corresponding receptors

participate in systemic activities, including metabolic and immune

regulation and radiating to tissues and organs such as the brain,

liver, and intestines. Recent years have witnessed a growing body of

research into the effect of bile acids on brain function, providing

valuable insights and opening up new avenues of investigation. Bile

acids can directly bind to bile acid receptors in the brain through the

blood-brain barrier to induce anxiety-like behavior. They can also

form receptor-hormone complexes through the enterohepatic

circulation to enter the systemic circulation and bind to

corresponding hormone receptors in the brain, inducing anxiety.

The mechanism of anxiety disorder is complex and is regulated at

various levels besides brain lesions. Targeting bile acids may be an

efficient approach for exploring the pathological mechanism

underlying anxiety disorders. Despite only specific bile acid

signaling pathways being related to anxiety, this approach can

broaden our understanding of anxiety for the development of

new treatment strategies.
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