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Cystic fibrosis (CF) is a multi-organ disease caused by loss-of-function mutations

in CFTR (which encodes the CF transmembrane conductance regulator ion

channel). Cystic fibrosis related diabetes (CFRD) occurs in 40-50% of adults with

CF and is associated with significantly increased morbidity and mortality. CFRD

arises from insufficient insulin release from b cells in the pancreatic islet, but the

mechanisms underlying the loss of b cell function remain understudied.

Widespread pathological changes in the CF pancreas provide clues to these

mechanisms. The exocrine pancreas is the epicenter of pancreas pathology in

CF, with ductal pathology being the initiating event. Loss of CFTR function results

in ductal plugging and subsequent obliteration. This in turn leads to destruction

of acinar cells, fibrosis and fatty replacement. Despite this adverse environment,

islets remain relatively well preserved. However, islet composition and

arrangement are abnormal, including a modest decrease in b cells and an

increase in a, d and g cell abundance. The small amount of available data

suggest that substantial loss of pancreatic/islet microvasculature, autonomic

nerve fibers and intra-islet macrophages occur. Conversely, T-cell infiltration is

increased and, in CFRD, islet amyloid deposition is a frequent occurrence.

Together, these pathological changes clearly demonstrate that CF is a disease

of the pancreas/islet microenvironment. Any or all of these changes are likely to

have a dramatic effect on the b cell, which relies on positive signals from all of

these neighboring cell types for its normal function and survival. A thorough

characterization of the CF pancreas microenvironment is needed to develop

better therapies to treat, and ultimately prevent CFRD.
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1 Introduction

Cystic fibrosis (CF) is the most prevalent life-limiting autosomal

recessive disease affecting populations of Northern European

descent (1), although it is important to recognize that CF affects

all racial/ethnic groups (2, 3). Mutations in the cystic fibrosis

transmembrane conductance regulator (CFTR) leads to multi-

organ disease, with progressive lung disease representing the

leading cause of premature death (1, 4). With substantial

advances in therapies, life expectancy of people with CF in the

United States has progressively increased, and is now ~45 years (3).

With this increase in survival, however, other features of CF have

emerged, including CF-related diabetes (CFRD). CFRD affects 20%

of adolescents and ~40-50% of adults with CF (3, 5) and,

importantly, is an important risk factor for worsened CF lung

disease. CFRD results in a 4-6 fold greater mortality rate compared

to people with CF who do not have diabetes (6–9). The inadequate

release of insulin from the islet b cell underlies the development of

CFRD (10–14), manifest as a characteristic blunted and delayed

insulin response to nutrient stimulation. One potential contributor

is an impairment in the incretin axis (i.e. action of the hormones

glucagon like peptide 1 and gastric inhibitory polypeptide to

enhance insulin release in response to glucose) (15, 16). However,

much remains unknown about the etiology of insulin deficiency in

CF, limiting the development of improved treatments for CFRD.

The focus of this article is the islet/pancreas microenvironment

whose constituent cell types, under normal conditions, provide

critical signals to maintain b cell function, identity and survival

(Figure 1A). In CF, profound and widespread changes occur in this

microenvironment (Figure 1B), providing clues to novel

mechanisms that may underlie loss of insulin release in this

disease (Figure 1C).
2 Pathology and dysfunction of the
exocrine and endocrine pancreas
in CF

2.1 Exocrine pancreas pathology and
dysfunction in CF

Within the pancreas, CFTR is predominantly expressed, at very

high levels, in pancreatic ductal epithelial cells (PDECs) (17). There,

its regulation of Cl- and HCO3
- transport is critical for maintaining

luminal pH and water balance and maintaining acinar-derived

digestive enzymes in a dilute, inactive form (18, 19). Loss of

CFTR function results in increased protein concentration and

subsequent plugging of the ductal lumen (18). This results in duct

obliteration, which in turn leads to destruction of acinar cells and

fatty replacement of the exocrine pancreas. This pathology is

strikingly similar to that seen in other diseases of the exocrine

pancreas, including chronic pancreatitis (20). Fibrosis is also a

common feature of CF pancreas disease. Its etiology remains

understudied, but likely involves activation of pancreatic stellate

cells (PSCs), as has been demonstrated in other exocrine pancreas
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diseases (21). Under normal conditions, PSCs contribute to normal

tissue structure and homeostasis (21). In disease, however,

activation of PSCs results in their proliferation and trans-

differentiation to myofibroblasts, leading to synthesis and

deposition of a fibrotic, proinflammatory extracellular matrix (21,

22). A role for PSCs in CF pancreas fibrosis is therefore likely, but

remains to be clarified.

In CF, exocrine pancreas pathology is initiated very early in life

[even in utero (23)], and while pancreatic morphology appears

relatively preserved in infants (<1 year of age), substantial

abnormalities are seen by 5 years of age (24). Consequently,

exocrine pancreas insufficiency occurs in the vast majority

(~85%) of people living with CF (18). Moreover, in the minority

that retain exocrine pancreatic function, there is still evidence of

damage to their pancreas (18) with reports of pancreatitis occurring

in individuals upon treatment with highly effective CFTR

modulator therapies (HEMT) (25). Therefore, exocrine pancreas

pathology is itself a major, debilitating feature of the CF disease

process. Moreover, as described below in section 3, emerging

evidence suggests it may also be a key contributor to the

pathogenesis of CFRD.
2.2 Endocrine pancreas pathology
and dysfunction

Given the extensive disruption of the exocrine pancreas in CF, it

is surprising that islets remain relatively intact. However, the

number and/or arrangement of endocrine cell types that make up

the islet are significantly altered in CF.

2.2.1 Islet b cells
The islet b cell is the most abundant islet endocrine cell and is

the source of the hormone insulin, which is required for

maintenance of glucose homeostasis. Impaired insulin release is

common among people living with CF (10, 11, 13, 26), and is the

key contributing factor to the onset of CFRD (as it is for all forms of

diabetes). Defects in processing of insulin from its precursor,

proinsulin have been described in CF models (27), a further

indication of b cell dysfunction.

In human autopsy pancreas specimens, decreases in b cell area

in adult CF subjects without diabetes when compared to non-CF

controls have been reported in some (28–31) but not all studies (24,

32); data from these studies are summarized in Table 1. b cell loss

does not appear to differ based on the major form of exocrine

pathology (i.e. fatty vs. fibrotic) (31) although it appears that a

greater degree of b cell loss is observed in younger CF subjects (24).

Similarly, most studies report a modest but not severe loss of b cell

mass in CFRD (24, 32–34).

The mechanisms underlying loss of b cells in CF are not well

understood. b cell apoptosis may be a contributor, as has been

described in one study (24). However, in T2D, it has been noted that

the observed decrease in b cell mass is much greater than can be

accounted for by the rate of b cell apoptosis (35). This, and other

work, led to the concept that loss of b cell identity and not solely b
cell death may contribute to the decreased number of functional b
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cells that are seen in diabetic conditions (35, 36). In b cells, markers

of differentiated identity include the transcription factors, MAFA,

NKX6.1, PDX1, PAX6, NKX2-2, ISL1, NEUROD1, FOXO1 and

FOXA2 (37) as well as key components of the b cell secretory

pathway (including GCK, SLC2A2, SLC2A1 and INS itself). In CF,

islet cell de-differentiation has been suggested based on work

identifying islet cells that are positive for chromogranin A but

negative for islet hormones, and the presence of polyhormonal cells

(38). However, which cell type(s) may lose identity markers remains

unclear. Only one study to date has investigated b cell identity

markers in CF. Bulk RNAseq in islets from CF vs. non-CF donors

revealed no significant changes in expression of key b cell

transcription factors (MAFA, NKX6.1, PDX1, PAX6, ISL1) or

components of the b cell secretory pathway (INS, SLC2A2,

SLC2A1, GCK, ABCC8, GLP1R) (30).

This suggests that both b cell mass and identity remain largely

unperturbed in CF, despite the extensive destruction of the

surrounding exocrine pancreas, and that strategies to improve

their function could be a viable means to treat and even

prevent CFRD.

2.2.2 Islet a cells
The islet a cell is the second most abundant islet endocrine cell

type, whose main function is the secretion of glucagon, a hormone

which has a range of metabolic effects, including stimulation of

hepatic glucose production (39, 40). In contrast to the decrease seen

in b cell abundance, a cells have been shown to be increased in

autopsy pancreas specimens from donors with CF both with and

without diabetes, using immunohistochemical and electron

microscopy approaches (24, 30–32). However, despite the

increased abundance of a cells, glucagon secretion (like insulin

secretion) is impaired in CF, in response to a range of stimuli

including arginine and hypoglycemia (10, 41).

A possible contributor to a cell dysfunction in CF is loss of cell

identity. In islets from CF donors, a significant decrease in ARX
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expression (30), one of the transcription factors critical for a cell

identity (37), was observed. While more research is needed, an

imbalance between the abundance vs. function/identity of a cells

seems to be a key feature of islet pathology in CF.

2.2.3 Islet d, g and ϵ cells
The population of islet d cells is variable and much less

abundant than a or b cells. d cells secrete somatostatin and act as

intra-islet paracrine negative regulators of a and b cells (42). Plasma

levels of somatostatin have been reported to be increased in CF (43).

However, the half-life of islet-derived somatostatin is very short and

as such peripheral levels are likely not reflective of those within the

islet. Therefore, the status of d cell function in CF remains

unknown. Morphologically, similar to a cells, the abundance of d
cells is significantly increased or shows an upward trend in CF islets

based on multiple studies (24, 28, 30–32, 34), suggesting that local

concentrations of somatostatin in the CF islet may be elevated.

g cells make up only about 5% of islet area and are found more

commonly in the head of the pancreas. These cells release

pancreatic polypeptide (PP), and PP levels have been shown to be

indicative of vagal input to the pancreas. In general, the abundance

of g cells, like a and d cells, is increased in CF (24, 32), although this

has not been a universal finding (33), and g cells do not seem to be

consistently increased in islets from CF donors with and without

diabetes (32). Despite some inconsistencies in reports of the

abundance of g cells, there is a profound defect in PP release in

CF, revealing another example of a disconnect between the

abundance and function of islet endocrine cells in this disease.

ϵ cells are the fifth and final type of endocrine islet cell type in the
pancreas. ϵ cells produce ghrelin, which is principally known as a gut

hormone that activates the growth hormone secretagogue receptor

(44). Circulating levels of ghrelin (specifically the active, acylated

form) are increased in CF (45). However, a more accurate picture of

islet ϵ cell function in CF required direct examination of ghrelin levels

within the pancreatic islet; this has not been determined to date.
B CA

FIGURE 1

Schematics showing input from cells of the pancreas/islet to the b cell under normal (A) and CF (B, C) conditions. (A) Summary of physiological/homeostatic
input to b cell from exocrine-, endocrine or islet-associated cell types. (B) Pathological features of the exocrine pancreas in CF, emanating from ductal
pathology, as indicated by red arrows, along with changes in abundance of islet endocrine cells and support cells (nerve, vascular and immune cells). (C)
hypothesized implications for b cell function and/or survival based on CF pancreatic pathology. Red arrows denote detrimental (chiefly inflammatory) signals
derived from diseased cell types. Dashed grey arrows denote decreased input to the b cell due to loss of nerve fibers, macrophages or vasculature. Solid
black lines denote increased inhibitory input to b and a cells (due to increased abundance of d, g and potentially also ϵ cells) some elements in the figure
were made using BioRender.
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TABLE 1 Summary of findings from morphometric studies examining islet endocrine cell types in donors with CF (no diabetes) and/or CFRD.
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Regarding cell identity markers, less is known about the nature

of these in d, ϵ, and g cells, although there is overlap between

transcription factors expressed in ϵ and g cells, with similarity to

those expressed in a cells (37). Furthermore, HHEX has been

shown to contribute to d cell differentiation (46). Whether these

identity markers are compromised in the CF islet and could thereby

contribute to impaired function of d, g and ϵ cells remains to

be determined.
2.3 Pathological changes in non-endocrine
islet cells

2.3.1 Microvasculature
The pancreatic islet has an extensive microvascular capillary

network which acts as a conduit for transportation of nutrients to

islet endocrine cells and delivery of islet hormones to peripheral

tissues (47–50). In addition, the islet microvasculature has emerged

as a key source of supportive signals (e.g. growth factors,

extracellular matrix components) that are necessary to maintain

islet b-cell function and survival. Both of the main constituent cell

types, islet endothelial cells which form the capillary wall and the

constrictive pericytes which surround them, have been shown to

play this positive role in modulating b cell function and survival (48,
49, 51–57).

In both T1D and T2D structural defects in the islet vasculature

have been observed, including thickening and fragmentation of

capillaries and an apparent increase in vascular density (58, 59).

Moreover, in models of T2D, endothelial cells attain an inflamed,

pro-adhesive phenotype (49, 55, 60, 61) that renders them

incapable of supporting insulin release (55). In CF, changes

in islet microvascular density appear to differ profoundly from

what is seen in T1D and T2D. Specifically, preliminary data from

our lab demonstrate a substantial decrease in capillary density in

islets and exocrine pancreas (62). Moreover, islet bulk RNAseq data

from human donors with CF exhibit increases in inflammatory

markers, including key indicators of endothelial inflammation/

activation including SELE and IL6 (30). Together, these data

suggest that while there is a decrease in islet endothelial cell

abundance within CF islets, those remaining endothelial cells are

highly inflamed.

While some data exist regarding islet endothelial cells in CF, the

other main constituent of the islet microvasculature, the pericyte,

remains entirely unstudied. Pericytes surround microvascular

endothelial cells and are responsible for control of blood flow

(63, 64) but are also critical for microvessel stability and the

prevention of vessel leakage and inflammation. Loss of pericyte

attachment and/or cell death has been defined as a critical

pathological event in multiple vascular diseases including

tumor growth, diabetic retinopathy and kidney fibrosis, and the

close interaction between endothelial cells and pericytes has been

shown to be disrupted in islets in T2D and models thereof

(61, 63, 65). These data suggest that loss of microvascular stability

could be a common pathological feature of the diabetic islet.

Whether the same is true in CF/CFRD remains an important

unanswered question.
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2.3.2 Innervation
It has long been appreciated that pancreatic islets are innervated

by sympathetic, parasympathetic and sensory neurons (66, 67).

Parasympathetic input stimulates, while sympathetic input inhibits

insulin release (66, 67). Moreover, sympathetic input to the a cell is

required for the glucagon response to hypoglycemia (39). Islet

innervation in CF has not been well-studied, although a decrease

in PGP9.5+ nerve fiber density has been reported in the CF pig

pancreas (68). The profound defect in PP release in people living

with CF is suggestive of a loss of vagal input to the pancreas, and the

loss of islet (and exocrine) capillary density would also be expected

to be reflective of impaired innervation to both pancreas

compartments, given the known close association of the

vasculature and autonomic nerve fibers (67). However, more data

are clearly needed to delineate the state of pancreatic innervation in

human CF.

2.3.3 Immune cells
While (increased) macrophages within the islet have been

reported to have detrimental effects under diabetic conditions

(69), it is now well established that resident intra-islet

macrophages are critical for b-cell growth, regeneration following

injury and function/glucose homeostasis (70–75). We previously

reported that increased IL-1b positivity is a common and early

feature of the islet in CF (32). Based on data from T2D, whereby

increased IL-1b production is indicative of an increase in the

number and/or activation state of macrophages, this observation

prompted an investigation of the abundance of islet macrophages in

CF. Surprisingly, we and others found an almost complete absence

of intra-islet macrophages in adolescents and adults with CF (24,

32) (regardless of diabetes status), despite the continued presence of

macrophages in exocrine pancreas.

Islets also contain other resident leukocyte populations,

including relatively rare T-lymphocytes. Increased T cell

infiltration is a hallmark of autoimmune T1D and has also been

described in islets in CF pancreas sections taken from children and

adults (24, 30). Flow cytometry analysis of CF donor islets leukocyte

populations revealed a relatively abundant CD3+ T cell population,

which largely (~60%) consisted of CD8+ T cells (30).

2.3.4 Islet amyloid
Amyloids are aggregates of misfolded proteins and have been

linked to the development of numerous diseases. In the islet,

amyloid deposits contain as their unique component islet amyloid

polypeptide (IAPP), which is a normal secretory product of the b
cell (76). Islet amyloid deposition has been recognized as a feature

of islets in CF for several decades (29) and, unlike many of the other

features described above is pathognomonic of CFRD, occurring in

60-70% of cases compared to only 0-20% of individuals with CF

without diabetes (24, 29, 32). Moreover, islet amyloid does not

appear to be a pathological feature in children with CF (24),

although, deposition in CFRD appears to be markedly accelerated

compared to the classically-described islet amyloid seen in subjects

with T2D, where amyloid is associated with established disease in

individuals around the 6th-7th decade of life (76, 77).
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3 Potential mechanisms
underlying CFRD

3.1 Investigation of intrinsic effects of CFTR
in the b cell

Perhaps the most straightforward explanation for b cell

dysfunction in CF would be that mutated CFTR has an intrinsic

effect to impair insulin secretion in b cells. Indeed, some studies

provide evidence for b-cell CFTR expression/activity and an effect

on insulin release (27, 78–80). Conversely, studies using RNAseq, in

situ hybridization and immunohistochemistry show that b cell

expression of CFTR is very low and/or occurs in a small

proportion of b cells (30, 81–85). Moreover, patch-clamp

electrophysiology failed to detect a forskolin-activated chloride

currents in human b cells (which would be consistent with CFTR

activity) (30), and CFTR modulators were unable to alter insulin

release in isolated human islets in response to glucose and cAMP-

mediated activation (30). These latter data are consistent with no

impact on insulin release or glucose tolerance in mouse models with

b cell deletion of Cftr (30). Therefore, while intrinsic effects of CFTR

in b cells may occur, it seems likely that extrinsic effects of the

profoundly altered microenvironment in the CF pancreas are also

important in dysregulation of insulin release.
3.2 Impact of pancreatic ductal pathology
on b cell function

There is clear support from the literature for a role of exocrine

pancreas pathology/dysfunction on insulin release, best illustrated

by the fact that CF patients with pancreatic insufficiency have a

greater deficit in insulin and glucagon release vs. those with residual

exocrine pancreatic function (10, 13, 14). As mentioned, exocrine

pathology is initiated in young children, although it remains

relatively normal until around 1 year of age, suggesting there may

be a window of opportunity for prevention. Therefore,

understanding mechanisms whereby early stages of exocrine

pancreas pathology may exert detrimental effects on the b cell is

important and timely.

Some evidence exists to suggest that ductal pathology may

contribute directly to b-cell dysfunction. First, small intercalating

ducts are located in close proximity to islets, making them

appropriately positioned to exert effects on b cells (86–88).

Second, the limited available data examining an effect of

pancreatic ductal epithelial cells (PDECs) on b cell function

under normal circumstances generally show a positive effect.

Specifically, co-incubation of human islets with PDECs

ameliorated the decline in b-cell function which is observed with

long term culture (89, 90). It has also been reported that co-

transp lantat ion of i s le t wi th PDECs improved is le t

transplantation outcomes (91–93) In contrast, one study showed

that PDEC-secreted factors resulted in increased basal insulin

release (with no effect on GSIS), and worsened islet

transplantation outcomes (94). The reason for the discrepant data
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is not clear, but the authors of the latter study suggest that

“inflammation may mediate the deleterious effects of ductal cells

on islet cells”.

Several studies suggest that loss of CFTR expression/activity

from PDECs can impair insulin release (82, 85, 95). Knockdown of

CFTR in isolated islets (from ferrets or human donors) was

sufficient to impair insulin release (82, 85). This interpretation is

based on the authors’ demonstration that CFTR expression in

isolated islets was restricted to ductal epithelial cells [the presence

of ductal cells within isolated islet preparations is well supported in

the literature (82, 96–99)]. A separate study developed a model

whereby islets were cultured in close proximity to human PDECs

(95). Here, acute CFTR inhibition in those PDECs resulted in

decreased insulin release from islets. While this study had the

advantage of a PDEC-selective intervention, it had some

limitations, such as use of the pharmacological inhibitor CFTR

(inh)-172, which has been shown to have non-specific effects (82,

100–102).

Further, PDECs with defective CFTR function likely release

proinflammatory mediators that could impair insulin release from b
cells. Human pluripotent stem cell (hPSC)-derived PDECs from CF

donors express a proinflammatory transcriptome (103). Moreover,

PDECs from CF ferrets release a pro-inflammatory secretome

(104). Several of the differentially regulated proteins identified in

the latter study have been reported to impact pathways known to

affect b cell/glucose metabolism (105–109). For example, IGFBP7

was found to be downregulated in PDECs, although it was increased

in pancreatic stellate cells (PSCs) from CFTR-/- ferrets, and

exogenous treatment of wild-type whole islets from ferrets,

IGFBP7 resulted in altered insulin secretion (104). Together, these

data strongly suggest that PDEC dysfunction, especially in the early

stages of CF pancreas disease may contribute to impaired b cell

function/survival.
3.3 Impact of acinar pathology on
b cell function

It is well-established that pancreatic ductal pathology is also the

key initiator of pancreatic acinar destruction in CF (18, 23, 24, 110),

and in turn the profound destruction and remodeling of acinar cells

is a likely source of signals that may negatively impact the b cell.

There is evidence in the literature to support the existence of an

acinar-islet axis: insulin is known to modulate pancreatic acinar cell

function (111, 112), while pancreatic acinar-derived products affect

islet cell function and proliferation (113–116). This suggests that

normal acinar function is important in maintaining b cell function

and, conversely, that acinar pathology or loss in CF could contribute

to impaired insulin release.

Potential mediators of negative effects of inflamed acinar cells

on the islet come from in vitro studies of chronic pancreatitis

(which also manifests acinar dysfunction/destruction) (117). These

studies show increased production of proinflammatory cytokines

such as TNF-a and IL-1b from pancreatic acinar cells, which are

known to mediate impaired insulin release and/or b cell death.

Recent work focused onMODY8 (which occurs due to mutations in
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the acinar lipase CEL) showed that defective acinar cells were able to

induce ER stress and b cell secretory dysfunction (118).

Additionally, the extensive fibrosis and infiltrating fat that

characterize the CF pancreas may themselves release factors that

could impact b cell survival and function, although the nature of

such factors remain unknown.
3.4 Endocrine cell cross-talk

Disruptions to the islet microenvironment likely also contribute

to the insulin deficiency that characterizes CF. In a cells, several

studies suggest that CFTR may have intrinsic effects (119, 120),

although whether CFTR is expressed/active in a cells remains

controversial and understudied. It is now well recognized that

paracrine effects of a cell products (predominantly glucagon and

GLP-1) are required for optimal b cell function. However, the

increased a cell abundance in the face of impaired insulin release in

CF suggests an impairment in that paracrine axis. Indeed, new data

suggests that gene expression related to cell identity and hormone

secretion is altered in a cells from CF donors (30, 121), and that b
cell GLP-1R expression is also decreased (121), both of which would

be consistent with impaired a-to-b cell communication within the

CF islet.

For other islet endocrine cells, fewer data exist. However, the

increased abundance of d cells suggests that local islet somatostatin

levels may be elevated, which would be expected to suppress both

insulin and glucagon release. For PP cells, these may also be

increased in CF, despite a suppression of circulating PP levels,

suggesting again that local islet levels may be increased. Given that

PP has been shown to inhibit glucagon secretion through the PPYR-

1 receptors in a cells (122), an increase in islet PP could be another

means by which glucagon (and thereby insulin) release could be

impaired in CF. For ϵ cells, as mentioned, the status of islet ghrelin

production in CF is unknown. However, circulating levels are

increased (45) which, given the known effect of ghrelin to

suppress insulin release (but enhance glucagon release) could also

impact islet function. Taken together, dysregulation of islet

endocrine cell composition and/or function likely play a critical

role in perturbing insulin release in CF.
3.5 Changes in the pancreas/islet
microenvironment

It is highly likely that the decrease in islet vascular density

reported in our preliminary study has a profound effect on insulin

secretion into the peripheral circulation. In fact, the profile of

insulin release classically seen in CF, namely a blunted and

delayed insulin response (10, 13, 14), could be explained almost

entirely by the impaired delivery of nutrients to the islet along with

inefficient delivery of insulin to the peripheral circulation that

would be expected to occur in the face of decreased islet

vascularization. The concept that impaired insulin release may be

at least partly dependent on this loss of vascularity, also fits with

data showing that b cell mass (24, 28–32) and identity (30) are
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relatively preserved in CF, suggesting again that “indirect”

mechanisms likely explain the deficient insulin release. And,

moreover, this is also consistent with data showing that when

isolated islets from CF donors are studied ex vivo (i.e. under

conditions where they are no longer dependent on vascularization

for nutrient delivery and hormone release), insulin release is

relatively intact (30). Of course, additional data will be required

to fully test this hypothesis.

Similarly, the anticipated loss in autonomic innervation to the CF

pancreas is also likely to have a major impact on islet function. This

decreased innervation is likely to be a generalized effect, affecting

sympathetic, parasympathetic and sensory input, as it is anticipated

to occur secondary to exocrine pancreas destruction (and loss of

vasculature). Therefore, CF islets may be essentially denervated,

which would certainly be consistent with known defects such as

impaired insulin release (e.g. due to reduced cholinergic tone), loss of

the glucagon response to hypoglycemia (due to loss of sympathetic

input) and essentially absent PP secretion (due to loss of vagal input).

While the activation of PSCs during fibrosis has been most

widely studied in the context of pancreatic cancer and pancreatitis

(21, 22) there is also some evidence to suggest the activated PSCs

can be detrimental to b cells. Several studies demonstrate that

activated PSCs can impair b cell development (123) induce b cell

death (124–126), with some (127) but not all studies (128) also

suggesting a negative impact on b cell function. Analysis of secreted

factors from PSCs has been published by several groups (129–134);

investigation of these data may inform our understanding of

potential mechanisms underlying b cell dysfunction in CF.

Several lines of evidence suggest that the islet microenvironment in

CF is highly inflamed. As described above, a diverse array of

proinflammatory molecules are produced by both CFTR-defective

PDECs and inflamed acinar cells in the surrounding exocrine

pancreas, as well as CD8+ T-cells, which are known to produce

proinflammatory cytokines, and inflamed/activated endothelial cells

within the islet itself. Deposition of islet amyloid, in addition to its well-

known toxic effects on b cells, has proinflammatory effects on both

leukocytes and endothelial cells (61, 135, 136). Moreover, the

proinflammatory cytokines IL-1b and IL-6 have both been shown to

be produced by human or ferret islets, respectively, in CF (32, 82); these

may derive from endocrine cells themselves, although the cellular

source has not been definitively determined. Finally, the loss of intra-

islet macrophages would further compromise the islet’s ability to clear

cell debris or pathological material such as amyloid deposits, which are

known to stimulate pathways such as inflammasome and toll like

receptor signaling, further exacerbating the inflammatory milieu of the

CF islet. Overall, this inflammatory assault on the islet is a prime target

for therapeutic intervention, with approaches ideally targeting multiple

cell types and/or inflammatory mediators.
4 Considerations for treatment
of CFRD

The ideal treatment for CFRD would be correction of CFTR

mutations to reverse or even prevent exocrine and endocrine

pancreas disease. Highly effective CFTR modulator therapies
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(HEMT) have had major positive benefit in treating CF lung

disease and improving nutritional status/body mass index (137–

140). However, only limited data are available demonstrating

their impact on insulin release and glucose tolerance [reviewed

in (141)].

Since exocrine and endocrine pancreatic defects begin very early

in life (12, 110, 142), CFTR modulators may need to be initiated in

very young children to see substantial benefit. Encouragingly, in

young children (between 4 months and 5 years old), the CFTR

modulator ivacaftor shows improvements in exocrine pancreas

function (143–145), with small studies (including children as

young as 5 years old) also showing improved insulin release (146,

147). However, it is important to recognize that many people with

CF may not be able to fully benefit from these interventions (e.g.

those with already-established pancreas disease or whose CFTR

mutations do not have available modulator therapies). Moreover,

concerningly, the improved nutritional status with the

administration of HEMTs have resulted in increased prevalence

of overweight and obesity in people with CF as well as the

emergence of features of metabolic syndrome (148), both of

which may further increase the prevalence and/or severity of CFRD.

It seems that early adoption of HEMT may be possible in some

people with CF. However, even in those people, combination of

HEMT with therapies aimed at reversing or compensating for

aspects of the disrupted pancreas/islet microenvironment

(illustrated in Figures 1B, C) may well be necessary to improve b
cell function. These include three major areas of intervention. First,

the replacement of factors that are lost or whose release is impaired

in CF may be beneficial. Incretin-based therapies fit into this

category and have been shown to be efficacious in small studies of

people with CF (16, 149) but their broad applicability remain to be

demonstrated. Other islet-specific mediators may include glucagon

or factors elicited from the islet microvasculature which are

required for optimal insulin release. Second, correcting aberrant

restraint on the b cell due to the upregulation of paracrine inhibitors

such as somatostatin or ghrelin may be effective in restoring insulin

release. Finally, a key component will likely be blockade of

inflammatory mediators, which are released by multiple islet/

pancreatic cell types (e.g. exocrine, vascular and adaptive immune

cells; see Figure 1C) and which are well known to impair b cell

function and identity. To develop such approaches will require

efforts to generate a more comprehensive picture of the underlying

pathways and mediators which result in a compromised pancreatic/

islet microenvironment in CF.
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