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The transcription factor
VAX1 in VIP neurons of the
suprachiasmatic nucleus
impacts circadian rhythm
generation, depressive-like
behavior, and the reproductive
axis in a sex-specific
manner in mice
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Brooke Jackson3, Duong Nguyen1, Krystal Jang1,
Fabiola Ramos1, Emily V. Ho2, Laura J. Cui2,
Dominique L. M. Gillette2, Lorenzo F. Sempere3,
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Pamela L. Mellon2,5 and Hanne M. Hoffmann1,2*
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Michigan State University, East Lansing, MI, United States, 2Department of Obstetrics,
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University of California, San Diego, La Jolla, CA, United States, 3Department of Radiology and
Precision Health Program, Michigan State University, East Lansing, MI, United States,
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Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is

a key brain structure required to relay light information to the body and

synchronize cell and tissue level rhythms and hormone release. Specific

subpopulations of SCN neurons, defined by their peptide expression,

regulate defined SCN output. Here we focus on the vasoactive intestinal

peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to

regulate circadian rhythms and reproductive function.

Methods: To specifically study SCN VIP neurons, we generated a novel knock

out mouse line by conditionally deleting the SCN enriched transcription factor,

Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre).

Results: We found that Vax1Vip females presented with lengthened estrous

cycles, reduced circulating estrogen, and increased depressive-like behavior.

Further, Vax1Vip males and females presented with a shortened circadian

period in locomotor activity and ex vivo SCN circadian period. On a

molecular level, the shortening of the SCN period was driven, at least

partially, by a direct regulatory role of VAX1 on the circadian clock genes
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Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased

expression of arginine vasopressin (Avp) in the paraventricular nucleus,

which resulted in increased circulating corticosterone. SCN VIP and AVP

neurons regulate the reproductive gonadotropin-releasing hormone (GnRH)

and kisspeptin neurons. To determine how the reproductive neuroendocrine

network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a

kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females,

but not males, had an increased sensitivity to kisspeptin, leading to increased

luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but

significant increase in total sperm and a modest delay in pubertal onset. Both

male and female Vax1Vip mice were fertile and generated litters comparable

in size and frequency to controls.

Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a

neurological overlap between circadian timekeeping, female reproduction,

and depressive-like symptoms in mice, and provide novel insight into the role

of SCN VIP neurons.
KEYWORDS

ventral anterior homeobox 1, vasoactive intestinal peptide, arginine vasopressin,
suprachiasmatic nucleus, reproduction, premenstrual disorders, circadian
rhythm, cortisol
Introduction

The circadian system is responsible for coordinating circadian

and time-of-day signals throughout the body. On a cellular level,

circadian rhythms are produced by the molecular clock, a

transcription/translation feedback loop that generates 24-hour cell

autonomous rhythms (1–3). Alterations in molecular clock function

can lead to changes in circadian behaviors and fertility, as shown in

transgenic mouse models with a loss of Bmal1, a gene required for

molecular circadian rhythm generation (4–8). Along with proper

molecular clock function, the suprachiasmatic nucleus (SCN),

located in the ventral hypothalamus, is the central pacemaker of

the brain and serves to coordinate external timing signals and

physiological processes throughout the body. Importantly, the SCN

requires a finely balanced neuropeptide expression to maintain

circadian rhythms (9). Correct levels of vasoactive intestinal peptide

(VIP), along with other neuropeptides such as arginine vasopressin

(AVP), somatostatin, and gastric releasing peptide, are required for

SCN output controlling synchrony both within and downstream of

the SCN, including behavioral and tissue level circadian rhythms.

Both the molecular clock and neuropeptide expression must

function correctly to maintain strong and synchronized circadian

rhythms (10–13). SCN VIP-expressing neurons play an important

role in aligning SCN function to the time of day by relaying photic

information from the optic nerve to generate synchrony among

SCN neurons and SCN output (14, 15).
02
One of the well-established downstream effects of SCN VIP

neurons is the regulation of neuroendocrine function, including the

regulation of gonadal sex steroids needed for female fertility (6, 16–

19). In males, the role of VIP neurons with regard to reproductive

function is less clear. It has been suggested that VIP may be involved

in testicular health (20, 21), but no reproductive phenotype has

been reported in any Vip knock-out mouse line to our knowledge.

Additional studies have demonstrated that impaired SCN function

or disrupted circadian rhythms in the SCN or periphery do not, or

only modestly, disrupt male fertility, supporting the idea that male

fertility is more robust than female fertility and often resilient to

circadian disruption (22–26). In contrast, female fertility relies on

precise synchronization between hormone release and peripheral

tissue function (24, 27, 28). To regulate the reproductive axis, VIP

neurons project directly and indirectly through SCN AVP neurons

and kisspeptin neurons (29–32) to gonadotropin-releasing

hormone (GnRH) neurons. GnRH is released through both pulse

and surge modes into the median eminence, promoting the

pituitary to release luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). The timing of the LH surge is

particularly important in females at both the level of the

hypothalamus and the ovary for optimal ovulation (33, 34). This

surge requires coordinated input to GnRH neurons from both the

SCN and kisspeptin neurons. In the ovary, the molecular clock is

required in ovarian theca cells to increase LH receptor expression

around the time of day of the LH surge, facilitating ovulation (35).
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Given their importance for both circadian timekeeping and

reproductive health, the role of VIP neurons in the SCN is an

important area of investigation in the context of female

reproduction. Previous work has shown that changes in VIP alter

circadian rhythms in mice (36–38), with full-body VIP knock-out

female mice having disruptions in both the circadian and

reproductive systems, demonstrating the importance of VIP in

both processes (19). Such changes in VIP can also negatively

impact reproductive hormone release through dysregulation of

the required neurocircuitry for LH and FSH release (39–41),

which can, in turn, lead to dysregulation of female reproductive

sex steroids (42), an imbalance that can have negative effects on

both reproductive function and mood (43, 44). Evidence supports

that disrupted circadian rhythms and changes in estrogen and

progesterone might be contributing factors to depressive

symptoms in humans (41, 45). Together this evidence indicates a

potential shared origin between circadian deregulation,

reproductive deficits, and mood changes at the level of VIP neurons.

In this study, our goal was to determine if abnormal SCN VIP

neuron function causes disruption in circadian timekeeping,

fertility, and mood. We deleted the SCN-enriched transcription

factor, Ventral anterior homeobox 1 (VAX1) within the VIP

neurons of mice. Our previous work has shown that VAX1 is

required for SCN development (46, 47) and maintains a function in

late development of the SCN and VIP neurons, where it is required

for VIP expression, SCN output and female fertility (25). Due to the

specific overlap between VAX1 and VIP in the SCN, shown here,

the use of Vax1flox/flox:VipCre mice provides a model to specifically

investigate how weakened, but not ablated, SCN VIP neuron

function regulates reproductive function, SCN circadian output,

and mood. Identifying the shared genetic underpinnings of the

association of reproductive and mood disorders is a required first

step towards future development of efficient strategies to improve

hormone related mood disorders. We hypothesize that VAX1 in

postnatal VIP neurons is required for VIP neuron function, where

loss of VAX1 in VIP neurons causes weakened SCN output, leading

to female, but not male, subfertility and increased depressive-

like symptoms.
Materials and methods

Mouse breeding

All animal procedures were performed according to protocols

approved by the University of California, San Diego Institutional

Animal Care and Use Committee and the Institutional Animal Care

and Use Committee of Michigan State University and conducted in

accordance with the Guide for the Care and Use of Laboratory

Animals (48). Mice were maintained on a light/dark cycle of LD [12

h light, 12 h dark, average light intensity ~150-350 lux within the

cage]. Based on the newly proposed light reporting method by (49,

50), we determined the relative perception of light by mice using the

mouse a-opics equivalent daylight i l luminance (EDI,

Supplementary Figure 1). We calculated that the a-opics for our
experimental mice on LD to be melanopsin = 43.2 ± 16.9 lux, rod =
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51.6 ± 19.8 lux, s-cone = 0.03 ± 0.01 lux, and m-cone = 57.1 ± 21.7

lux. Lights ON = ZT0 (6:00), lights OFF = ZT12 (18:00), Zeitgeber

time (ZT). Vax1flox/flox (Vax1tm1c(KOMP)Mbp, MGI: 5796178) (51),

were crossed with mice heterozygous for the VipCre/wt allele (JAX

#010908). Period2::Luciferase (PER2::LUC) mice were purchased

from JAX (strain B6.129S6-Per2tm1Jt/J, JAX #006852) and crossed

with the offspring of Vax1flox/flox and VipCre/wt mice. We did not

detect any significant differences in mice heterozygous for the

VipCre/wt allele as compared to Vax1flox/flox mice, thus we pooled

the Vax1flox/flox and VipCre/wt control groups into one control group,

referred to as Ctrl. Genotyping primer sequences were as follows:

Vax1-wtF: CCAGTAAGAGCCCCTTTGGG, Vax1-floxF:

GCCGGAACCGAAGTTCCTA; Vax1-R : CGGATAGA

CCCCTTGGCATC; CreF: GCATTACCGGTCGTAGCAACGAG

TG, CreR: GAACGCTAGAGCCTGTTTTGCACGTTC. Mice

were kept on a C57BL/6J background and were screened for

germline recombination. Mice with germline recombination were

excluded from the studies. VIP-tdTomato mice were generated by

crossing VipCre/wt mice with Rosa-tdTomato reporter mice (JAX#

007914). Mice were euthanized by cervical dislocation followed

by decapitation.
Wheel-running behavior

Female and male mice aged 8-12 weeks at the start of the

experiment were single-housed in cages containing metal running

wheels and wheel revolutions were monitored using magnetic

sensors. All cages were contained in a light-tight cabinet with

programmable lighting conditions and rooms were monitored for

temperature and humidity. Sylvania T8 32-Watt 4100K fluorescent

bulbs (F032/841/ECO) were used to provide light to the cabinets.

Food and water were available ad libitum during the entire

experiment. After 1-week acclimation to the polypropylene cages

(17.8 × 25.4 × 15.2 cm or 33.2 × 15 × 13.2 cm) containing a metal

running wheel (11.4 cm diameter or 11 cm diameter, respectively),

locomotor activity rhythms were monitored with a VitalView data

collection system (Version 4.2, Minimitter, Bend OR) that

integrated into 6 minute bins the number of magnetic switch

closures triggered by half wheel rotations or full wheel rotations,

respectively. Running wheel activity was initially monitored for 2

weeks in a standard 12 h light/12 h dark cycle (LD). Subsequently,

mice were monitored for 4 weeks in constant darkness (DD), with

wheel running data analyzed from weeks 2-4 (14 days) in DD. Cage

changes were scheduled at 3-week intervals. The light intensity

varied between 268-369 lux inside the mouse cages. Wheel running

activity was analyzed using ClockLab Analysis (ActiMetrics) by an

experimenter blind to the experimental group. The circadian period

was analyzed by constructing a least-squares regression line through

a minimum of 13 daily activity onsets. Daily onset and offset of

activity, defined as a period of 5 h of activity following 5 h of

inactivity (onset) or a period of 5 h of inactivity following 5 h of

activity (offset), were used to calculate the length of the active phase

(alpha). Chi2 periodograms were generated for periods from 0 to 36

h, with significance set at 0.001. Activity profiles were generated for

weeks 2-4 in DD using the estimated chi2 periodogram tau for the
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same time period. Total daily counts for mice on wheels with 2

sensors were calculated over 24 h, during both LD and DD.
Porsolt forced swim test

Female mice aged 9-13 weeks were single-housed for two weeks

on LD, then placed in a transparent 7 by 24 inch cylinder filled 2/3

full with 20-21°C water. Swim tests were completed during the mice

active phase and started at ZT13. Mice were recorded in dim red

light (5 lux, a-opics: melanopsin = 0.03, rod = 0.20, s-cone = 0, m-

cone = 0.54, Supplementary Figures 1C, F) for 6 minutes before they

were removed from the water, dried with a cloth, and returned to

their cages for one hour before euthanasia and blood collection

from the abdominal aorta. Videos were scored by an observer

blinded to the experimental group using the sampling method

where the mouse is determined to be either floating or swimming

every 30 seconds for 5 minutes, with the first minute of each video

going unscored and serving as an adjustment period. The percent of

intervals where the mouse was observed to be floating is

reported (52).
Estrous cyclicity, sperm count, and
fertility assessment

For the fertility assessment, virgin 8- to 12-week-old male and

female Ctrl, and Vax1Vip mice were housed with opposite-sex Ctrl

mice (53, 54). The number of litters and the number of pups per

litter were recorded over a period of 4 months, as described

previously (54). Estrous cyclicity was monitored by vaginal lavage

with 20 µl H2O daily between ZT3 and ZT5 for 16-18 days. The

lavage solution was dried on a slide and stained with 0.5%

methylene blue. Cytology was visually examined and scored.

Ovary and uterus weights were collected after euthanasia in

diestrus. Following euthanasia in males, testes and epididymis

were collected and weighed. Sperm was collected from the

epididymis of male mice in M2 media (Sigma #M7167). The

epididymis was cut in half and sperm were expelled by gently

pressing down on the epididymis and then left in M2media at room

temperature for 15 min. The numbers of total and motile sperm

were counted from a 1:10 dilution of the M2 media containing

sperm by using a hemocytometer. The second epididymis was cut

into small pieces and left 15 minutes at room temperature in M2

media. The solution was homogenized frequently to help liberate

the sperm. The solution was filtered using a cell streamer (70 µm,

Falcon #352350) and sperm were diluted 1:10 with MQ before

counting total number of sperm heads.
Pubertal onset

Pubertal onset was established by visual inspection of preputial

separation (PPS) in males and vaginal opening (VO) in females, as

described previously (54). Body weight was recorded daily until

pubertal onset was observed.
Frontiers in Endocrinology 04
Immunohistochemistry staining

Tissues were collected between ZT3 and ZT5 from adult male

and proestrus female mice on LD light cycle and fixed overnight at

4°C in 60% ethanol, 10% formaldehyde, and 10% glacial acetic acid.

Tissues were washed in 70% ethanol and embedded in paraffin.

Single immunohistochemistry on 10 µm coronal brain sections

embedded in paraffin was performed as previously described (24).

The primary antibody was rabbit anti-VIP (Immunostar #20077,

1:1000, RRID : AB_572270). Sections were incubated in 1:300

secondary anti-rabbit IgG (Vector Laboratories, #BA-1000).

Secondary antibodies were purchased from Vector labs, and

colorimetric VIP (purple staining) and DAB (brown staining)

assays (Vector laboratories) revealed the primary antibodies.

VipCre/wt:Rosa-tdTomato+/- mice (n=4; 2 female and 2 male)

were sacrificed between ZT4-6 at 6 weeks of age and brains

immersed in 4% PFA overnight at 4°C. Brains were transferred to

30% sucrose until sectioned 40 mm thick with a cryostat. Sections

were stored in cryoprotectant at -80°C. Prior to staining, sections

were washed overnight in PBS at 4°C. Sections underwent antigen

retrieval for 20 minutes in citrate buffer, followed by a wash and

blocking for 30 minutes at room temperature using an Avidin/

Biotin blocking kit (Vector Labs) with 5% normal goat serum.

Sections were briefly washed and then stained following the

protocol for the Mouse on Mouse Basic Immunodetection kit

(Vector Labs) using a mouse anti-VAX1 (1:100; Origene RRID :

AB_2941013). Slices underwent Vectastain ABC kit (Vector Labs)

followed by TSA treatment (Akoya Biosciences) for 10 minutes and

finally streptavidin-conjugated secondary (1:200) for 30 minutes.

Slices were mounted, air-dried, and coverslipped with Prolong Gold

with DAPI (ThermoFisher). Slices were imaged on a Nikon Eclipse

Ti2-E using a Lumencor SpectraX LED and acquired using a DS-

Qi2 CMOS camera. One SCN section per animal was analyzed

using QuPath (55). All image manipulations were applied

homogenously to the entire image.
Multiplex in situ hybridization assay

To examine Vip, Avp, Nms, and Vax1 mRNA when adult male

and female hormones are most comparable, brains were collected at

ZT4-8 in young mice, adult males, and diestrus females. To examine

Avp, Vip, and Bmal1mRNA around the time of the LH surge in Ctrl

and Vax1Vip mice, brains were collected at ZT13-16 in proestrus

females. Multiplex in situ hybridization detection of mouse (Mus

musculus) mRNAs was performed with RNAscope® LS Multiplex

Fluorescent Reagent Kit (Advanced Cell Diagnostics, cat no. 322800)

for 3-plex assay in addition to RNAscope® LS 4-Plex Ancillary Kit

(Advanced Cell Diagnostics, cat no. 322830) for 4-plex assay

following vendor’s standard protocol for FFPE tissue sections with

minor modifications. RNAscope® assays were performed on a Leica

Bond autostainer as described (56) with the following probes:

RNAscope® 2.5 LS Probe – Mm-Arntl (also known as Bmal1)

[aryl hydrocarbon receptor nuclear translocator-like (Arntl)

transcript variant 1 mRNA, cat no. 438748-C1] or RNAscope® 2.5

LS Probe - Mm-Vax1mRNA – [musculus ventral anterior homeobox
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1 (Vax1), cat no. 805108-C1]; RNAscope® 2.5 LS Probe –Mm-Avp-

C2 [arginine vasopressin (Avp) mRNA, cat no. 401398-C2];

RNAscope® 2.5 LS Probe – Mm-Vip-C3 [vasoactive intestinal

polypeptide (Vip) mRNA, cat no. 415968-C3]; and RNAscope® 2.5

LS Probe – Mm-Nms-C4 [neuromedin S (Nms) transcript variant 1,

cat no. 472338-C4]. StockMm-Nms-C4 probe was diluted at 1:50 in a

pre-diluted C1 probe as recommended by the vendor, whereas stock

Mm-Avp-C2 and Mm-Vip-C3 were further diluted to 1:100 in

appropriate pre-diluted C1 probe due to saturating signal in the

pilot experiment. Tissue slides were counterstained with DAPI and

scanned with an Aperio Versa imaging system with 20X objective

with customized narrow-width band excitation and emission filter

cubes as described (56). The Aperio Cellular IF Algorithm (Leica

Biosystems, No: 23CIFWL) was used for automated cell enumeration

and segmentation based on nuclear DAPI staining. Cells were

classified based on the expression levels of one or more mRNAs. In

images taken at P2, Vax1 staining was oversaturated, so they were re-

imaged for proper mRNA visualization. Representative images at P2

were displayed with increased contrast, applied to all channels to

compare with P10 and P60 in Figure 1.
GnRH and Kisspeptin Challenges and
Hormonal Assays

Hormonal challenges were done using kisspeptin and GnRH

intraperitoneal (i.p.) injections at ZT3-4. Kiss-10 (catalog #42-431,

Batch 7A, Fisher Science, 30 nmoles/mouse) was injected into males

or diestrus females and blood was collected from the mouse from

the tail vein before (time 0) and after i.p. injection at time points 5,

10, 15, 30, and 45 minutes. Tail blood was collected before (time 0)

and 10 minutes after i.p. injection of GnRH (Millipore Sigma,

catalog #L7134, 1 mg/kg dose). For all other serum hormone

analyses the mice were killed by cervical dislocation, and blood

was collected from the abdominal aorta between ZT3 and ZT6.

Blood was allowed to clot for 1 hour at room temperature, then

centrifuged (room temperature, 15 minutes, 2,600× g).

Serum was collected and stored at -80°C before analysis for

estradiol at the Center for Research in Reproduction, Ligand Assay,

and Analysis Core, University of Virginia (Charlottesville), by Luminex

analysis for LH and FSH on MILLIPLEX MAP Mouse Pituitary

Magnetic Bead Panel (Millipore Sigma #MPTMAG-49k) or a

competitive enzyme-linked immunosorbent assay (ELISA) kit

(EIACORT, ThermoFisher) for corticosterone. Coefficients of

variance (CVs) were based on the variance of samples in the

standard curve run in duplicate. Reportable range: estradiol: 3–300

pg/ml, CV = <20%; LH: lower detection limit: 5.6 pg/ml, CV < 15%;

FSH: lower detection limit: 25.3 pg/ml, CV < 15%; corticosterone: lower

detection limit: 0.87 mg/dl, CV = <20%. Samples were run in singlets.
Ex vivo tissue recordings of PER2::
LUC expression

For circadian rhythm organotypic explant studies, tissues from

mice expressing the PER2::LUC circadian reporter were collected
Frontiers in Endocrinology 05
and analyzed as previously described (57). Male and proestrus and

diestrus PER2::LUC females were placed on LD and euthanized at

ZT3-4 via isoflurane inhalation and cervical dislocation. The brain

was removed immediately and placed in an ice-cold, CO2-saturated

Hank’s Balanced Salt Solution (HBSS) for approximately 1 hour.

Using a Vibratome (Leica), coronal brain sections of 300 mm were

collected and the SCN was dissected from the slices in ~2x2 mm

squares and placed on a 30 mm Millicell membrane (Millipore-

Sigma) in a 35 mm cell culture plate containing 1 mL Neurobasal-A

Medium (Gibco) with 1% Glutamax (Gibco), B27 supplement (2%;

12349-015, Gibco), and 1 mM luciferin (BD Biosciences). The lid

was sealed to the plate using vacuum grease to ensure an air-tight

seal. Plated tissues were loaded into a LumiCycle luminometer

(Actimetrics) inside a 35˚C non-humidified incubator at ZT6-6.5,

and recordings were started. The bioluminescence was counted for

70 seconds every 10 minutes for 6 days (day 1 – day 7 of recording

time). PER2::LUC rhythm data were analyzed using LumiCycle

Analysis software (Actimetrics) by an experimenter blind to the

experimental group. Data were detrended by subtraction of the 24 h

running average, smoothed with a 2 h running average, and fitted to

a damped sine wave (LM Fit, damped). The period was defined as

the time in hours between the peaks of the fitted curve. Amplitude

was defined as the value of the second peak and phase was defined

as the time of the first peak. Data from proestrus and diestrus female

SCN recordings were pooled as no significant differences in PER2::

LUC period or amplitude were found.
Cell culture and transient transfections

NIH3T3 (American Type Culture Collection) and COS-1

(American Type Culture Collection) cells were cultured in DMEM

(Mediatech), containing 10% fetal bovine serum (Gemini Bio), and 1x

penicillin-streptomycin (Life Technologies/Invitrogen) in a

humidified 5% CO2 incubator at 37˚C. For luciferase assays,

NIH3T3 cells were seeded into 24-well plates (Nunc) at 30,000 cells

per well. For electrophoretic mobility shift assays (EMSA) COS-1

cells were plated at 1.5 million cells/10 cm dish. Transient

transfections for luciferase assays were performed using PolyJet™

(SignaGen Laboratories, Rockville, MD), whereas Fugene was used

for plasmid overexpression for EMSA, following the manufacturer’s

recommendations. Transfection of cells was performed 48 h after the

cells were plated. COS-1 cells were transfected with Vax1/DKK-Flag

or CMV6/DKK-Flag overexpression plasmids (20 ng/well, Origene

Technologies, Rockville, MD) and harvested at sub-confluency 48–56

h after transient transfections in 10 cm dishes (Nunc). Transient

transfections for luciferase assays were done following the

manufacturer’s recommendations. NIH3T3 cells for luciferase

assays were co-transfected with 150 ng/well of Bmal1-luciferase or

Per2-luciferase reporters, 100 ng/well thymidine kinase-b-
galactosidase reporter plasmid, which served as an internal control

(54), as well as mouse Vax1/pCMV6 overexpression plasmid (20 ng/

well, Origene Technologies, Rockville, MD), or its empty vector

control (pCMV6). To generate the Bmal1-luciferase plasmid the

Bmal1 sequence between -966 bp to +140 bp from the Bmal1

transcriptional start site was excised from the pABpuro-BluF
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plasmid (Addgene, Plasmid #46824) with PCR primers (F:

gggctacaacagaacaactaac, R: taaacaggcacctccgt). The PCR product

was inserted into the pGL3-basic backbone between the Mlu-HF

and XhoI sites using the Quick Ligation Kit (New England Biolabs).

Site directed mutagenesis of the homeodomain binding sites (ATTA
Frontiers in Endocrinology 06
and ATTA-like) in the mouse Bmal1-luciferase plasmid was

performed using the NEB Q5 Site-Directed Mutagenesis Protocol

(New England Biolabs Inc.), following manufacturer’s instructions.

Primers for NEB Q5 site-directed mutagenesis were designed using

the NEB Base Changer (Table 1). To equalize the amount of DNA
A
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FIGURE 1

Vax1 is expressed in SCN Vip neurons from the early postnatal period through adulthood in both males and females. RNAscope® ISH representative
images (A–F). Images at P2 are displayed with increased contrast, applied to all channels, to compare with P10 and P60. Percent co-expression
between Vax1 and Vip, Avp, and Nms-expressing neurons (G, I, K) and cell counts (H, J, L) in P2, P10 and P60 males and females at ZT5. Scale bar is
300 µm. Student’s t-test *, p <0.05.
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transfected into cells, we systematically equalized plasmid

concentrations by adding the corresponding inactive plasmid

backbone. Cells were harvested 24 h after transfection in lysis

buffer [100 mM potassium phosphate (pH 7.8) and 0.2% Triton X-

100]. Luciferase values were normalized to b-galactosidase values to
control for transfection efficiency. Values were further normalized by

expression as fold change compared to the pGL3 control plasmid, as

indicated in the figure legends. Data represent the mean ± SEM of at

least three independent experiments done in duplicate and triplicate.
Cytoplasmic and nuclear extracts and
Electrophoretic Mobility Shift Assay (EMSA)

COS-1 cells were scraped in hypotonic buffer (20 mM Tris-HCl,

pH 7.4, 10 mM NaCl, 1 mM MgCl2, 10 mM NaF, 1 mM

phenylmethylsulfonyl fluoride, 1x protease inhibitor cocktail;

Sigma-Aldrich) and left on ice to swell. Cells were lysed and nuclei

were collected by centrifugation (4°C, 1700 g, 4 minutes). Nuclear

proteins were extracted on ice for 30 minutes in hypertonic buffer [20

mM HEPES, pH 7.9, 20% glycerol, 420 mM KCl, 2 mM MgCl2, 10

mM NaF, 0.1 mM EDTA, 0.1 mM EGTA, 1x protease inhibitor

cocktail (Sigma-Aldrich), and 1 mM phenylmethylsulfonylfluoride].

Debris was eliminated by centrifugation (4°C, 20,000 g, 10 min), and

the supernatant was snap-frozen and stored at -80°C.

Oligonucleotide probes are listed in Table 1. All synthetic

oligonucleotides were made by IDT (San Diego, CA). Annealed

double-stranded oligonucleotides (1 pmol/µl) were end-labeled

with T4 Polynucleotide Kinase (New England Biolabs, Ipswich,

MA) and [g32P]ATP (7000 Ci/mmol; MP Biomedicals, Solon, OH).

Probes were purified using Micro Bio-Spin 6 Chromatography

Columns (Bio-Rad). Binding reactions contained 2 µg nuclear

protein and 1 fmol of labeled probe in 10 mM HEPES (pH 7.9),

25 mM KCl, 2.5 mM MgCl2, 1% glycerol, 0.1% Nonidet P-40, 0.25

mM EDTA, 0.25% BSA, 1 mM dithiothreitol, and 350 ng poly(dI-

dC). For super-shift experiments, 2 µg mouse anti-DKK (Flag

antibody, Origene #TA50011) or 2 µg of normal mouse IgG

(Santa Cruz Biotechnology, #sc2025) were added to the reaction.

Samples were incubated for 20 minutes at room temperature before

loading on a 5% non-denaturing polyacrylamide gel in 0.25x Tris-

borate EDTA buffer. Gels were run for 2 h at 200 V, dried under

vacuum, and exposed to film for 2-5 d at room temperature.
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Statistical analysis

Statistical analyses were performed with GraphPad Prism 8,

using Student’s t-test, one-way ANOVA, or two-way ANOVA,

followed by post hoc analysis by Tukey or Bonferroni as indicated

in figure legends, with p < 0.05 to indicate significance. All data

were analyzed as independent measures except for wheel-running

activity, which was analyzed via a two-way repeated-measures

ANOVA. PER2::LUC timing of first peak phase relationships was

analyzed in R via a Circular Analysis of Variance High

Concentration F-Test, with a corrected confidence level of p <

0.01667 to account for family-wise error.
Results

Characterization of Vax1 expression in Vip,
Avp, and Nms neurons in the male and
female SCN

Vax1 is highly expressed in the developing mouse SCN and

becomes refined to the hypothalamus, primarily in the SCN in the

early postnatal period (25, 58). Although conditional deletion of

Vax1 in late neuronal development using the SynapsinCre allele

reduced VIP expression in the adult SCN (25), it remains unknown

if all VIP expressing neurons co-express VAX1 and how postnatal

deletion of Vax1 in VIP neurons impacts VIP expression. Because

VAX1 is highly expressed in the developing SCN, we first asked how

VAX1 expression changed after birth and into adulthood in males

and females. To answer this, we performed multiplex RNAscope®
assay at postnatal day 2 (P2), P10, and P60 (adult) at ZT5 in males

and females. We found that all SCN Vip-expressing cells at P2 co-

express Vax1 [Figures 1A, B, G; male (n = 2) 99.4 ± 0.6%, female (n

= 2) 100% ± 0%], a pattern maintained at P10 [Figures 1C, D, I;

male (n = 4) 99.98 ± 0.021%, female (n = 4) 99.91 ± 0.09%], and P60

[Figures 1E, F, K; male (n = 3) 98.80 ± 1.08%, female (n = 4) 100 ±

0%]. In addition to the high co-expression with Vip, Vax1 is highly

expressed throughout the SCN at P2, P10, and P60 (Figures 1A–F),

where both Avp and Nms-expressing cells also exhibited full overlap

with Vax1 in both sexes (Figures 1G, I, K). Interestingly, we found a

sex difference in the number of cells expressing Avp at P60, where

females had fewer Avp+ cells compared to males [Figure 1L; n = 7, t

(5) = 5.671, p = 0.0024], a difference that was not present prior to

puberty (P10). Although we did not see a significant sex difference

in the number of Vip neurons at any age, the concentration of Vip,

as evaluated through Vip probe signal intensity, was significantly

lower in females than males at P10 [t(3) = 6.01, p = 0.037, not

shown] and trended lower at P60 [t(5) = 2.47, p = 0.16, not shown].

To determine if this modest sex difference in Vip concentration

translated to a sex difference in peptide levels, we performed IHC in

adult male and female brains. Adult female mice had a significant

reduction in the intensity of VIP peptide in the SCN [Figures 2A, B,

t(11) = 3.874, p = 0.0026] as compared to males.

As Vax1 is ~100% co-expressed with Vip from P2 until P60 in

males and females (Figure 1), we next generated a conditional
TABLE 1 Primers used for site-directed mutagenesis in the Bmal1
regulatory region.

Position Sequence

-841 TGTCCATAACATGTAATAGAATCTTGCTCA

-796 CTCAGTACTCGCGATTATGCCCCTGCCTCA

-759 CTTGAGGGTTGGAATTACAGACTACGCCAC

-603 AAATGCGCTGGCTATTAGCGCTGTGGTTCC

-537 CACTCTGTGTTCCTAATATGTGGTTTCCTA
Primers used to mutate ATTA sites to GCCG within the Bmal1 promoter plasmid. Position
refers to the number of base pairs from the transcription start site. Underlined sequences
indicate mutated bases. All primers were designed using NEBase Changer.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1269672
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Van Loh et al. 10.3389/fendo.2023.1269672
knockout mouse to determine how the loss of VAX1 in VIP

neurons would impact SCN function. Using our RNAscope® ISH

data from Figure 1, we first visually inspected all stained sections for

potential Vax1 expression in non-SCN Vip cells. The olfactory bulb

is the only additional brain area that expresses Vax1 which is also

targeted by the VipCre allele (Figure 2C). In the scenario, the VipCre

allele does target some Vax1 expressing cells in the olfactory bulb, a

change in reproductive behavior could impact fertility data because

olfaction is required for normal male reproductive behavior. To

validate that the VipCre allele targeted VAX1 expressing neurons of

the SCN, we generated VipCre:RosaTdTomato (VipCre:Td) mice

allowing the identification of all neurons that are targeted by the

VipCre allele (Figures 2D, E). Using dual IHC, we quantified the

colocalization of VIP- and VAX1-expressing neurons in the SCN.

Using tdTomato as a marker for VIP neurons in sections from

VipCre:Td animals, we found 38 ± 7% of SCN tdTomato+ neurons

colocalized with VAX1 (n=4, 2 per sex, 36-101 neurons per animal).

An average of 23 ± 5% of VAX1 neurons colocalized with tdTomato

(n=4, 65-236 neurons per animal). This discrepancy between the

RNAscope and dual IHC has numerous potential explanations, as

detailed in the discussion.
Conditional deletion of VAX1 in VipCre

neurons shortens SCN circadian period in
females and males

To determine the role of VAX1 in VIP neuron circadian output,

we evaluated the wheel running behavior of Ctrl and Vax1flox/flox:

VipCre (Vax1Vip) mice in LD and constant darkness (DD). Wheel

running patterns in LD of Ctrl and Vax1Vip females and males were
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comparable (Figures 3A–I, LD). Light is a strong entraining signal

of the SCN, and activity rhythms in LD can mask weakened SCN

function (59). Following the initial LD period, mice were placed in

DD for 28d to assess the endogenous free-running period. Both

male and female Vax1Vip mice showed a significantly shortened

free-running period (Tau) compared to Ctrls (Figure 3E, two-way

ANOVA, male p = 0.0004, female p = <0.0001) with no differences

in Chi2 amplitude (Qp). There were no changes in the number of

wheel revolutions per day or activity duration (alpha, Figures 3F–I).

To determine if the shortening of the free-running period during

DD resulted from a change in the endogenous SCN circadian

period, we generated triple transgenic mice crossing Vax1Vip mice

with the PER2::LUC reporter mouse (60). In agreement with the

significantly shortened behavioral period of Vax1Vip males and

females on DD, we found that the SCN of Vax1Vip:PER2::LUC

mice showed a significant shortening in period as compared to Ctrl

males [Figure 4A, t(27) = 2.936, p = 0.0067] and females [Figure 4B,

t(24) = 2.125, p = 0.0440]. No differences were found in the

amplitude or phase relationships of PER2::LUC in the SCN of

Vax1Vip males or females as compared to Ctrl, indicating that the

rhythms in the SCN are not misaligned or significantly weakened

(Figures 4C–F). Together these data show that loss of VAX1 in VIP

neurons shortens SCN circadian output in both males and females.
VAX1 regulates molecular clock gene
expression in VIP neurons through a
direct mechanism

A shortened SCN period can be driven by both changes in SCN

peptide expression and changes in molecular clock gene expression.
A

B D
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C

FIGURE 2

VIP peptide is sexually dimorphic in the SCN. (A) Example image and (B) quantification of SCN IHC for VIP in adult males and females at ZT3. Scale
bar 100µm. Student’s t-test, **, p < 0.01 (C) RT-PCR shows VipCre recombination of the Vax1flox allele in indicated tissues. Abbreviations stand for
olfactory bulb (olf), magnocellular preoptic area (MCPO), caudoputamen (CP), supraoptic nucleus (SON), piraform area (Piri), paraventricular nucleus
(PVN), cingulate gyrus (CG), and ventral palidum (VP). Blue, underlined text indicates tissues that are known to express Vax1. (D) Example images and
quantification (E) of dual IHC for VipCre:Td (red, cytoplasm) and VAX1 (green, nuclear) expressing cells in the adult SCN (DAPI, nuclei). Scale 50 µm.
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FIGURE 3

Vax1 deletion within VIP neurons shortens behavioral free-running period in males and females. (A, B) Male and (C, D) female Ctrl and Vax1Vip mice
were single housed with running wheels. (A, C) Data show double plotted actogram activity with 14 days in LD12:12 (LD) followed by 28 days in
constant darkness (DD). Data are presented in ClockLab normalized format. Horizontal bar above the actograms indicates lights on (white) and lights
off (black) during the LD12:12 cycle. (B, D) Chi2 periodograms during 2 weeks in DD. Matching codes (a1, a2, etc.) on the upper right corner of each
actogram and chi2 periodogram indicate data from a particular mouse, with variable scaling indicated in the upper left. 14-day average wheel-
running data were used for indicated analysis parameters in LD and DD. Average histogram data for (E) Wheel-running period, (F) Chi2 amplitude,
(G) activity amplitude, (H) wheel revolutions, and (I) activity duration (Alpha). Number within the bar indicates number of animals in each group.
3-way ANOVA, ***, p < 0.001; ****, p < 0.0001.
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We have previously shown that VAX1 promotes Per2-luciferase

plasmid expression using transient transfection assays (25).

However, we have not yet demonstrated whether this action is

direct or indirect. To assess if VAX1 directly binds with our top

candidate ATTA site of the mouse Per2 DNA regulatory region

(25), we used EMSA. We found that VAX1 directly binds the ATTA

site at +1774/1770bp from the transcriptional start site of the mouse

Per2 gene (Figure 5A, Super shift is indicated by *). In addition to

ATTA sites in the Per2 regulatory region, the Bmal1 regulatory

region also contains numerous ATTA sites. Using transient

transfections, we found that VAX1 promotes Bmal1-luciferase

expression (Figure 5B). Site-directed mutagenesis of ATTA-like

sites in the Bmal1 regulatory region (Table 1) showed a modest
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increase in fold-change of VAX1-driven Bmal1-luciferase

expression in transfected cells (Figure 5B). Interestingly, VAX1

can directly bind to all the identified ATTA sites tested by EMSA

(EMSA, Figure 5C, supershift indicated by *). This identifies for the

first time that VAX1 can directly bind to the regulatory regions of

Per2 and Bmal1 and provides a mechanism by which changes in

VAX1 expression can directly impact molecular clock function.

Next, to determine if loss of VAX1 in VIP neurons would

significantly impact Bmal1 expression in Vip neurons, we

performed RNAscope® for Bmal1, Vip, and Avp in the adult SCN

of Ctrl and Vax1Vip females (Figure 6). Note these experiments were

completed in proestrus at ZT16, with the goal of having the most

hormonally challenging environment in the female body present at
A B
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C

FIGURE 4

Vax1Vip SCN has a shortened PER2::LUC period in ex vivo culture. Histogram of PER2::LUC SCN (A, B) circadian period and (C, D) amplitude from
control and Vax1Vip:PER2::LUC females (combined proestrus and diestrus) and males. Statistical analysis by Student’s t-test, *, p<0.05 **, p < 0.01,
n = 7-16. (E) PER2::LUC phase (time of first peak) in the SCN of control and Vax1Vip:PER2::LUC males and (F) females, n = 7-16. Mean times of first
peak are indicated by vector lines, and symbols indicate individual data points. Data were analyzed via the Rayleigh Test of Uniformity, where
crossing the dotted gray line indicates significant clustering (p < 0.05), and the Watson’s Two-Sample Test of Homogeneity. No significant
differences were found in females between estrous stages.
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the time of sample collection. We found that in Ctrl and Vax1Vip

females almost 100% of Vip and Avp neurons co-expressed Bmal1

(Figures 6A, B). Despite a trend in a reduction in Vip in the SCN of

Vax1Vip females (Figure 6C), as well as a trend in the reduction in

cells co-expressing Vip and Bmal1 (Figure 6D), no significant

difference in any of the studied transcripts, or colocalization of

transcripts were identified (Figures 6C, D).
Vax1Vip females have lengthened estrous
cycles and deregulated sex steroids,
whereas males have increased
sperm count

The SCN provides daily neuronal and hormonal signals

aligning circadian timekeeping in peripheral reproductive tissues

allowing coordination between hormone release and increased

tissue sensitivity improving reproductive function (25, 27, 35, 57).

To determine if Vax1Vip mice have misaligned circadian phase of

their reproductive tissues, we recorded PER2::LUC expression in
Frontiers in Endocrinology 11
the pituitary, ovary (female), uterus (female), and epididymis (male)

of triple transgenic mice. No tissues were found to have significant

differences in period (Table 2), amplitude (Table 2), or time of first

PER2::LUC peak (Table 2, phase). These data indicate that the

weakened SCN output of Vax1Vip mice does not significantly

impact circadian timekeeping in the studied peripheral tissues but

does not preclude disruptions to fertility. To determine if

reproductive function is impacted in Vax1Vip mice, we first

evaluated pubertal onset. At pubertal onset, body weight was

comparable between Ctrls and Vax1Vip in both sexes (Table 3).

Male pubertal onset, as evaluated by preputial separation (PPS) was

slightly delayed [Figure 7A, t(18) = 2.211, p = 0.040], whereas

female pubertal onset, as assessed through vaginal opening (VO)

and first estrous, were comparable between Ctrls and Vax1Vip

females (Table 3). There was no impact on male reproductive

function (Table 3) apart from significantly increased total sperm

count [Figure 7B, t(12) = 3.101, p = 0.009]. Vax1Vip males had

normal testis size and percent motile sperm (Table 3). The increase

in total sperm pool was not associated with changes in basal LH and

FSH levels in males (Table 3). Both Vax1Vip males and females were
A B

C

FIGURE 5

VAX1 binds directly to regulatory regions of molecular clock genes Per2 and Bmal1. (A, C) EMSA assay of COS-1 cells, represents in Lane 1: pCMV-
Flag (CMV, empty vector), Lane 2: Vax1-Flag plasmid and Lane 3: Vax1-Flag plasmid + anti Flag antibody. White star indicates super shift. Example
gels of n = 3. (B) Transient transfections of NIH3T3 cells with the mouse Bmal1 regulatory region driving luciferase (Bmal1-luciferase) with and
without Vax1 overexpression vector (20 ng) or its empty vector (EV, pCMV6, 20 ng). Numbers indicated with the stars on the regulatory regions refer
to ATTA sites that have been mutated (see Table 1). Statistical analysis by Two-way ANOVA mixed effect model, *, p < 0.05; **, p < 0.01; ***, p <
0.001, n = 4-6 in duplicate or triplicate.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1269672
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Van Loh et al. 10.3389/fendo.2023.1269672
comparable to Ctrls for the number of litters generated in 90 days,

days to first litter, and litter sizes (Table 3). Despite the normal

fertility in females, Vax1Vip females had a significant lengthening of

the estrous cycle [Figure 7C, t(19) = 2.307, p = 0.033] with a similar

amount of time spent in each cycle stage as compared to Ctrls

[Two-way ANOVA, F (1, 10) = 2.500, P=0.1449]. This lengthening

in estrous cycles was associated with a reduction in FSH, estrogen,

and ovarian weight in Vax1Vip females (Figures 7D–F), but did not

impact basal LH or uterine weight in diestrus (Table 3).
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Reduced VIP in the SCN of Vax1Vip mice is
associated with increased GnRH neuron
sensitivity to kisspeptin in females, but not
in males

VIP neurons from the SCN project directly to GnRH neurons

and indirectly through AVP to kisspeptin neurons. The anterior

pituitary releases LH into the circulation upon GnRH release at the

median eminence, allowing an indirect approach to study GnRH
A

B
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C

FIGURE 6

Loss of Vax1 in VIP neurons does not reduce Vip and Bmal1 expression in the SCN. RNAscope® assay at ZT16 in the SCN of proestrus Ctrl and
Vax1Vip females. (A) Example images of RNAscope® assay for Vip (blue), Avp (red) and Bmal1 (green). N = 3-4 per group. Scale bar 300 µm.
(B) Percentage of cells that co-express Bmal1 with Avp or Vip. Mann-Whitney, p > 0.05. (C) Average cytoplasm dye concentration reflecting mRNA
transcripts for Avp, Vip, and Bmal1 Mann-Whitney, p > 0.05. (D) Number of cells expressing indicated combinations of Avp, Vip, and Bmal1. Mann-
Whitney, p > 0.05.
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neuron function. To determine if the reduction in VIP in the

Vax1Vip SCN impacted GnRH neuron response to kisspeptin, we

performed hormone challenges in mice. We first confirmed that the

pituitary responded to GnRH by increasing LH release through an

i.p. injection of GnRH. As expected, the fold change in LH in

response to a GnRH challenge was comparable between Ctrl (9.07 ±

1.97, n = 4) and Vax1Vip males [12.09 ± 2.43, n = 6, t(8) = 0.885, p=

0.401], and between Ctrl (10.50 ± 3.37, n=8), and Vax1Vip females

[6.95 ± 3.84, n = 4, t(10) = 0.641, p= 0.535]. To assess if the GnRH

neuron response to kisspeptin was impacted in Vax1Vip males and

females, we next performed an i.p. kisspeptin challenge. There were

no differences between LH release in Vax1Vip (5798 pg/mL ± 583, n

= 4) males and Ctrls [5325 pg/mL ± 670, n = 5, t(7) = 1.11, p =

0.303]. In contrast, Vax1Vip females had an increased release of LH

in response to kisspeptin at 5 and 10 minutes as compared to Ctrls
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(Figure 7G, mixed-effects analysis, 5 minutes p = 0.0102, 10 minutes

p = 0.0257), as well as an overall increase in LH release [Figure 7H, t

(7) = 2.560, p = 0.0376]. Such alteration in the neuroendocrine

network regulating LH release would be expected to impact female

estrous cyclicity, which relies on precisely timed hormone release

and sex-steroid-feedback.
Hypothalamic imbalance between Vip and
Avp in the Vax1Vip hypothalamus is
associated with increased basal
corticosterone and depressive-like
symptoms in females

AVP is expressed outside the SCN and is highly expressed in the

paraventricular nucleus (PVN), a direct target of SCN neurons. The
TABLE 2 Summarized data of male and female Vax1Vip:PER2::
LUC recordings.

Ctrl
(Avg
± SEM)

Vax1Vip

(Avg
± SEM)

Student’s
t-test, P

Ovary Period (h) 25.6 ± 0.3 25.2 ± 1.5 n = 3-6, P = 0.87

Ovary Amplitude
(counts/min) 27.4 ± 11.2 8.7 ± 2.6 n = 3-6, P = 0.40

Uterus Period (h) 25.7 ± 0.5 27.2 ± 1.7 n = 3-6, P = 0.25

Uterus Amplitude
(counts/min) 43.3 ± 9.6 9.1 ± 7.2 n = 3-6, P = 0.10

Female Pituitary
Period (h) 24.2 ± 0.2 25.5 ± 0.3 n = 3-6, P = 0.18

Female Pituitary
Amplitude
(counts/min) 10.5 ± 3.3 15.4 ± 11.5 n = 3-5, P = 0.58

Female Arcuate
Period (h) 25.3 ± 0.7 24.1 ± 0.6 n = 3-5, P = 0.39

Female Arcuate
Amplitude
(counts/min) 1.1 ± 0.4 1.3 ± 0.2 n = 3-5, P = 0.77

Epididymis
Period (h) 24.5 ± 0.2 25.5 ± 0.5 n = 8-9, P = 0.12

Epididymis
Amplitude
(counts/min) 12.9 ± 4.9 12.7 ± 1.0 n = 8, P = 0.98

Epididymis
Phase (h) 4.5 ± 0.1 4.1 ± 0.1 n = 8-9, P = 0.81

Male Pituitary
Period (h)

25.3 ± 0.3 24.9 ± 0.6 n = 8-23, P = 0.447

Male Pituitary
Amplitude
(counts/min) 16.5 ± 2.5 9.8 ± 2.6 n = 8-20, P = 0.14

Male Arcuate
Period (h) 24.7 ± 0.5 24.9 ± 0.4 n = 8-22, P = 0.84

Male Arcuate
Amplitude
(counts/min) 1.9 ± 0.4 1.8 ± 0.6 n = 8-22, P = 0.88
PER2::LUC lumicycle data from male and proestrus female tissues. Phase data were analyzed
using a Rayleigh test followed by a Watson two-sample test of homogeneity.
TABLE 3 Fertility parameters in Vax1Vip mice.

Ctrl (Avg
± SEM)

Vax1Vip (Avg
± SEM)

Student’s
t-test, P

Age at
VO (days) 28.7 ± 0.5 29.1 ± 0.9 n = 10-26, P = 0.67

Weight at
VO (g) 12.0 ± 0.2 12.5 ± 0.5 n = 10-26, P = 0.36

Weight at
PPS (g) 13.1 ± 0.4 14.0 ± 0.7 n = 8-12, P = 0.22

Diestrus uterus
weight (mg) 71.6 ± 9.5 71.5 ± 7.5 n = 8-16, P = 0.99

Age at first
estrus (days) 34.7 ± 0.9 34.0 ± 1.4 n = 7-22, P = 0.70

Testis
weight (mg)

103.8 ± 4.4 100.4 ± 3.5 n = 4-6, P = 0.59

LH (ng/ml)
diestrus female 0.51 ± 0.13 0.17 ± 0.04 n = 7-14, P = 0.09

LH (ng/
ml) male 0.35 ± 0.08 0.40 ± 0.19 n = 10-14, P = 0.83

FSH (ng/
ml) male 12.58 ± 1.13 11.41 ± 1.12 n = 12-14, P = 0.47

Percent
Motile Sperm 35.09 ± 2.41 31.21 ± 4.58 n = 3-9, P = 0.70

Female
Litter Size 7.14 ± 1.55 8.34 ± 0.84 n= 6-22, P = 0.16

Male Litter Size 7.14 ± 1.55 7.48 ± 1.52 n= 10-22, P = 0.79

Female Litters in
90 days 2.05 ± 0.65 2.33 ± 0.82 n= 6-22, P =0.61

Male Litters in
90 days 2.05 ± 0.65 2.43 ± 0.79 n= 7-22, P = 0.38

Female Days to
first litter 25.69 ± 7.86 21.33 ± 1.51 n= 6-16, P = 0.31

Males Days to
first litter 25.69 ± 7.86 26.64 ± 6.05 n= 11-16, P = 0.91
Pubertal onset was evaluated by vaginal opening (VO) in females and preputial separation
(PPS) in males. Gonadal, uterine, and circulating hormone values are from adult Vax1Vip

males and diestrus/metestrus females. Statistical analysis by Student’s t-test.
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PVN is a well-established relay site playing a significant role in

several autonomic functions, including stress (61–63). To

determine how Avp levels were impacted in the hypothalamus of

Vax1Vip females, we analyzed Avp using RNAscope® assay.

Interestingly, we found that Vax1Vip females, which have

comparable Avp mRNA in the SCN to Ctrl (Figures 6C, D),

display a significant increase in Avp transcript and cell numbers

in the PVN (Figures 8A–C). This increase of Avp in the PVN of

Vax1Vip females provides a potential link to the activation of the

stress axis. In agreement with this, basal corticosterone levels were

overall increased at ZT3 in Vax1Vip mice [Figure 8D, two-way

ANOVA, F(1,12) = 5.868, p = 0.032]. Finally, to determine if these

known risk factors for depression would reflect an increase in

depressive-like behavior in Vax1Vip mice, we tested males and

females in the Porsolt forced swim test. We found that Vax1Vip

females (metestrus, ZT13) exhibited increased depressive-like
Frontiers in Endocrinology 14
behaviors as shown by an increase in the percentage of time

floating (Figure 8E) as compared to Ctrl females [t(17) = 2.121, p

= 0.0489], while Vax1Vip males were comparable to Ctrls [t(11) =

0.5889, p = 0.5678]. The increased time floating in the Porsolt

forced swim tests of the VaxVip females correlated with increased

circulating corticosterone 1 h after the swim test [Figure 8F, t(11) =

3.595, p = 0.0042].
Discussion

This work explores VIP neurons within the SCN as a

neurological point of overlap between circadian disruption,

reproduction, and depressive-like behaviors. Here, we leverage the

highly localized co-expression between the homeodomain

transcription factor VAX1 in VIP neurons of the SCN to develop
A B

D E F

G H

C

FIGURE 7

Vax1Vip females have a reduction in ovary weight, estrogen, and FSH, as well as an increased sensitivity to kisspeptin. (A) Age at preputial separation
(PPS) and (B) million sperm per epididymis in Ctrl and Vax1Vip males, n indicated in graphs, Student’s t-test, *, p<0.05; **, p <0.01. (C) Estrous cycles
were evaluated in females, and average estrous cycle length was established. Student’s t-test, *, p < 0.05. (D) Ovary weight, (E) circulating estrogen
and (F) circulating FSH of diestrus females. n indicated in graphs, Student’s t-test, *, p < 0.05. (G) Circulating LH levels in diestrus females evaluated
over a 45-minute time period in response to an i.p. kisspeptin injection. Mixed Effects analysis, *, p < 0.05. and (H) the resulting area under the curve.
Student’s t-test, *, p < 0.05.
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a conditional knockout mouse model that exhibits abnormal

circadian timekeeping, reproductive axis function, and mood.

Excitingly, this novel mouse model suggests that VIP neurons

might provide a shared neurological underpinning between

reproductive and mood disorders.
Vax1 is co-expressed in Vip, Nms, and Avp
neurons from development to adulthood
and regulates molecular clock
gene expression

The SCN retains a high expression of numerous homeodomain

transcription factors after development (26, 46, 64–66), including

Vax1. Vax1 is critical in brain and neuronal development (25, 46,

47, 53, 67) and highly expressed in the developing mouse brain

before it becomes refined to the adult hypothalamus, primarily in

the SCN, during the early postnatal period (25, 58). We have

previously shown that conditional deletion of Vax1 in late

neuronal development using the SynapsinCre allele reduced VIP

expression in the adult SCN (25), but this previous study did not

address how many VIP neurons co-expressed Vax1. Here we find

that ~100% of Vip-expressing neurons co-express Vax1 at P2 and
Frontiers in Endocrinology 15
maintain a close to 100% co-expression at P10 and P60. In addition,

we show that Vax1 is also co-expressed by ~100% of Nms and Avp

neurons at P2, P10, and P60. This shows for the first time that Vax1

is highly expressed in three primary SCN neuron populations from

the early postnatal period into adulthood, suggesting a role of VAX1

in regulating the function of these neuronal populations. The close

to 100% co-expression of Vax1 and Vip strengthens the value of our

conditional knock-out model as a novel tool to specifically study

SCN VIP neurons. This high level of overlap, coupled with the

primary restriction of Vax1 expression within VIP neurons in

adulthood to the SCN (25, 58), allows for targeted impairment of

VIP neurons within the SCN alone. This approach allows us to

build upon previous work that identified the importance of VIP in

circadian and reproductive function using VIP knockout mice (36),

while avoiding some pitfalls of other methods of selectively

targeting VIP neurons within the SCN, such as damage to other

neurons or brain nuclei via surgical methods due to the ventral

location of the SCN (9, 68). One concern with conditional knockout

mice is that off-target recombination may impact other brain or

peripheral functions or have a negative impact on development. In

our model, we found VipCre-mediated recombination outside of the

SCN was restricted to the olfactory bulb, which also expresses Vax1.

However, as a functioning olfactory bulb is pivotal to male mating
A B

D E F

C

FIGURE 8

Vax1Vip females have increased Avp in the PVN, increased corticosterone, and increased depressive-like behaviors. (A) Example images of
RNAscope® detection for Avp in the SCN and paraventricular nucleus (PVN) of proestrus females at ZT16. Scale bar is 600 µm, n=3-5.
Quantification of RNAscope® assay by (B) cell counts and (C) dye concentration of Avp in the PVN, n=3-5, Student’s t-test, **, p <0.01. (D)
Corticosterone was measured at ZT3-5 in males (M) and females (F), Two-way ANOVA, *, p<0.05. (E) To test depressive-like behavior, metestrus
female or male mice were tested at ZT13 by a Porsolt forced swim test, and the % time floating assessed. N indicated in graph, Student’s t-test,
*, p<0.05. (F) Corticosterone levels in circulating blood 1 h following the Porsult forced swim test. n = 4-9, Student’s t-test, **, p<0.01.
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(69) and our male mice bred normally, it is likely that the olfactory

bulb is not significantly affected in this model. We also generated

VipCre : Td mice to identify neurons that were targeted by the VipCre

allele prior to tissue collection to validate that the VipCre allele

specifically targeted VAX1 expressing neurons of the SCN. We

confirmed that SCN tdTomato+ neurons colocalized with VAX1,

and VAX1 neurons colocalized with tdTomato, although these

percentages were lower than predicted by RNAScope® ISH assay.

The differences in co-localization between mRNA and protein

results could reflect different sensitivity limits between the

visualization approaches, or alternatively may provide evidence

that not all Vax1 mRNA is being translated into protein. Another

possibility is that VAX1 expression could be circadian at the mRNA

and/or protein level, leading to differences in expression that are

time-of-day dependent, although future studies will be needed to

determine this.

As a transcription factor that binds to ATTA and ATTA-like

sites, a common sequence in the DNA, VAX1 has a high number of

genes it can potentially regulate. Here, we build upon our previous

work that determined the ability of VAX1 to promote Per2-

luciferase expression (25) by providing evidence that this occurs

via direct binding of VAX1 to regulatory regions of Per2. In

addition to Per2, another core component of the molecular clock,

Bmal1 also contains numerous ATTA-like sites in its regulatory

region. We found here that VAX1 can directly bind to all the

identified Bmal1 ATTA sites tested by EMSA, in addition to

promoting Bmal1-luciferase expression. This work provides a

mechanism by which changes in VAX1 expression can directly

impact molecular clock function by VAX1 binding to the regulatory

regions of Per2 and Bmal1. Excitingly, Vax1Vip mice presented with

a shortening in SCN PER2::LUC period in ex vivo recordings, as

well a shortened free-running period, together supporting a role of

VAX1 as a novel regulator of both molecular clock expression and

function. Future work will be required to determine if a loss of

VAX1 in VIP neurons causes a circadian phase shift in VIP

neurons, and/or if a loss of VAX1 leads to a reduction in

molecular clock transcript expression, which could impact clock-

controlled gene expression and phase.
Circadian timekeeping is impaired in
Vax1Vip mice, where differences in SCN
peptide transcript levels may underlie sex-
specific vulnerability to circadian disruption

VIP neurons within the SCN are an important coordinator of

the circadian timekeeping system (37). Given this, it is no surprise

that the Vax1Vip mouse model demonstrates altered SCN output, as

indicated by the shortened Vax1Vip free-running period in both

sexes. This finding is consistent with work done by others indicating

that a decrease in VIP within the SCN results in a shortened free-

running period (36). However, VIP rarely acts alone in the

regulation of circadian behaviors, and other peptides and

components of the molecular clock exert strong influences on

locomotor period (70). A shortened free-running period can be

caused by an increase in SCN AVP (71–73) or reductions in Bmal1
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expression (74). Others have found that Bmal1 is expressed

rhythmically in Avp- and Vip-expressing neurons (75) and that

deletion of Bmal1 from Avp-expressing neurons can lengthen free-

running periods in mice (76). As Vax1Vip females do not show

significant changes in Avp in the SCN, and only trended towards

decreased Vip expression, in addition to a non-significant reduction

in neurons co-expressing Bmal1 and Vip, the cause of the shortened

period in Vax1Vip mice remains unknown. Future work will aim at

determining if these trending reductions in Vip, combined with a

trend in reduced Bmal1 expression in Vip neurons together might

contribute to the shortened SCN period of Vax1Vip mice.

Sex differences are well-documented in SCN morphology and

cellular function, previously reviewed in several studies (77, 78).

There is strong evidence that VIP is sexually dimorphic, with

increased VIP expression in human males (79, 80), as well as

increased Vip transcript in male nocturnal laboratory rats (81)

and diurnal Nile Grass rats (82). Our data support and extend these

findings, where Ctrl male mice also exhibit increased Vip transcript

and VIP compared to females. A potential mechanism guiding this

sex difference could rely on the influence of the gonadal hormones

estradiol and testosterone, which modulate VIP expression in the

SCN (81–84). Our data, and others, suggest that sex differences in

both Vip transcript and peptide levels (78) occur post-puberty.

Recent work has demonstrated detailed spatial patterning of the

onset and development of Avp and Vip transcription (85). Our data

support the conclusion that SCN Vip neuron development is not

complete at P10; however, we find decreased Vip transcript and

protein in the adult female SCN compared to males, while increased

VIP-TdT+ cell numbers were found in a lateral cluster of the SCN

(85). There are several potential rationales for these differences,

including delays between transcription onset and VipCre-driven

TdTomato expression that may lead to different results from our

mRNA transcript measure. Nevertheless, these neuropeptide sex

differences highlight the need for continued investigation in both

males and females to further our understanding of how SCN

function drives circadian output in both sexes and the role of sex

steroids therein.
Vax1Vip males exhibit normal fertility, while
females display modest dysregulation of
the reproductive axis

Circadian timekeeping is essential for coordinating hormone

release and increased tissue sensitivity within reproductive tissues

(25, 27, 35). The SCN modulates the timing of hormone release

through direct and indirect projections to GnRH neurons, which in

turn regulate the release of LH and FSH (86–88). These hormones

are required for reproductive health through the production of

testosterone and spermiogenesis in males and ovulation, embryo

implantation, and follicular health in females (89–91). Though

more frequently studied in females, current studies suggest that

severe circadian disruption, through changes either in light

exposure or via direct disruption to the SCN, may have a mild

influence on male fertility (92). Interestingly, we found that Vax1Vip

males had delayed pubertal onset. Given the importance of both
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SCN Avp and Vip in LH release (32, 93, 94), a required hormone for

pubertal onset (95), it will be of interest for future studies to

examine SCN neuropeptide expression in Vax1Vip males

undergoing puberty. Interestingly, aside from delayed pubertal

onset, there were no significant deficits in Vax1Vip male

reproductive function, and Vax1Vip males displayed an increase in

total sperm through an unknown mechanism. These data support a

theory that a less stringent circadian control may favor male

fertility. Together our data, coupled with evidence from genetic

knockout and light-disruption studies (92, 96, 97), indicate that

male fertility is resilient when faced with circadian challenges.

In contrast to males, circadian disruption and impaired SCN

function are known to have a strong impact on female reproduction

(27, 98–100). VIP, in particular, has an important role in the female

reproductive axis, where VIP knockout females have lengthened

estrous cycles and are sub-fertile, resulting in fewer liters of smaller

sizes (19). It is likely that some of the sub-fertility in full body VIP

knockout females is driven by VIP neurons within the SCN, as our

Vax1Vip females also displayed lengthened estrous cycles. Our data

are further supported by work in progress, showing that surgically

ablated VIP neurons within the SCN also lengthened estrous cycles

(101). Although Vax1Vip estrous cycles were lengthened, we did not

see changes in litter sizes or number of litters that are associated

with full VIP knockout females. Taken together, these data indicate

estrous cycle length is influenced by Vip-expressing neurons within

the SCN.

The estrous cycle is regulated by hormonal feedback throughout

the reproductive axis. Within the hypothalamus, VIP neurons

directly project onto GnRH neurons to regulate the frequency of

GnRH release to the pituitary (31) and indirectly through

project ions onto AVP neurons in the anteroventra l

paraventricular nucleus to regulate kisspeptin neurons that

modulate the surge release of GnRH needed for ovulation (102,

103). Although only a single dose of kisspeptin was tested, we found

that Vax1Vip females had a greater release of LH in response to a

kisspeptin challenge than Ctrls, a difference we did not observe in

the males. The normal pituitary response to GnRH and normal

circadian rhythms in ex vivo pituitary explants of Vax1Vip females,

combined with the absence of Vax1 in gonadotropes as shown by

qPCR in isolated gonadotrope cells from female mice (53, 104) and

single cell RNAseq [personal communication, (104, 105)], suggest it

is unlikely that the increased LH release in response to kisspeptin is

associated with abnormal gonadotrope function. One possibility for

the sex difference in kisspeptin-induced changes in LH release in

Vax1Vip mice might be linked to differences in the neuronal circuit

encompassing the sexually dimorphic anteroventral periventricular

nucleus kisspeptin neurons (106). This neuronal population is

larger in females than in males and plays a central role in the LH

surge (107, 108). Interestingly, a comparable increased sensitivity to

a kisspeptin challenge in females was also observed in full body

Bmal1 knockout mice (8), where the mechanism for this increase

remains unknown. Future work to determine how neuronal

network changes, with or without intact molecular clock function,

impact GnRH neuron sensitivity to kisspeptin will be of interest.

Although the kisspeptin challenge elicited a greater LH release in

the Vax1Vip females than Ctrls, basal LH levels were comparable to
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Ctrls, and Vax1Vip females exhibited a decrease in circulating FSH.

LH and FSH production and release are controlled in a great part by

the pulsatile pattern of GnRH release (87, 109, 110). Repeated blood

sampling of Vax1Vip mice would have been an ideal approach to

assess for changes in pulsatile hormone release, however, as Vax1Vip

mice present with normal litter sizes, time to first litter, ovarian

phase, which indicate overall normal ovarian function, and an

increased activation of the stress axis, which is a suppressor of

GnRH release (111), we decided against completing a LH and FSH

pulse analysis due to the confounding effect of corticosterone on

these data. In the future, we hope to better elucidate the relationship

between stress and pulsatile hormones in this mouse model.
VAX1 in postnatal VIP neurons regulates
female depressive-like behavior

Changes in the neuroendocrine regulation of FSH release from

the pituitary in Vax1Vip mice is a potential pathway causing the

reduction in estrogen of these mice. FSH is a limiting factor in the

conversion of testosterone into estrogen in the granulosa cells of the

ovary (112, 113), from where estrogen enters the general

circulation. It is important to note that both FSH and estrogen

are circadian (114, 115), thus a limit of this study, with blood

sampling at a single time point, is our inability to assess if the

reduction in these hormones might be due to a phase shift in

hormone release. While primarily associated with its role in

reproduction, estrogen has a multitude of functions, including

altering the sensitivity of neuronal circuits (116, 117), regulating

the activity of the stress axis (118), and displaying strong

correlations with mood (119–121). Low estrogen has been

correlated with depressive-like behaviors in women (122). In

rodents, increasing estrogen has been shown to exert an anti-

depressant-like effect during the Porsolt forced swim test, a test

that is thought to reflect depressive-like behavior in rodents (123,

124). Additionally, an imbalance of progesterone and estrogen is

associated with a higher incidence of mood disorders, including

premenstrual dysphoric disorder (PMDD), a depressive disorder

that presents with severe physical and physiological symptoms

during the luteal phase of the menstrual cycle (125–128). In

addition to recapitulating the low estradiol (or imbalance of

progesterone and estrogen) as a risk factor for mood disorders,

Vax1Vip females also display another hallmark of PMDD, weakened

SCN output (129, 130). Excitingly, Vax1Vip females (but not males)

have increased depressive-like behavior. Taken together, these data

point to a novel role of VAX1 in regulating VIP neuron modulation

of mood and the reproductive axis and raise the potential of Vax1Vip

females to serve as a new model for mood disorders that are tied to

reproductive cycles, such as PMDD. Furthermore, VIP-and AVP-

expressing neurons contribute to the regulation of the stress axis

(131–134). Stressful situations result in an increase in signal from

the hypothalamus, which translates to higher levels of

corticosterone via activation of the hypothalamic-pituitary-

adrenal (stress) axis. Notably, the hypothalamus is comprised of

several nuclei, including the SCN (135) and the PVN (136, 137),

with varying roles and contributions to the stress axis. Within the
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SCN, reductions in Vip have been correlated with increased stress

(138), whereas the VIP neuron target, the PVN, is a central relay

station of the stress axis (63, 139). Thus, the reduction of Vip in the

SCN of Vax1Vip females is a likely contributing factor in the

increased corticosterone levels found in Vax1Vip females, both at

baseline and in response to a stressor. Specifically within the PVN,

AVP is known to stimulate the stress axis (140, 141), and AVP

expression in the PVN is comparable between control and VIP

knockout males (142). This suggests that the reduction in VIP in the

SCN of Vax1Vip mice may not be driving the changes in AvpmRNA

within the PVN, but more likely is the result of other VAX1 targets

that impact VIP neuron communication with PVN neurons, such

as GABA (143, 144).
Conclusion and summary

Due to the abundance of VIP throughout the brain and body, it

is difficult to study subsets of neurons expressing VIP without

invasive surgery, which can lead to damaged brain tissue and a

variety of other complications. In this study, we leveraged the close

to 100% overlap of Vax1 expression specifically within SCN Vip

neurons, to generate a conditional knockout mouse model to study

this subset of VIP neurons. We found that deletion of Vax1 from

SCN VIP neurons results in mice with altered circadian rhythms.

Excitingly, Vax1Vip females had disrupted reproductive axis

function, low estrogen, and high corticosterone, as well as an

increase in depressive-like behaviors. Together, these data provide

us with an exciting new model to study the genetic and neurological

overlap between circadian disruption, female reproductive health,

and depressive-like behaviors.
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