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The endometrium is a resilient and highly dynamic tissue, undergoing cyclic

renewal in preparation for embryo implantation. Cyclic endometrial regeneration

depends on the intact function of several cell types, including parenchymal,

endothelial, and immune cells, as well as adult stem cells that can arise from

endometrial or extrauterine sources. The ability of the endometrium to undergo

rapid, repeated regeneration without scarring is unique to this tissue. However, if

this tissue renewal process is disrupted or dysfunctional, women may present

clinically with infertility due to endometrial scarring or persistent atrophic/thin

endometrium. Such disorders are rate-limiting in the treatment of female

infertility and in the success of in vitro fertilization because of a dearth of

treatment options specifically targeting the endometrium. A growing number

of studies have explored the potential of adult stem cells, includingmesenchymal

stem cells (MSCs), to treat women with disorders of endometrial regeneration.

MSCs are multipotent adult stem cells with capacity to differentiate into cells

such as adipocytes, chondrocytes, and osteoblasts. In addition to their

differentiation capacity, MSCs migrate toward injured sites where they secrete

bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and

extracellular vesicles) to aid in tissue repair. These factors modulate biological

processes critical for tissue regeneration, such as angiogenesis, cell migration

and immunomodulation. The MSC secretome has therefore attracted significant

attention for its therapeutic potential. In the uterus, studies utilizing rodent

models and limited human trials have shown a potential benefit of MSCs and

the MSC secretome in treatment of endometrial infertility. This review will

explore the potential of MSCs to treat women with impaired endometrial

receptivity due to a thin endometrium or endometrial scarring. We will provide

context supporting leveraging MSCs for this purpose by including a review of

mechanisms by which the MSC secretome promotes regeneration and repair of

nonreproductive tissues.
KEYWORDS
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1 Introduction

The endometrium is a highly dynamic tissue, undergoing ~400

repeated cycles of proliferation, differentiation, shedding, and

regeneration over a woman’s reproductive lifespan. Cyclic

regeneration of the endometrium is a prerequisite for embryo

implantation and requires hormonal stimulation, inflammation,

angiogenesis, and reepithelization of the uterine lining following

menses (1). The ability of the endometrium to undergo rapid,

repeated regeneration during the proliferative phase, without

scarring, is unique to this tissue and is an absolute requirement

for the establishment of a human pregnancy. The secretory phase of

the endometrial cycle commences after ovulation, during which

time local inflammatory events involving immune cells, cytokines,

and chemokines play a crucial role in decidualization of the

endometrium in preparation for implantation (2).

Embryo implantation is defined as the process by which a

blastocyst adheres to and invades the endometrium, prompting

development of the feto-maternal interface (3). This process

requires a complex crosstalk between a competent embryo and a

receptive endometrium. Endometrial receptivity is acquired during

a specific time frame post-ovulation in the menstrual cycle, when

genotypic and phenotypic changes in endometrial cells result in a

conducive environment for blastocyst implantation. This

timeframe, known as the “window of implantation”, is also

marked by cellular expression of various cytokines, growth

factors, and prostaglandins necessary for synchronized crosstalk

between the blastocyst and endometrium (3, 4). Beyond this

timeframe, the endometrium is considered refractory to

implantation or “nonreceptive”, during which time the embryo

cannot establish contact, and successful implantation will not

occur (4).

Despite significant advancements in assisted reproductive

technologies (ART) over the past few decades, embryo

implantation remains a rate limiting step in achieving success

after in vitro fertilization (IVF). In modern practice, where high

quality (and often euploid) embryos are identified and selectively

transferred, impaired endometrial receptivity may contribute to as

many as two thirds of embryo implantation failures (5). Impaired

regeneration of the endometrium predisposes to a thin

endometrium, which is an important contributor to impaired

endometrial receptivity during IVF cycles (6). Based on a meta-

analysis of 22 studies, 2.4% of women undergoing IVF are affected

by thin endometrium, typically defined as an endometrial thickness

less than 7 mm on transvaginal ultrasound (7). Asherman’s

syndrome is one common cause of impaired endometrial

regeneration and thin endometrium, and is characterized by

intrauterine adhesions causing menstrual abnormalities, infertility,

and/or recurrent pregnancy loss (8). The prevalence of Asherman’s

syndrome varies drastically by subpopulation, ranging from 2.8% to

45.5% among infertile women (9). Most cases result from trauma to

the gravid uterus, with significantly fewer cases resulting from

trauma to the nongravid uterus or genital infections such as

tuberculosis (10). The inflammation and fibrosis caused by these

insults impairs regeneration of the endometrial lining. Thin

endometrium due to any cause also increases with age, with an
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incidence as high as 25% of women undergoing IVF over age

40 (11).

Regardless of the etiology of thin endometrium, it is well

established that embryo transfers performed in the setting of thin

endometrium have decreased implantation and clinical pregnancy

rates (12). A 2014 meta-analysis found that women with an

endometrial thickness < 7.0mm had lower clinical pregnancy

rates than women with an endometrial thickness of 7.0mm and

above (7). More specifically, a retrospective cohort analysis of more

than 40,000 embryo transfers found that clinical pregnancy and live

birth rates decreased with each millimeter decline in endometrial

thickness below 8 mm in fresh IVF-embryo transfer cycles, and

below 7 mm in frozen-thawed embryo transfer cycles (13). In

women who conceive, these pregnancies are subject to impaired

placentation (14) and associated pregnancy complications,

including early spontaneous miscarriage (15), preterm birth (16,

17), low birth weight (16, 17), hypertensive disorders of pregnancy

(16, 18), placental abruption (16) and ectopic pregnancy (15).

Despite the scope of the clinical problem, therapeutic options

for thin endometrium remain extremely limited. Numerous

therapeutic options have been evaluated for thin endometrium;

multiple medication regimens including high dose estradiol,

vitamin E and pentoxifylline, mid-luteal GnRH agonist,

tamoxifen, and sildenafil have been investigated (19), with modest

and varying degrees of success. Immunomodulatory or pro-

inflammatory methods, such as endometrial scratching (20), stem

cell transplant, and intrauterine granulocyte-colony stimulating

factor (G-CSF) instillation have also been employed (19).

However, despite the profound limitations that thin endometrium

imposes on ART and pregnancy outcomes, the optimal therapy for

this condition has not yet been established.

A growing number of studies have explored the potential of

mesenchymal stem cells (MSCs), a specific adult stem cell type, to

treat women with disorders of endometrial regeneration. MSCs are

multipotent adult stem cells with capacity to differentiate into cells

of multiple lineages (21, 22). In addition to their differentiation

capacity, MSCs migrate toward injured sites where they secrete

bioactive factors that modulate biological processes critical for

tissue regeneration (23–25). The MSC secretome has therefore

attracted significant attention for its therapeutic potential in

regenerative medicine, including in the uterus. Our objective

herein is to provide a brief review of MSC biology and explore

the potential of MSCs to treat women with impaired endometrial

regeneration, based on mechanisms elucidated via a growing

number of studies in rodent and human models.
2 Mesenchymal stem cells

Mesenchymal stem cells (MSCs), alternatively known as

mesenchymal stromal cells, are multi-lineage, non-hematopoietic

stem cells with self-renewing properties. First discovered by

Alexander Friedenstein in the 1960s, MSCs are found throughout

multiple adult and fetal tissues including bone marrow, adipose,

dental pulp, umbilical cord, placenta, endometrial tissue, and

menstrual blood (21, 26, 27). MSCs from all tissue sources are
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characterized by the expression of CD29, CD44, CD73, CD105, and

CD166; while lacking hematopoietic stem cell markers such as

CD34 and CD45 (23). MSCs generate various connective tissues

including bone, fat, muscle, and cartilage; and have been found to

generate various other functional cell types including myocytes and

varying subsets of neurons (21, 22). Beyond their capacity to

differentiate into various cell types, MSCs are associated with

multiple endocrine and paracrine functions, including

angiogenesis, homing to areas of inflammation, and systemic

modulation of immune responses – both pro- and anti-

inflammatory in nature, depending on the microenvironment –

via their secretome, including soluble factors, neuropeptides, and

microvesicles (Figure 1) (23–25). Critically, MSCs can cross

allogeneic barriers, permitting MSCs derived from any patient to

be used as an off-the-shelf technology for third party recipients (25).

Isolation of MSCs for expansion or direct use can be

accomplished through minimally invasive procedures including

bone marrow aspiration, abdominoplasty, lipoaspiration, and

collections of other discard tissues such as the placenta and

menstrual blood (28, 29). From here, the cells can be used as a

heterogeneous population or can be enriched for specific

population(s) of MSCs. Together with their ease of isolation and

capacity to cross allogeneic barriers, this further reduces safety and

ethical concerns toward MSC use, adding to the MSCs’

clinical appeal.

To date MSCs are listed in use in over two thousand clinical

trials (clinicaltrials.gov), capitalizing on the aforementioned

properties of MSCs – primarily their ability to home to areas of

inflammation, reduce inflammation locally and/or systemically, and

promote tissue regeneration (23, 25, 30–33). Beyond these currently

listed applications, MSCs are being studied as potential therapy in

conditions such as cancer, diabetes mellitus, and end-stage liver
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disease. In the subsequent sections we will discuss how MSCs

modulate the immune system’s inflammatory response and

promote tissue regeneration, and we will also discuss emerging

uses of MSCs in endometrial dysfunction.
2.1 Homing of MSCs

Migration of MSCs from either their microenvironmental niche

or site of administration to the target tissue or organ is a

fundamental characteristic of MSCs that facilitates their response

to inflammation and tissue regeneration. MSC homing, which refers

to MSC migration toward a target tissue, is facilitated by an array of

cytokines and chemokines released at the site of inflammation (23,

28). MSCs express a wide array of cytokine and chemokine

receptors permitting their migration and response to rapidly

changing microenvironments (34, 35). Of note, MSCs express

CXCL12, the receptor for SDF1a, permitting their chemo-

attraction to sites of inflammation (36). Beyond SDF1a, other yet
undefined cytokines are believed to be part of this chemoattraction;

these cytokines could therefore be targeted for direct therapy, such

as in the case of immune regulation, which will be discussed below,

or as a mechanism to deliver another therapy, e.g., drug delivery

(37). Once at their site, MSCs can be directly involved in tissue

regeneration, but MSCs predominantly exert their function via their

secretome (24, 25, 38). The efficiency of exogenous MSC

mobilization to the target tissue significantly impacts the

therapeutic efficacy of these cells.

Despite its importance, MSC mobilization is very inefficient

(<10%), leading to debate over optimal routes of administration to

improve mobilization for different applications (38). Local

administration of MSCs to the target organ or tissue is one route
A

B

C

FIGURE 1

MSCs for treatment of endometrial disorders. (I) Mesenchymal stem cells (MSCs) can be isolated from various adult tissues, including bone marrow,
adipose, placenta, umbilical cord, dental pulp, endometrial tissue, and menstrual blood for autologous use. These cells can be directly administered
to a patient with or without minimal modification or can be expanded in vitro prior to administration. (II) Once ready for injection, the MSCs can be
introduced systemically (i.e. intravenously) or locally to exert their responses. (III) MSC effects can be due to a combination of their (A) differentiation
potential, (B) secretome, and (C) licensing to an anti-inflammatory phenotype. These functions in conjunction make MSCs an attractive candidate for
treating endometrial disorders. Figure created with Biorender.com.
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that may enhance MSC effect. However, this mode of delivery of

MSCs can be highly invasive, and the MSCs often escape from the

site of administration (39). Intravenous administration has also

been suggested; however, most of the cells administered

intravenously are entrapped in the lung due to the MSCs’ large

size and their expression of adhesion molecules such as VCAM1

and VLA-4 which can bind lung epithelial cells, with estimates of

only 1% of the cells reaching their target organ (40–42). The half-life

of these entrappedMSCs is short – under four days – supporting the

role of the MSC secretome in the observed clinical effects of MSCs

(43–45).

Different molecular engineering approaches have been

employed to increase MSC homing to specific sites, including

overexpression of cytokine receptors and downregulation of

adhesion molecules (46–51). Another approach shown to enhance

MSC homing is magnetic guidance to the target tissue, whereby the

MSCs are labeled with magnetic carbon nanotubules prior to

administration (52). Notably these studies have largely found

decreased lung entrapment and increased homing of MSCs to the

target tissues without significant effect on the viability of the cells or

their capacity to differentiate (48, 52). It is crucial to keep in mind

that when it comes to enhancing the homing of MSCs and their

response, the approach will differ depending on the target organ or

tissue, the specific disease being treated, and the source and pre-

treatment of the MSCs: understanding these nuances is key to

developing effective treatments and improving patient outcomes.
2.2 MSCs as endocrine and
paracrine mediators

As described above, there is little evidence to attribute the basis

of MSC clinical effect to their tissue engraftment: only a small

percentage of MSCs reach their target organ, and even this small

population does not survive long-term (24). Thus, the primary

mechanism of the MSCs is likely their release of soluble factors,

including cytokines and microvesicles (MVs).

Among classes of MVs, exosomes are the most investigated.

Exosomes are MVs of 30-150 nm in diameter, enriched in proteins,

miRNA, lipids, and other regulatory molecules; they have been

identified in a wide array of body fluids such as blood (including

plasma and serum), urine, saliva, cerebrospinal fluid, pleural

effusion, and ascites; and are considered representative of the cells

from which they were derived [discussed in (53)]. Due to their

source-cell representation, circulating MVs are under investigation

for diagnostic purposes, evaluating for biomarkers for the presence

and type of aberrant cells – including malignancy, injury, and other

disorders (53–56). It thus stands to reason that the MVs derived

from MSCs of different source tissues, and different treatments and

exposures in vitro, would differ from one another (57, 58). Due to

their similarity in effect with MSCs themselves, MSC-derived

exosomes (MSC-Exos) are under clinical investigation for

treatment of similar pathologies (59).

MSC-Exos have been associated with anti-inflammatory and

reparative functions (58, 60–63). Over 2000 proteins have been

identified within MSC-Exos (57, 58). These include cytokines (e.g.
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IL-10, IL-6, TGF-b, TNF-a), chemokines (e.g. MCP1, CXCL14,

MCP3, SDF-1a), and trophic factors (e.g. FGF, HGF, IGF1, VEGF)

(58). Like their parent cells, MSC-Exos can suppress effector T cells,

dendritic cell (DC) maturation, M1 macrophages, and natural killer

cells (NKs); while enhancing regulatory T cells and M2

macrophages (59, 64–66). Similarly, these cargo contribute to

MSC-Exos regenerative capacity, enhancing osteogenesis,

chondrogenesis, and angiogenesis (63, 67–69). It should be noted,

however, that both direct and indirect forms of intercellular

communication between MSCs and target cells have been

reported: for example gap junctional intercellular communication

(GJIC) for direct intercellular communication, and release of MVs

for indirect intercellular communication (70–73). Both of these

means of communication, however, have the potential to transfer

similar cargo, including proteins and miRNAs to target cells (74).
2.3 Immune response modulation by MSCs

Within their microenvironment, MSCs can be licensed, or

educated, into anti-inflammatory cells (32, 75). While the process

of MSC licensing is poorly defined, specific factors are known to be

necessary – namely IFNg, in the presence of other pro-

inflammatory cytokines (e.g. TNF-a, IL-1a, IL-1b) (76–78).
The immunomodulatory properties of MSCs were not well

understood until recent studies showed that MSCs could impair

the function of both innate and adaptive immune system cell

proliferation (79, 80). These studies paved the way for scientists to

shift their focus from the MSCs’ multiple-lineage and regenerative

properties toward understanding the immune regulator capacity of

these cells. MSCs regulate the immune system response through the

release of MVs and soluble factors that impact the ability of the

innate and adaptive immune cells such as myeloid DC and T-cells to

respond to an infection (76, 81, 82). MSCs impair DC function by

preventing their transition from immature to mature DCs, thus

preventing presentation of antigen to naïve T-lymphocytes and

decreased release of pro-inflammatory cytokines (e.g. TNF-a) (82,
83). MSCs also decrease NK cytotoxicity through decreased IFNg
release and decreased NK proliferation, in part through

downregulating expression of NKp30 and NKG2D in NK cells

(76, 84). MSCs further regulate the immune system by impairing

the inflammatory response induced by the cells of the adaptive

immune system. For example, MSCs inhibit T-lymphocyte

differentiation by increasing IL-4 and decreasing IFNg secretion

(76). The decrease of pro-inflammatory cytokines allows T-

lymphocytes to differentiate toward anti-inflammatory Th2 rather

than pro-inflammatory Th1 phenotype (43, 76, 85). MSCs also act

onmacrophages by polarization from pro-inflammatory M1 to anti-

inflammatory M2 phenotype (64, 86, 87). These findings have

relevance to MSC function in the uterus, as MSCs isolated from

human endometrium and menstrual fluid have immunomodulatory

properties (88). Thus, it has been postulated, although unproven,

that similar interactions between MSCs and uterine immune cells

(e.g. uterine NK (uNK) cells and macrophages) play a role in

promoting the immune microenvironment required for

endometrial regeneration (89).
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2.4 Regenerative potential of MSCs

MSCs, in addition to their crucial role in immune modulation,

also play an essential role in maintaining host tissues’ homeostasis

by replacing dead and dysfunctional tissue. The capacity of MSCs to

sustain host homeostasis through the repair and replacement of

dead and dysfunctional cells is predominantly attributed to their

secretome, as discussed above. The effectiveness of MSC response to

inflammation or injury is conditioned by their ability to home to the

site of insult or injury. However, once MSCs are recruited to the site

of inflammation, they can directly or indirectly interact with the

affected tissue by GJIC or paracrine factors, as described earlier.

Local inflammatory cytokines (e.g. TNF-a, IFNg) signal MSCs to

release immunomodulatory, pro-angiogenic, regenerative, and

neuroprotective factors including TGFb1, VEGF, HGF, SDF-1,

IGF-1, and angi-1 (43, 62, 90, 91). These effects can be

accomplished via the MSCs’ endogenous cargo or can be

engineered to enhance these effects (21, 25, 92, 93). It is worth

noting that MSCs are also being investigated as a drug delivery tool

for gene therapy associated with these and other functions (73, 94–

96). The self-renewing capacity of MSCs permits the MSCs to act as

self-maintaining drug delivery vehicles at a site of inflammation so

long as the microenvironment remains permissive to the MSCs (43,

97, 98).

Although research to date predominantly attributes MSCs’

effects to their secretome rather than cellular replacement, that is

not to say that such function is not possible. MSCs have been found

to generate osteocytes, adipocytes, chondrocytes, myocytes, and

functional neurons in vitro (21, 22, 99–101). Numerous groups are

investigating ways to accomplish similar direct reprogramming of

MSCs and other cells in vivo, for example differentiating fibroblasts

into neurons (102). With respect to endometrial regeneration,

though paracrine mechanisms predominate, human in vitro

studies indicate that MSCs may contribute as cellular progenitors

of human endometrial stromal fibroblasts and decidual cells

(103, 104).
2.5 Endometrium as a model of wound
healing - role of MSCs

Menstruation, defined as shedding of the superficial (i.e.,

functionalis) layer of the endometrium in the absence of embryo

implantation, occurs in only a restricted number of mammalian

species: humans and certain non-human primates, the spiny mouse,

several bat species, and elephant shrews (105). The human

endometrium rapidly regenerates an entire tissue layer post

menstruation, exhibiting multiple parallels with processes required

for cutaneous wound healing (e.g. inflammation, tissue remodeling,

fibroblast migration, and re-epithelialization) (106). Indeed,

menstruation may be considered a model of tissue “self-damage”

(107) followed by rapid, repeated regeneration without fibrosis in

healthy women. The remarkable ability of the healthy endometrium

to regenerate without fibrosis and scarring therefore lends itself as a

unique model of scar-free wound healing (108).
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In general, scar formation in repair of damaged tissues (e.g.

skin) involves transformation of stromal cells into myofibroblasts, a

key mechanism underlying fibrosis and scar formation. In contrast,

post-menstrual repair of the endometrial “wound” occurs via tissue-

specific mechanisms that prevent fibrosis and result in an entirely

renewed and scarless functionalis layer. These mechanisms include:

1) unique ECM interactions mediating cell migration and re-

epithelialization of the endometrium (109), and 2) soluble factors

secreted in utero during menstruation which prevent

transformation of endometrial stromal cells into myofibroblasts

(107). Re: the latter mechanism, whether MSCs are one source of

these soluble factors responsible for scar-free, post-menstrual cyclic

endometrial repair in healthy women is not definitively known.

Indeed, the endometrium itself, as well as menstrual fluid, are

established sources of MSCs, among other stem/progenitor cell

types, which secrete bioactive soluble and insoluble factors for

potential clinical application in cutaneous wound healing

[(reviewed in (88)]. MSCs, including those isolated from human

endometrium, are thus an emerging therapeutic agent for

addressing the inflammation, proliferation, and remodeling

aspects of cutaneous wound healing – including reduced scar

formation (88, 110–113). An expanding body of literature now

demonstrates similar MSC and MSC-Exos-enhanced mechanisms

in the endometrium, modulating inflammation, angiogenesis, and

tissue remodeling. For these reasons, MSCs are under investigation

in the treatment of disorders of endometrial regeneration, as seen in

women with Asherman’s syndrome and thin endometrium

refractory to exogenous estrogen. The following sections will

expand on current research evaluating therapeutic value of MSCs

on endometrial repair.
3 MSCs for treatment of thin
endometrium - rodent studies

The particular ability of MSCs to cross allogeneic barriers has

permitted delivery of human MSCs to rodents to study effects on

endometrial regeneration and receptivity. Thus, an ever-growing

number of studies have been conducted in rodents to explore the

efficacy of MSCs, isolated from various rodent and human tissue

sources, in treating thin endometrium. In the section below, we

summarize a number of recent and pertinent studies which

demonstrate various endometrial injury models, MSC sources,

modes of delivery, and morphologic and functional outcomes of

interest. As noted earlier, limited engraftment in recipient tissues and

short retention time are major obstacles in MSC-based therapies.

Several methods of MSC delivery have thus been tested in rodent

models, including systemic delivery by tail vein injection, local

injection directly into the uterus, or administration via a matrix

system. These studies, summarized in Table 1, largely utilize three

models to simulate endometrial injury (although other models have

been described); injection of ethanol to achieve a thin endometrium,

and mechanical or electrocoagulation injury of the endometrial

surface to achieve the fibrosis typically seen in women with

Asherman’s syndrome.
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TABLE 1 MSC effects on thin endometrium: rodent studies.

Mode of Delivery MSC
Type

Species of MSC Origin/
Recipient Species

Outcomes Reference

Systemic injection BM-MSC Rat/rat -↑endometrial thickness
-↑anti-inflammatory cytokines
-↓pro-inflammatory cytokines

Jing et al. (114)

Systemic injection BM-MSC Rat/rat -↑endometrial thickness, gland, and vessel number
-↑expression of HOXA10 and LIF

Xia et al. (115)

Systemic injection BM-MSC Rat/rat -↓fibrosis
-↑pregnancy rate

Gao et al. (116)

Systemic injection BM-MSC Rat/rat -↑endometrial thickness, gland number
-↓fibrosis

Xiao
et al. (117)

BM-MSCs administered systemically,
MSC-EVs administered locally

BM-MSC
+MSC-EVs

Human/rat -↑endometrial thickness, gland number, angiogenesis
-↓fibrosis
-↑endometrial receptivity
-↑in cumulative number of pups

Mansouri-Kivaj
et al. (118)

Systemic injection MenSC Human/rat -↑endometrial thickness, vessel density
-↑fertility

Zhang
et al. (119)

Systemic injection UC-MSC Human/rat -↑ESC proliferation
-↑endometrial thickness, gland number
-↑implantation sites
-↓fibrosis

Zhang
et al. (120)

Local administration BM-MSC Rat/rat -↑endometrial thickness, gland number
-↑endometrial receptivity markers
-↑anti-inflammatory cytokines
-↓pro-inflammatory cytokines

Zhao
et al. (121)

Local administration BM-MSC Rat/rat -↑endometrial thickness
-↓fibrosis
-↑endometrial receptivity markers
-↑ fetal number

Wang
et al. (122)

Local (myometrial) injection AMSC Human/rats -↑endometrial thickness, gland number
-↑angiogenic and anti-inflammatory cytokines
-↓pro-inflammatory and pro-fibrotic cytokines

Gan et al. (123)

Local administration ASC Rat/rat -↑endometrial thickness, gland number
-↑receptivity markers, ERa, PR
-↑angiogenesis
-↑fertility

Shao
et al. (124)

Local administration BM-
MSC-exos

Human/rat -↑endometrial thickness, gland number
-↓fibrosis
-↑epithelial proliferation
-↑stromal cell migration

Tan et al. (125)

Local administration UMSC/
UMSC-exos

Rat/rat -↑proliferation and vascularization
- ↓fibrosis (UMSC-exos only)

Saribas
et al. (126)

Local administration UC-MSC/
UC-
MSC-exos

Human/rat -↑endometrial thickness, gland number, vessel
density
-↑LIF
-↓fibrosis
-↑pregnancy rates
-↑HESC migration and proliferation in vitro

Zhang
et al. (127)

Systemic injection and
local administration

BM-MSC Rat/rat -↓fibrosis
-↑gland number

Wang
et al. (128)

Systemic injection vs.
local administration

BM-MSC Rat/rat -↑endometrial thickness, vessel, and gland number
-↓fibrosis
-↑receptivity markers (systemic>local)

Guo
et al. (129)

Local administration on day 1,
followed by 1-3 systemic injections

UC-MSC Human/rat -↑gland and blood vessel density
-↑implantation rates
-↓fibrosis

Zhang
et al. (130)

(Continued)
F
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3.1 Systemic MSC delivery

The earliest rodent studies to determine the effect of MSCs on

endometrial regeneration were performed with systemic delivery of

MSCs after inducing endometrial injury. These studies, summarized

below, utilized MSCs from various sources and largely

demonstrated improvement in endometrial thickness, gland

number, and angiogenesis, as well as decreased fibrosis. Studies

differ in terms of time point(s) studied post injury tracking of MSCs

to the uterus, and assessment of fertility; those that perform mating

studies largely demonstrated improvement in fertility in animals

receiving systemically delivered MSCs.

In one of the earliest studies using a rat model of ethanol-

induced endometrial injury (114), recipients of bone marrow-

derived mesenchymal stem cells (BM-MSCs) post injury had a

significantly thicker endometrium after 3 estrous cycles than saline

controls. BM-MSC recipients also demonstrated increased

expression of endometrial receptivity markers integrin avb3 and

leukemia inhibiting factor (LIF), increased expression of

endometrial bFGF and IL-6 mRNA (anti-inflammatory
Frontiers in Endocrinology 07
cytokines), and decreased expression of TNF-a, IL-1b mRNA

(pro-inflammatory cytokines), indicating immunomodulation as

one likely mechanism underlying reparative responses post

endometrial injury. Subsequent studies found promising results

after systemic BM-MSC delivery in terms of homing of cells to the

uterus and improvements in fibrosis and endometrial morphology

(115, 116). Mating studies demonstrated improved fertility in BM-

MSC recipients, though not restored to that of uninjured controls

(116). Interestingly, although BM-MSCs were localized in the

endometrium of recipients up to 3 estrous cycles (115) or 3 weeks

(116) post BM-MSC injection, none were noted in pregnant uteri of

BM-MSC recipients (116), highlighting functional improvements

despite short-lived retention of cells in the target tissue.

Given the well-established role of MSC extracellular vesicles

(EVs) in mediating tissue repair, recent studies have characterized

the role of BM-MSC-EVs in endometrial repair (117, 118). Xiao

et al. (117) demonstrated an exosome-mediated repair process in a

rat model of Asherman syndrome; improvements in morphology

(decreased fibrosis, increased endometrial thickness and gland

number) in BM-MSC recipients were mediated by exosomal miR-
TABLE 1 Continued

Mode of Delivery MSC
Type

Species of MSC Origin/
Recipient Species

Outcomes Reference

Systemic and local administration UC-
MSC-EVs

Human/rat -↓fibrosis, pro-inflammatory cytokines
-↑gland number
-↑VEGF

Ebrahim
et al. (131)

Systemic vs. local administration BM-MSC
or ASC

Rat/rat -Local ASC administration provided greatest
improvement in endometrial thickness and fibrosis

Monsef
et al. (132)

Matrix (collagen scaffold) BM-MSC Rat/rat -↑endometrial thickness, neovascularization
-↑pregnancy rate

Ding
et al. (133)

Matrix (hyaluronic acid) HP-MSC Human/rat -↑endometrial thickness, gland number
-↓ fibrosis
-↑implantation sites

Lin et al. (134)

Matrix (acellular amniotic matrix) UC-MSC Human/rat -↑endometrial thickness, gland number, anti-
inflammatory cytokines
-↓pro-inflammatory cytokines

Wang
et al. (135)

Matrix (Matrigel microspheres) UC-MSC Human/rat -↑endometrial thickness, gland number, blood vessel
density
-↑pregnancy rate

Xu et al. (136)

Matrix
(PF-127)

UC-MSC Human/rat -↑endometrial thickness, gland number, angiogenesis Zhou
et al. (137)

Matrix (PPCNg) AMSC Human/rat -↑endometrial thickness, gland number
-↓fibrosis
-↑pregnancy rate

Huang
et al. (138)

Matrix (hyaluronic acid) BM-
MSC
secretome

Human/rat -↑endometrial thickness, gland number
-↑implantation sites

Liu et al. (139)

Matrix
(collagen scaffold)

UC-
MSC-exos

Human/rat -↑endometrial thickness, gland number
-↑implantation sites
-↓fibrosis
-↑macrophage M2 (anti-inflammatory) phenotype

Xin et al. (140)
AAM, acellular amniotic matrix; AMSC, amniotic mesenchymal stem cell; ASC, adipose-derived mesenchymal stem cell; BM-MSC, bone marrow-derived mesenchymal stem cell; CS, collagen
scaffold; eMSC, endometrial-derived mesenchymal stem cell; ESC, endometrial stromal cell; EVs, extracellular vesicles; Exos, exosomes; HA, hyaluronic acid; HESC, human endometrial stromal
cell; HOXA10, Homeobox A10; HP-MSC, human placenta derived mesenchymal stem cell; LIF, leukemia inhibitory factor; Men-SC, menstrual blood-derived mesenchymal stem cell; MSC-EVs,
mesenchymal stem cells-extracellular vesicles; PF-127, Pluronic F127; PPCNg, polyethylene glycol citrate-co-N-isopropylacrylamide mixed with gelatin; UC-MSC, umbilical cord-derived
mesenchymal stem cell; UMSC, uterine MSC; UMSC-exo, uterine MSC-derived exosomes; VEGF, vascular endothelial growth factor ↑, increased; ↓, decreased.
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340. In a subsequent study, direct comparison between recipients of

BM-MSCs vs. BM-MSC-EVs revealed similar improvements in

endometrial thickness, gland numbers, and fibrosis, however

improved fertility (number of deliveries and cumulative number

of pups) was only noted in BM-MSC recipients (118). Thus, though

EVs have emerged as a promising “off-the-shelf” cell-free therapy,

further investigation is warranted to produce a dose and

subpopulation of EVs that will elicit functional improvement

comparable to the MSCs from which they were derived.

Studies using alternative sources of MSCs also yield promising

results in rodent endometrial injury models. In a study exploring the

therapeutic potential of human menstrual blood-derived MSCs

(MenSCs), Zhang et al. demonstrated short term retention (up to

7d) of human MSCs in mouse recipient tissues, as well as increased

endometrial thickness and microvessel density relative to saline

controls (119). Improved fertility was noted with increased

conception rates as well as a larger number of embryos. More

recently, Zhang et al. employed human umbilical cord-derived

MSC (UC-MSCs) as an alternative MSC source (120) and similarly

found significant increases in endometrial thickness, gland number,

and implantation sites, although not restored to that of uninjured

controls. Complementary in vitro studies demonstrated the capacity

of UC-MSCs to migrate toward injured rat endometrial stromal cells

(ESCs) and enhance ESC proliferation (120), while bioinformatics

analyses noted reconstruction of ECM, regulation of inflammatory

molecules, cell proliferation and apoptosis as pathways associated

with UC-MSC-mediated repair processes. All well-established

properties of MSCs, these studies elucidated candidate mechanisms

underlying UC-MSC-induced endometrial repair.
3.2 Local MSC delivery

Not long after the earliest studies demonstrating reparative

effects of BM-MSCs delivered via tail vein (114), subsequent

studies investigated the effect of local intrauterine MSC delivery

on endometrial repair in endometrial injury models. Using various

sources of MSCs, these studies demonstrated many of the same

improvements after local transplantation that were seen with

systemic administration, including increased endometrial

thickness, gland number, vessel density, decreased fibrosis, and

improved fertility.

In rat models of endometrial injury, two studies investigating

effects of local intrauterine BM-MSC delivery demonstrated

significantly increased endometrial thickness and higher

expression of receptivity markers integrin avb3 and LIF in BM-

MSC recipients (121, 122). Zhao et al. (121) also found

downregulated expression of proinflammatory cytokines TNF-a
and IL-1b, and upregulated anti-inflammatory cytokines bFGF and

IL-6 in BM-MSC recipients, suggesting immunomodulatory

mechanisms similar to those in rats treated systemically with

MSCs. Mating studies by Wang et al. (122) demonstrated a

significantly higher number of fetuses in the injured horn of BM-

MSC recipients than in control animals receiving PBS. These

studies provided support for local intrauterine BM-MSC
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administration to promote endometrial regeneration, potentially

via immunomodulatory effects, and restore fertility after

endometrial injury.

Looking at alternative MSC sources, Gan et al. performed one of

the few studies to date exploring the use of human amniotic

mesenchymal stromal cell (AMSC) transplantation in a rodent

model of Asherman syndrome (123). In addition to improved

thickness and gland numbers, the endometrium of AMSC

recipients had significantly decreased expression of pro-

inflammatory (e.g. TNF-a) and pro-fibrotic (TGF-b and

COL1A1) cytokines, and increased expression of anti-

inflammatory and angiogenic cytokines. This was the first study

to demonstrate a role for AMSCs in endometrial regeneration;

however, only short-term effects at one week post-transplant were

studied. Fertility studies were not performed, thus their overall

efficacy compared to more frequently tested sources of MSCs

remains to be established.

More recently, Shao et al. explored the therapeutic potential of

rat adipose-derived stem cells (ASCs) in a rat model of ethanol-

induced endometrial injury (124). At 30 days, recipients of

intrauterine ASCs had improved endometrial morphology

including increased microvessel density, as well as increased

expression of estrogen receptor (ER)a, ERb, progesterone

receptor (PR), LIF and integrin avb3 protein levels. Pregnancy

rates were also improved in ASC-transplanted rats, indicating that

ASC transplant could restore a functional endometrium to support

embryo implantation.

To investigate the utility of a cell-free approach, several recent

studies explored the effect of intrauterine MSC-exos delivery on

endometrial repair (125, 126). In a mouse model of intrauterine

adhesions, exosomes isolated from BM-MSC (BM-MSC-exos)

promoted endometrial repair by increasing proliferation of

endometrial epithelial cells and migration of stromal cells.

Antifibrotic effects appeared to be mediated by exosomal miR-

29a, via reduction in aSMA, Collagen I, Smad2, and Smad3

expression in murine endometrial stromal fibroblasts. To

determine efficacy of a uterine source of MSCs, Saribas et al.

explored the effects of locally delivered uterine MSC (UMSC) and

their exosomes (UMSC-exos) on rat endometrial regeneration

(126). Isolated from whole newborn rat uteri, these MSCs cannot

be assumed to be comparable to MSCs isolated from human

endometrium or menstrual fluid. Interestingly, although vessel

density and cellular proliferation were similarly improved in

UMSC and UMSC-exos recipients, fibrotic area was decreased

only in uteri of the UMSC-exos group. A more recent study

explored the utility of human umbilical cord MSCs and their

exosomes (UC-MSC-exos) delivered via intrauterine infusion in a

rat model of endometrial injury (127). In addition to morphologic

improvements, pregnancy rates were significantly improved in the

UC-MSC (60%) and UC-MSC-exos groups (80%), compared with

zero pregnancies in untreated controls. UC-MSC and UC-MSC-

exos inhibited TGF-b1/SMAD 2/3 (profibrotic) signaling in human

endometrial stromal cells (HESCs) and upregulated HESC

migration and proliferation in vitro, providing mechanistic

insights into the functional improvements seen in the rat in vivo
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studies. Taken together, these studies elucidated multiple

mechanisms by which local administration of MSC-exos could

mediate endometrial repair after injury.
3.3 Systemic and local delivery, compared
or combined

Though MSCs administered either systemically or locally have

demonstrated favorable effects on endometrial repair in rodent

models, few have directly compared the efficacy of systemic vs.

local intrauterine administration. One comparison of rat BM-MSCs

administered either systemically or locally in an intrauterine

adhesion model (128) demonstrated significant and similar

improvement in fibrosis and gland numbers in both the systemic

and local treatment groups when compared to PBS-treated controls.

A more recent study directly compared engraftment, cell retention,

and therapeutic efficacy of rat BM-MSCs in a model of ethanol-

induced injury, delivered either systemically or intrauterine (129).

With either delivery method, BM-MSCs were localized to the

endometrial stroma rather than epithelium and were equally

effective in improving endometrial thickness, vessel, and gland

density, and reducing fibrosis. However, the authors concluded

intra-arterial delivery to be superior, given longer retention time

and higher expression of VEGF and integrin avb3 protein in the

endometrium. Fertility studies were not performed.

Zhang et al. utilized a combined systemic and local approach in

a rat model, delivering human UC-MSCs locally at the time of

endometrial injury, followed by 1-3 systemic injections of UC-

MSCs (130). Endometrial morphology and fibrosis significantly

improved in all UC-MSC-treated groups. Mating studies

demonstrated the highest number of implantation sites in those

receiving three systemic MSC injections in addition to intrauterine

MSCs, though none recovered fertility to that of uninjured controls.

An alternate model, taking a cell-free approach, tested the efficacy of

a combined delivery system using locally delivered UC-MSC-

extracellular vesicles (EVs) administered in the uterus on the day

of endometrial injury and intraperitoneally 3 times at 5 day

intervals with or without oral estrogen (131). Uteri of animals

receiving UC-MSC-EVs with or without estrogen therapy exhibited

many of the improvements noted in other studies (improvements in

fibrosis, gland number and VEGF expression, significant decrease in

expression of proinflammatory cytokines) relative to untreated

animals or those receiving estrogen alone. Unfortunately, this

study did not compare UC-MSCs alone to UC-MSC-EVs, and

fertility after treatment was not tested.

A majority of the studies performed explore only 1-2 methods

of delivery or one source of MSCs; however, Monsef et al.

performed a unique study comparing administration of MSCs

locally and systemically, as well as the performance of MSCs from

either rat bone marrow or rat adipose tissue (132). Although MSC

delivery by either method and from either source resulted in

significant improvement in endometrial thickness after injury,

local transplantation of both types of MSCs appeared to be more

effective than systemic administration of ASCs, and systemic BM-

MSCs were more effective than systemic ASCs in improving
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endometrial thickness. Systemic BM-MSC delivery, however,

resulted in the fewest MSC visualized in the endometrium relative

to other MSC groups. Both routes of delivery significantly increased

endometrial VEGF expression and decreased collagen deposition,

with the greatest improvement in fibrosis seen in animals receiving

local ASC delivery, leading the investigators to conclude that ASCs

may be a superior option for endometrial repair than BM-MSCs.

Additional comparative studies, including assessment of fertility in

MSC recipients, are needed to validate these findings.
3.4 MSC delivery by matrix

Given limited retention of MSCs in the endometrium after

systemic or local delivery, a number of studies have investigated

novel delivery systems to optimize delivery of MSCs (or their

secretome), promote cell retention in the endometrium, and

improve the effects on endometrial repair. A variety of matrices

have been tested in combination with intrauterine delivery of MSCs

derived from various tissues. Some studies utilizing these models

demonstrate improved retention of cells in the uterus as well as

improved fertility; all demonstrate positive effects on endometrial

morphology after injury. However, in part due to heterogeneity in

study design, only certain studies demonstrate superiority of the

matrix over delivery of MSCs alone in promoting endometrial

repair after injury.

In one of the initial studies evaluating matrix-based MSC

delivery in a rat model of endometrial injury, Ding et al. explored

the regenerative effects of rat BM-MSCs loaded on a scaffold of

collagen, a basic structure of extracellular matrix and a widely used

biomaterial in tissue regeneration (133). After 90d, animals

receiving collagen/BM-MSCs had significantly thicker

endometrium and greater degree of neovascularization relative to

animals receiving either PBS or collagen alone. Mating studies

demonstrated a higher pregnancy rate in collagen/BM-MSC

recipients relative to collagen and untreated controls. However,

lack of a BM-MSC treatment group precluded evaluation of

potential benefits of collagen/BM-MSCs above BM-MSCs alone.

Multiple studies have tested novel matrix delivery systems for

MSCs isolated from human pregnancy tissues (e.g. umbilical cord,

placenta, amnion) (134–138), given their low immunogenicity and

ease in collection at delivery. Lin et al. evaluated MSCs isolated from

human placenta (HP-MSC) encapsulated in hyaluronic acid (HA)

hydrogel for intrauterine delivery in a mouse model of endometrial

injury (134). HP-MSC-HA complex significantly increased

endometrial thickness and gland numbers, decreased fibrosis, and

promoted cellular proliferation, though not significantly above that

of HP-MSC alone. Further, despite prolonged MSC retention time

in the HP-MSC-HA group, mating studies demonstrated a

significant increase in implantation sites in recipients of HP-MSC

with or without HA encapsulation; thus, from a functional

standpoint, the superiority of administering MSCs within this

matrix delivery system remained unproven.

In another study of novel delivery systems, Wang et al.

investigated the efficacy of seeding human UC-MSCs on human

acellular amniotic matrix (AAM) in a rat model (135). After 3
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estrous cycles, endometrial thickness and gland numbers were

significantly improved in the UC-MSC-AAM group relative to

the AAM-treated group. Similar to findings from previous

studies, UC-MSC-AAM delivery was also associated with

upregulation of anti-inflammatory cytokines (IL-4, IL-10) and

downregulation of pro-inflammatory cytokines (IL-2, TNFa,
IFNg) in the endometrium. Despite these effects, mating studies

indicated zero pregnancies in rats transplanted with UC-MSC-

AAM or AAM alone, ultimately raising doubt regarding any

functional improvements afforded by this transplant method.

Xu et al. (136) noted limitations of thicker scaffolds, including

restriction of nutrient diffusion, which can cause low viability and

decreased colonization of MSCs in vivo. They thus tested the use of

MSC-laden Matrigel microspheres in a rat uterine injury model, to

improve nutrient diffusion and to facilitate MSC encapsulation and

ease in transplant via injection (136). Rats receiving UC-MSC-laden

Matrigel microspheres exhibited a significant increase in

endometrial thickness, gland number, blood vessel density, and

pregnancy rates relative to a control group receiving Matrigel alone.

Though promising for a novel and less invasive MSC delivery

system, lack of a UC-MSC treatment group again precluded a

direct comparison of UC-MSCs delivered via this matrix delivery

system above that of MSCs alone.

Thermosensitive biomaterials have gained attention for MSC

delivery, transitioning from an easily injected liquid to a

biodegradable hydrogel when exposed to body temperature. Zhou

et al. tested a thermosensitive biodegradable hydrogel FDA-

approved for clinical use, Pluronic F127 (PF-127), to deliver UC-

MSCs into the uterus after ethanol-induced injury (137). Recipients

of PF-127-encapsulated UC-MSCs had significantly increased

endometrial gland numbers and angiogenesis relative to saline

controls; these effects were not seen after delivery of UC-MSCs

nor PF-127 alone. Huang et al. also explored use of a

thermoresponsive biomaterial, polyethylene glycol citrate-co-N-

isopropylacrylamide (PPCN) mixed with gelatin (PPCNg) to

improve cell adhesion and survival of amniotic MSCs (AMSCs)

(138). Endometrial thickness and gland numbers were found to be

highest, and fibrosis decreased, in the AMSC-PPCNg group relative

to AMSC or PPCNg only. Most notably, rats receiving AMSC-

PPCNg treatment had the highest pregnancy rate (100%), as

compared with 75% and 25% in the AMSC and PPCNg only

groups, respectively. In both of these studies, retention of MSCs

in the uterus was prolonged when delivered in a thermosensitive

matrix; these studies provided compelling evidence supporting a

novel delivery matrix for MSCs, warranting additional studies to

determine safety and efficacy.

Given the limitations of cell-based MSC therapies (e.g. potential

risk of tumor formation, low engraftment rates, storage and

transportation logistics), and relative benefits of matrix-based

delivery systems, a few studies have evaluated therapeutic effects

of the MSC secretome delivered via matrix. Liu et al. (139), for

example, evaluated the therapeutic effect of BM-MSC-secretome

delivered via hyaluronic acid (HA) matrix in a rat model of

endometrial injury. The HA+MSC-secretome group showed a

significant improvement in endometrial thickness and gland
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number, and significant increase in number of implantation sites,

in comparison to control and MSC-secretome only groups. In vitro

studies demonstrated ability of the BM-MSC-secretome to promote

angiogenesis, as well as proliferation and migration of human

endometrial epithelial cells, providing mechanisms underlying the

improvements seen in their in vivo studies. In another matrix-based

model, Xin et al. employed the use of a collagen scaffold for

intrauterine UC-MSC-exos delivery after uterine injury in rats

(140). UC-MSC-exos (delivered with or without the scaffold)

significantly increased gland number and endometrial thickness,

reduced fibrosis, and improved fertility, with a significantly higher

number of implantation sites seen in UC-MSC-exos recipients.

Consistent with known functions of MSC-exos, recipients of UC-

MSC-exos exhibited polarization of endometrial macrophages to

the anti-inflammatory M2 phenotype, likely mediated in part by

exosomal miR-223-3p, supporting the role of MSC-exos cargoes in

promoting endometrial repair. Collectively, these studies

incorporated favorable aspects of two MSC-based delivery

methods (cell-free/secretome-based combined with matrix for

sustained release) to ameliorate endometrial morphology and

function after injury.

Taken together, a growing number of rodent studies have

demonstrated efficacy of several MSC sources and administration

methods for the treatment of thin endometrium and/or intrauterine

adhesions. The most widely tested of these include BM-MSCs and

UC-MSCs: all show the ability in rodent models to improve

endometrial regeneration, and multiple demonstrate improved

fertility. Direct comparison between sources are lacking; only one

study performed a direct comparison of efficacy between two MSC

sources (BM-MSCs and ASCs), and concluded that ASCs may be a

superior option for endometrial repair than BM-MSCs (132). Very

few studies compare mode of delivery (systemic vs. local

administration) and yielded mixed results. Of the various MSC

delivery vehicles evaluated, only a few directly compare efficacy of

MSCs (or MSC secretome) delivered in a matrix to those delivered

alone; in those studies, the data indicate these delivery complexes

may be beneficial in prolonging tissue retention of MSCs and

improving endometrial regeneration.

These rodent studies have overall improved our understanding

of the mechanisms by which MSCs support endometrial

regeneration, and many have laid the groundwork for human

studies. Both the human and rodent endometrium undergo cyclic

remodeling which is highly dependent on ovarian sex steroids and a

functional hypothalamic-pituitary-ovarian axis (141). Over the

course of either the rodent estrous cycle (4-5 days) or human

menstrual cycle (28 days), the endometrium undergoes distinct

changes including stromal and epithelial proliferation, apoptosis,

extracellular matrix remodeling and leukocyte infiltration, under

the influence of estradiol and progesterone (142, 143). Thus, many

parallels exist between rodents and women, but the lack of

menstruation in rodents renders this species as an imperfect

model, albeit convenient and easy to manipulate, for in vivo

studies of endometrial regeneration and repair. It is important to

keep these similarities and differences in mind when extrapolating

the results seen in rodents to findings from human studies. In vitro
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studies in human tissues, summarized in the section below and

Table 2, have provided valuable additional insights into MSC-

mediated endometrial repair mechanisms.
4 MSCs to treat thin endometrium:
human studies

4.1 Human in vitro studies

Among the first studies to explore paracrine mechanisms by

which MSCs mediate human endometrial repair, Xin et al. used a

collagen scaffold (CS) loaded with human UC-MSCs and studied

the effect on human endometrial stromal cells (HESCs) (140).

HESCs exposed to CS-UC-MSCs demonstrated significantly

increased proliferative capacity and decreased apoptosis relative

to controls, and secreted higher levels of VEGF-a, TGF-b, and
insulin-like growth factor 1. These in vitro findings were further

validated by the same group in a rat model of uterine injury, in

which the application of CS-UC-MSCs into the uterus after injury

resulted in improved endometrial morphology and higher

pregnancy rates. The endometrium of CS-UC-MSC rat recipients

also exhibited higher expression of VEGF-a, TGF-b, and insulin-

like growth factor 1, supporting MSC-mediated paracrine
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upregulation of these growth factors as a mechanism promoting

morphologic and functional restoration of injured uteri.

As summarized earlier, MSC-derived exosomes contain cargo,

including transcription factors and abundant microRNAs

(miRNAs), that regulate expression of related genes in recipient

cells and promote repair and regeneration in damaged tissues (117).

A number of recent human in vitro studies have thus explored

mechanisms by which UC-MSC-exos promote survival and

proliferation of HESCs, utilizing various in vitro models of HESC

injury (144). Exposure to UC-MSC-exos significantly increased

HESC proliferation and decreased apoptosis; mediated via

activated PTEN/Akt signaling in mifepristone-injured HESCs,

upregulated HESC expression of Bcl-2 (an anti-apoptotic protein)

and downregulated cleaved Caspase-3, a marker of apoptotic injury

(144). In a similar model, Shi et al. (145) identified miR-7162-3p as

an effector of UC-MSC-exosome endometrial repair. Direct binding

of miR-7162-3p to apolipoprotein 6 (APOL6), a programmed cell

death gene in target HESCs, protected against mifepristone-induced

injury. Li et al. also investigated therapeutic potential of UC-MSC-

exos in reversing TGFb1-induced HESC fibrosis (146). Exposure of

injured HESCs to UC-MSC-exos resulted in significant down

regulation of fibrosis markers a-SMA1 and COL1A1 relative to

controls. This finding was mediated at least in part by exosomal

miR-145-5p, a negative regulator of the transcription factor ZEB2
TABLE 2 MSCs promote endometrial repair mechanisms: Human in vitro studies.

MSC Type Target cells studied Model of exposure Findings Reference

UC-MSC HESCs -Collagen scaffold
-Transwell co-culture

-↑ proliferation
-↓ apoptosis
-↑VEGF-a, TGF-b, IGF-1

Xin
et al. (140)

UC-MSC HESCs injured
with mifepristone

-treatment with UC-MSC-exos -↑HESC survival and proliferation
-↓ apoptosis via ↑ Bcl-2 and ↓ cleaved caspase-3

Wang
et al. (144)

UC-MSC HESCs injured
with mifepristone

-treatment with UC-MSC-exos -↓apoptosis via exosomal miR-7162-3p Shi et al. (145)

UC-MSC HESCs treated with TGFb1 to
induce fibrosis

-treatment with UC-MSC-exos -exosomal miR-145-5p mediated reversal of fibrosis Li et al. (146)

UC-MSC-exos EECs (hypoxia-induced injury) -treatment with UC-MSC-exos -↑proliferation
-↓hypoxia-induced apoptosis, migration, EMT
-protective effects mediated by miR663-a/CDKN2A axis

Wang
et al. (147)

BM-MSC and
UC-MSC

HESCs -transwell co-culture MSCs/HESCs -↑CCL2, HGF
-↑HESC proliferation, migration, invasion

Zhao
et al. (148)

MenSC EECs -transwell co-culture MSCs/EECs -↑ proliferation
-↑ motility

Zhao
et al. (149)

MenSC HESCs injured
with mifepristone

-transwell co-culture MSCs/HESCs -↑ proliferation, migration and ↓ apoptosis via AKT
and p38 MAPK pathways

Zhu
et al. (150)

MenSC HESCs -HESCs cultured in MenSC
conditioned medium

-attenuate fibrosis via secretory products of MenSCs
(G-CSF)

Lin et al. (151)

MenSC HESCs -transwell co-culture MSCs/HESCs -↓ myofibroblast markers
-↑ HESC proliferation, migration

Zhu
et al. (152)
ASC, adipose-derived mesenchymal stem cell; BM-MSC, bone marrow-derived mesenchymal stem cell; CS, collagen scaffold; eMSC, endometrial-derived mesenchymal stem cell; exos, exosomes;
G-CSF, granulocyte-colony stimulating factor; HESC, human endometrial stromal cell; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor-1; MAPK, mitogen activated protein
kinase; MenSC, menstrual blood-derived mesenchymal stem cell; TGF-b, transforming growth factor-b; UC-MSC, umbilical cord-derived mesenchymal stem cell; VEGF-a, vascular endothelial
growth factor-a. ↑, increased; ↓, decreased.
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which promotes epithelial-mesenchymal transition and fibroblast

differentiation. With respect to endometrial epithelial cells (EECs),

Wang et al. (147) demonstrated that uptake of UC-MSC-exos

inhibited hypoxia-induced apoptosis, migration, reversed

epithelial mesenchymal transition (EMT) of EECs, and

upregulated EEC proliferation relative to untreated, injured

controls. The protective effect of UC-MSC-exos appeared to be

mediated by regulation of the miR663-a/CDKN2A axis, the latter

an apoptosis regulatory gene. Collectively, these studies provided

important insights into mechanisms by which miRNA cargo of UC-

MSC-exos could support endometrial repair.

While the studies above largely focused on MSC-mediated

mechanisms regulating HESC proliferation, survival, and anti-

fibrotic mechanisms, our lab investigated whether the MSC

secretome could enhance endometrial stromal cell motility

functions, and whether MSCs isolated from either UC or BM

would have similar effects (148). Exposure of HESCs to the

secretome of either UC- or BM-MSC significantly and similarly

increased HESC migration and invasion; although cellular

proliferation was also significantly increased, the effect was

modest and varied among MSC donors. Expression of CCL2 and

HGF mRNA, genes associated with HESC motility, were increased

in HESCs exposed to both UC- and BM-MSC, and exposure to

recombinant CCL2 significantly increased HESC migration and

invasion. These findings indicated both paracrine and autocrine

mechanisms involved in MSC secretome-mediated motility, further

supporting the potential to leverage the MSC secretome as a cell-

free therapy to support endometrial regeneration/repair.

The human endometrium and menstrual fluid are now

established sources of MSCs, and multiple in vitro studies have

demonstrated the ability of menstrual blood MSCs (MenSCs) to

affect phenotype and function of endometrial epithelial and stromal

cells. Zhao et al. (149). demonstrated that exposure of EECs to

MenSCs increased EEC proliferation and invasive capacity, and

increased EEC expression of EGF, FGF, PDGF and MMP3 proteins;

these cytokines and growth factors play important roles in cellular

motility, proliferation, and tissue remodeling in the endometrium.

With respect to effects on HESCs, in a model of mifepristone-

induced injury, Zhu et al. demonstrated the ability of MenSCs to

upregulate endometrial stromal cell proliferation, migration, and

decrease apoptosis via activation of p38 MAPK and AKT signaling

pathways (150). MenSCs and their secretory products (e.g., G-CSF)

appear to attenuate endometrial fibrosis (151, 152); exposure of

HESCs to either MenSCs or MenSC-conditioned medium resulted

in downregulation of myofibroblast markers aSMA and collagen I

and promoted HESC migration (152). Interestingly, as noted

earlier, TGF-b is an inducer of fibrosis in the endometrium, and

exposure to MenSCs attenuated TGF-b-mediated increase in

profibrotic markers and myofibroblast activation, via activation of

the Hippo/TAZ signaling pathway (152). Thus, although untested

in vivo, these in vitro studies elucidated candidate MenSC-mediated

mechanisms that promote scar-free endometrial repair in healthy

tissue and identified potential molecular targets in the therapy of

endometrial fibrosis/scarring.
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4.2 Human trials

Santamaria et al. were one of the first groups to explore the

use of bone marrow-derived stem cells (BMDSCs) in the uterus

in a human trial (153). In a prospective, non-randomized study,

16 women with primary infertility and either Asherman’s

syndrome (n=11) or endometrial atrophy (EA, n=5) received

autologous CD133+ BMDSCs, delivered via intra-arterial

catheterization of uterine spiral arterioles, followed by

hormone replacement therapy. The endometrium of recipients

was assessed prior to and at 3 and 6 months post treatment.

Average endometrial thickness increased only modestly, from 4.3

mm to 6.7 mm post-treatment in women with Asherman’s

syndrome; and from 4.2 mm to 5.7 mm in women with EA. Of

14 embryo transfers performed, 7 women became pregnant

resulting in one live birth and one ongoing pregnancy; 3

patients conceived spontaneously at 2, 4, and 19 months after

treatment resulting in one live birth and one ongoing pregnancy.

No adverse events were noted with BMDSC treatment. It should

be noted that the selection of CD133 as a marker indicates the use

of a potentially heterogeneous stem/progenitor population not

truly limited to MSCs. Although limited by lack of controls and

unproven homing of BMDSCs to the uterus, this was a novel and

important proof-of-concept pilot study setting the stage for

subsequent trials in humans.

In a subsequent report by Singh et al., 25 women with infertility

and Asherman’s syndrome (n=12) or thin endometrium (n=13)

underwent transplant of autologous bone marrow-derived

mononuclear stem cells (154). Cells were transplanted

transmyometrially into the subendometrial zone, followed by 3-6

months of oral estrogen therapy. Of the 7 amenorrheic women, 6

resumed menses after treatment. Average endometrial thickness

improved modestly from 3.3 to 5.1 mm at 3 months, without

further improvement at 6 and 9 months. Eleven patients underwent

IVF, of which only two conceived, resulting in one live birth and

one ectopic pregnancy. Two women conceived naturally at 3 years

post-transplant, resulting in one live birth each. The infusion of

mononuclear cells includes a heterogenous population of

hematopoietic and nonhematopoietic bone marrow-derived cells

not limited to MSCs; further, lack of controls (and conception at

several years post-transplant) precluded the ability to directly

attribute pregnancies to the intervention.

In one of the earliest studies using a menstrual source of MSCs

in the human uterus, Tan et al. studied the effects of autologous

transplantation of MenSCs on endometrial regeneration (155).

Unlike prior human trials, in this trial MSC phenotype was

confirmed via expression of MSC markers. Seven women with

Asherman’s syndrome underwent ultrasound-guided intrauterine

transplant of MenSCs on day 16 of the menstrual cycle under

ultrasound guidance, followed by oral estrogen for 21 days. Five of 7

patients achieved an endometrial thickness of 7-8 mm and

underwent IVF with embryo transfer, of which two conceived.

One patient naturally conceived 3.5 months after transplant. In a

more recent study, Ma et al. also used MenSCs in 12 patients with
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refractory Asherman’s syndrome (156). These investigators also

characterized MSC phenotype via cell surface marker expression

and multilineage differentiation potential. MenSCs were

transplanted into the basal layer of the endometrium, followed by

1-2 cycles of hormone therapy. Mean endometrial thickness was

significantly improved at 14 days post-transplant, from 3.9 to 7.5

mm. The clinical pregnancy rate was 41.7% (5/12), 4 of which

resulted from IVF/embryo transfer and 1 conceived spontaneously.

Though promising, live births were not reported in either study,

with lack of controls and small sample sizes limiting applicability of

the results.

To explore an alternative MSC source, Sudoma et al. performed

the first trial with adipose-derived stem cells (ASCs) in 25 women

with thin endometrium and at least 3 prior IVF failures (157). MSC

phenotype was confirmed via multilineage differentiation assays.

Autologous ASCs were injected subendometrially in several

locations under ultrasound guidance 3 times at 5–7-day intervals

followed by oral estrogen. Endometrial thickness was measured in

3-10 natural cycles post-treatment, or if the patient was menopausal

or had ovulatory dysfunction, after 3-10 artificial cycles. 19 women

achieving endometrial thickness >7mm underwent embryo

transfer. A total of 13 women achieved pregnancy: 11 after

embryo transfer and 2 as a result of natural conception, resulting

in a total of 9 live births. Compared to prior studies, this cohort of

patients experienced the highest pregnancy and live birth rates, but

again lacked controls.

Tersoglio et al. performed a study using autologous endometrial

MSCs (eMSCs) in 29 patients with thin endometrium and recurrent

implantation failure, defined as failed embryo implantation after at

least 3 transfers of high-quality blastocysts (158). Autologous

endometrial MSCs, characterized by expression of traditional

MSC cell surface markers and eMSC marker SUSD2, were

delivered transmyometrially after estrogen supplementation for 6-

8 weeks. Average endometrial thickness increased from 5.2 mm pre-

treatment to 9.9 mm. Of 29 women undergoing embryo transfer,

the authors reported 23 clinical and 7 ongoing pregnancies,

promising outcomes tempered by lack of controls and the major

caveat that in all women, eMSCs were diluted in platelet-rich

plasma, bringing into question the therapeutic role of

eMSCs themselves.

Zhang et al. explored the use of UC-MSCs on endometrial

regeneration in 16 infertile women with thin endometrium (< 5.5

mm) (159). UC-MSCs, confirmed by cell surface marker expression

and multilineage differentiation potential, were loaded onto a

collagen scaffold and transplanted hysteroscopically into the

uterine cavity on the 7-12th day of the menstrual cycle in 2

sequential cycles. Three months after transplantation, average

endometrial thickness increased from 4.1 mm to 5.9 mm, with

significant increase in CD34+ micro-vessel density, gland number,

and expression of ERa, PR, and the proliferative marker Ki67. Of 15

women undergoing 22 frozen embryo transfer (FET) cycles, 3

conceived, 2 of which resulted in live birth; 1 patient had a

naturally conceived pregnancy and live birth. In a similar trial,

Cao et al. administered intrauterine UC-MSC on a collagen scaffold

after hysteroscopic adhesiolysis in 26 women with infertility and
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intrauterine adhesions (160). Subjects received estradiol for 30 days

followed by a single dose of 60 mg progesterone. At 3 months, 10/26

women were noted to have either absent or mild adhesions, with

modest increases in average endometrial thickness from 4.5 mm to

5.7 mm and upregulated expression of ERa, proliferative marker

Ki67, and angiogenic marker vWF. At 30 months, 10 subjects

conceived a pregnancy, resulting in 8 live births, one ongoing

pregnancy in third trimester, and one first trimester spontaneous

abortion. No adverse events were reported in either trial. Though

uncontrolled, these studies provided important safety data and

insights into mechanisms by which intrauterine UC-MSC

administration, via degraded collagen scaffold, could improve

endometrial function.

Overall, pregnancies and live births in women with refractory

Asherman’s syndrome and/or thin endometrium, coupled with a

lack of treatment-related adverse events, generate enthusiasm for

the development of novel MSC-based therapies to improve

fertility in women suffering from these challenging conditions.

However, major caveats exist, and proper randomized controlled

trials are required before MSCs can be considered for clinical use.

All of the above are uncontrolled studies with small sample sizes

and heterogeneous clinical protocols; thus, none can definitively

attribute clinical successes to MSC-based therapies. Heterogeneity

among studies in transplanted cell types/cell populations raise

uncertainty regarding the specific stem/progenitor cell types

involved. Mechanisms responsible for clinical outcomes seen in

humans, as well as the optimal mode of delivery, remain

unknown. Finally, although MSCs from different tissues of

origin are predicted to show slight differences in efficacy, and

differing methods of MSC administration are expected to show

differences in homing and target tissue residency (43) none of the

reviewed trials compared different MSC sources or administration

methods within the same cohort of patients. Thus, the optimal

MSC source or administration method for ameliorating thin

endometrium remains unknown.
5 Summary/future directions

The studies described herein demonstrate an ever-expanding

amount of work supporting the therapeutic potential of MSCs,

derived from reproductive and non-reproductive tissues, in

promoting endometrial regeneration and repair after injury. Rodent

(in vivo) and human (in vitro) studies have elucidated mechanisms

that are consistent with well-established functions of MSCs and their

secretome: angiogenesis, amelioration of fibrosis, increased cellular

proliferation and motility, and immunomodulation (Figure 2).

Although MSCs and their secretory products hold great promise in

treating infertility due to a thin or scarred endometrium, caveats

remain. Effects seen in rodents may not fully extrapolate to humans.

Results generated from human clinical studies to date are limited by

small sample size, heterogeneity in protocols, inconsistency in MSC

characterization, and critically, lack of controls. The use of cell-based

vs. cell-free (secretome-based) therapies each have relative benefits

and drawbacks, and the optimal mode of delivery into the human
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uterus (systemic, local +/-matrix-based) needs to be determined.

Before MSCs can be applied for treatment in this context, their

isolation and preparation for clinical use will need to adhere to

current good manufacturing practice regulations to assure safety,

standardization and reproducibility (161). Working to achieve this is

a worthwhile endeavor, as endometrial factor infertility remains a

rate-limiting step in achieving IVF success. If proven efficacious and

safe, MSC-based therapies for thin endometrium will not only

improve pregnancy rates; equally and vitally important, they will

minimize the risk of placental dysfunction related to thin

endometrium, thus setting the stage for healthier pregnancies and

live births.
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FIGURE 2

MSC administration methods and mechanisms of action. Mesenchymal stem cells (MSCs) can be delivered via direct administration (+/- matrix) into
the uterus, or by systemic delivery, followed by homing of the MSCs to the endometrium. Alternatively, cell-free therapies utilizing the MSC
secretome (+/- matrix) may be administered directly into the uterus. At the site of injury within the endometrium, MSC-based therapies promote
regeneration via immunomodulation, increased angiogenesis, increased cellular proliferation and motility, decreased apoptosis and downregulation
of pro-fibrotic pathways. Figure created with Biorender.com.
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