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Introduction: Lung cancer is a major cause of illness and death worldwide. Lung

adenocarcinoma (LUAD) is its most common subtype. Metabolite-mRNA

interactions play a crucial role in cancer metabolism. Thus, metabolism-related

mRNAs are potential targets for cancer therapy.

Methods: This study constructed a network of metabolite-mRNA interactions

(MMIs) using four databases. We retrieved mRNAs from the Tumor Genome Atlas

(TCGA)-LUAD cohort showing significant expressional changes between tumor

and non-tumor tissues and identified metabolism-related differential expression

(DE) mRNAs among the MMIs. Candidate mRNAs showing significant

contributions to the deep neural network (DNN) model were mined. Using

MMIs and the results of function analysis, we created a subnetwork comprising

candidate mRNAs and metabolites.

Results: Finally, 10 biomarkers were obtained after survival analysis and

validation. Their good prognostic value in LUAD was validated in independent

datasets. Their effectiveness was confirmed in the TCGA and an independent

Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset by comparison

with traditional machine-learning models.

Conclusion: To summarize, 10 metabolism-related biomarkers were identified,

and their prognostic value was confirmed successfully through the MMI network

and the DNN model. Our strategy bears implications to pave the way for

investigating metabolic biomarkers in other cancers.
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1 Introduction

Lung cancer is a significant public health concern as evidenced

by its high morbidity and mortality rates (1). Among its various

subtypes, lung adenocarcinoma (LUAD) is the most prevalent,

accounting for approximately 40% of all cases (2). Metabolic

alterations in LUAD are crucial for its diagnosis, prognosis, and

treatment response (3). Despite advancements in our

understanding of LUAD’s pathogenesis and development of

therapeutic strategies, it remains an aggressive and deadly tumor

type. Therefore, the identification and development of prognostic

metabolism-related biomarkers for predicting outcomes in LUAD

bear clinical significance (4).

Biomarkers have emerged as valuable indicators for the timely

diagnosis, prognosis, and prediction of treatment responses in

LUAD. These biomarkers reflect a diverse range of molecular

alterations, including genetic expression patterns (5). Several

studies have attempted to investigate the relationship between

biomarker expression and LUAD. For instance, elevated

expression levels of PD-L1 have been associated with worse

prognosis and reduced survival in lung adenocarcinoma patients

(6). PD-L1 expression may serve as a potential predictive biomarker

for response to immunotherapy and can help guide treatment

decisions. High expression of certain receptor tyrosine kinases,

such as the epidermal growth factor receptor (EGFR) has been

identified in subsets of patients with LUAD and has been proven

effective as targets for specific TKIs (7, 8). Altered expression of

microRNAs (miRNAs) has been implicated in the development and

progression of LUAD (9, 10). Assessment of expressions of these

biomarker levels is important in selecting the most appropriate

targeted therapy approach (11, 12).

Cancer, a metabolic disease, arises from alterations in

metabolism triggered by genetic or non-genetic signals (13).

Tumor cells exhibit distinct metabolic characteristics, including

increased proliferation and resistance to apoptosis. As tumors

actively manipulate metabolic systems to sustain their growth,

targeting their metabolism is a promising approach for

personalized cancer therapy (14, 15). Tumor cells often switch

their metabolism from mitochondrial oxidative phosphorylation to

glycolysis, a phenomenon known as the “Warburg effect.” This

provides energy and building blocks for tumor cell division, growth,

and adaptation to oxidative stress (16). As tumor cells need to adapt

their metabolic pathways to support their rapid growth and energy

demands, they undergo metabolic reprogramming, a hallmark of

cancer (17). Metabolic abnormalities contribute to the development

and progression of cancer through the interactions between specific

mRNAs and metabolites, referred to as metabolite-mRNA

interactions. Metabolic pathways are crucial for tumor

progression and survival; therefore, they have garnered significant

research attention in the study of LUAD (18). Cao MDT, L.J.,

Boulanger J, et al., found that altered metabolic processes, such as

increased glucose consumption, dysregulated lipid metabolism, and

abnormal amino acid utilization occur commonly in LUAD cells.

Understanding the intricacies underlying these metabolic

alterations can provide valuable insights into the development of
Frontiers in Endocrinology 02
effective therapeutic strategies (19). Recently, Ksenia M. Shestakova

et al., showed that the combination of metabolomics and cutting-

edge bioinformatics is a practical tool for the accurate diagnosis of

patients with non-small cell lung cancer (NSCLC) (20, 21). The

study examined the relationship between metabolites and NSCLC

and its original conceptualization offers a novel perspective on

studying the connection between NSCLC and metabolites.

In the biomedical field, with the introduction of high-

throughput technology, the amount of biomedical data, including

genomic, metabolomic, and proteomic has massively accumulated

(22). By storing, analyzing, and interpreting these impressive

amounts of biomedical big data, it is possible to better understand

human health and illness (23, 24). A type of deep learning and

artificial intelligence, deep neural network (DNN) models have

emerged as a potent tool for research in several fields of biology (25–

27). Compared to classical machine learning techniques, deep

learning has many advantages, such as strong self-learning

capabilities and excellent generalization ability (28). Algorithms

based on deep learning created from artificial neural networks are

promising for identifying patterns and extracting features from

large amounts of complex data to obtain biomarkers with clinical

prognostic value (29).

Despite significant advances in biomarker identification,

elucidation of metabolic pathways, and utilization of bioinformatics

and machine learning techniques, several challenges remain. One of

these is the identification of reliable biomarkers with high sensitivity

and specificity (30). Integrating multi-omics data and utilizing DNN

models is necessary to find reliable biomarkers for improving the

accuracy of cancer diagnosis and prognosis prediction (31, 32).

Hence, at the genomic level, the goal of our study was to identify

metabolism-related biomarkers for LUAD by integrating data on

gene expression, metabolite profiling, and protein interactions to

construct a network of metabolites-mRNAs and mRNA interactions.

We then introduced a DNN model to identify metabolism-related

biomarkers for LUAD. Our findings could contribute to the

advancement of metabolism-based research.
2 Materials and methods

The workflow of our investigation is shown in Figure 1, and the

details are described in the subsequent sections.
2.1 Data sources

In this study, eight LUAD cohorts (Table 1) were obtained from

The Tumor Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/) (GSE36471, GSE42127, GSE68465, GSE72094, and

GSE87340), and Clinical Proteomic Tumor Analysis Consortium

data portal (CPTAC, https://cptac-data-portal.georgetown.edu/).

RNA-Sequence (Seq) and clinical data from 594 samples of

LUAD (containing 535 tumor tissues and 59 non-tumor tissues)

were acquired from the corresponding TCGA cohort. Table 2 lists
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the patients’ clinical characteristics. Symbol and gene type attributes

of RNA-Seq data were annotated using the Ensemble database.

According to the gene type attribute, mRNAs were extracted.

For the microarray datasets (GSE36471, GSE42127, GSE68465,

GSE72094, and GSE87340) generated by the Illumina and Agilent

platforms, originally processed data (series matrix files) were used

(33). Probe IDs were mapped to corresponding gene IDs using the

platform files.
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Using four different data sources, namely the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (34), Reactome

(35), Human-GEM (36), and BRENDA (37), we retrieved

metabolite-mRNAs interactions (MMIs) (38). The Virtual

Metabolic Human database’s metabolite abbreviations were

utilized to standardize metabolite names to the universal

nomenclature. A directed MMI network was constructed (the

whole network was detailed in Supplementary Table S1),
B

C

A

FIGURE 1

Workflow of the study. (A) Data sources. (B) Screening candidate mRNA. (C) Identification and validation of biomarkers.
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including 31227 unique MMIs covering 1869 metabolites and

4134 mRNAs.
2.2 Metabolism-related DEmRNA
interaction network

Fragments per kilobase of exon per million read mapped

(FPKM) values were chosen as the representative measure of

mRNA expression from RNA-Seq data. Using the FPKM values,

“Limma” (39) was employed to identify statistically significant and

differentially expressed (DE) mRNAs between LUAD and non-

tumor tissues. Specifically, a t-test was utilized for evaluating

differential expression. A threshold of | log2(fold-change) | ≥ 1
Frontiers in Endocrinology 04
and a false discovery rate (FDR) adjusted p-value < 0.05 were

adopted as criteria for determining statistical significance. The

collection of metabolism-related DEmRNAs was determined by

combining DEmRNAs with 4134 mRNAs obtained from the MMI

network. Using the tool, STRING (Search Tool for the Retrieval of

Interacting Genes) (https://string-db.org/) (40) with a confidence

level >= 700, a metabolism-related DEmRNA interaction network

was constructed.
2.3 Candidate mRNAs

2.3.1 Metabolism-related mRNA DNN
model construction

The Google TensorFlow 2.0 architecture was used to generate a

fully connected DNN model with numerous hidden layers, an

output layer, and an input layer. Hence, we built a metabolism-

related mRNA DNN model using the Google TensorFlow 2.0

architecture, comprising an input layer, three hidden layers, and

an output layer, following a previously described workflow (41).

The features of the DNN model were the FPKM values of the

metabolism-related DEmRNAs. The output layer with a label of 1/0

indicated if the sample was cancerous or not. Given the small

sample size, the Adaptive Moment Estimation (ADAM) optimizer

with default Ker as parameters was selected. The loss function of

binary cross-entropy was applied. The DNN model’s performance

was influenced by three parameters related to model training,

including batch size, number of epochs, and learning rate. Model

training requires multiple rounds of learning. The learning rate was

considered when randomly selecting a batch of training sets in each

round. A larger batch size results in faster model convergence but

has weaker generalization ability. Therefore, the initial values for

batch size and epoch were set to 16 and >= 1000, respectively,

according to the sample size and number of features. When using a

large batch size, a high learning rate was required to prevent

underfitting, while a low learning rate was needed for a small

batch size to avoid overfitting. To achieve optimal results, a learning

rate of 0.0001 was set for subsequent learning cycles, and the

parameters for batch size, epoch, and learning rate were

continuously adjusted based on the validation accuracy curve and

results of loss curve fitting.

2.3.2 Candidate mRNAs screening
In the DNN model, the larger the weight, the greater the

corresponding feature’s contribution. Features that contributed

significantly to the DNN model were more biologically

significant. Therefore, features were screened as candidate

mRNAs based on the weight of the features. The arithmetic

average of absolute Shapley Additive exPlanations (SHAP) values

for the impact representing the importance of the feature to all

samples was denoted as the weight and it was calculated using

summary_plot. SHAP (42) is an approach in game theory to explain

the output of a machine learning model. The SHAP values were

obtained first. Assuming that the ith sample was xi, the jth feature of

the ith sample was xij, the predicted value of the model for that

sample was f(xi), and the baseline of the entire model (usually the
TABLE 1 Datasets for lung adenocarcinoma used in this study.

Data
source Platform

Follow-up
information

Sample
count

TCGA Illumina HiSeq
2000

OS 594

GSE36471 GPL9053 OS 115

GSE42127 GPL6884 OS 176

GSE68465 GPL96 OS 442

GSE72094 GPL15048 OS 442

GSE87340 GPL11154 OS 54

CPTAC
(mRNA)

Illumina Hiseq
4000 – 204

CPTAC
(protein)

Tandem mass tags – 214
OS, Overall survival; -, No Overall Survival.
TABLE 2 Clinical characteristics of the patients with lung
adenocarcinoma.

Clinical characteristics TCGA

Patient (n) 594

Age, years

median 65

range 33–88

Sex (%)

female 270 (45.4%)

male 317 (53.4%)

Absent 7 (1.2%)

Stage (%)

Stage I 317 (53.4%)

Stage II 136 (22.9%)

Stage III 97 (16.3%)

Stage IV 28 (4.7%)

Absent 16 (2.7%)
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mean of the target variables for all samples) was ybase, then the

SHAP value obeyed the following equation:

f (xi) = ybase + f (xi1) + f (xi2) + f (xi3) +⋯+f (xik)

Where f(xij) was the SHAP value of xij. Intuitively, f(xi1) was the

contribution value of the 1st feature in the ith sample to the final

prediction value f(xi). When f(xi1) > 0, the feature improved the

prediction value and had a positive effect; conversely, it meant that

the feature lowered the prediction value and had a negative effect.

The impact of a feature on the machine learning model was thus

represented by the SHAP value. To determine an approximation of

the SHAP values for the DNN models in this study, DeepExplainer

from the Python SHAP module was employed. The SHAP value of

each feature on each sample was obtained using force_plot. Finally,

the weight value was calculated by summary_plot based on the

arithmetic average of absolute SHAP values. Candidate mRNAs

were screened by generating a scatter plot for a single variable with

different histograms at the upper border of the plot using the weight

values of the feature mRNAs in the DNN model.
2.4 Biomarkers

2.4.1 Biomarker identification
From the metabolism-related DEmRNA interaction network,

the module of interacting candidate mRNAs and their one-step

neighbors were collected. Gene ontology (GO) functional analysis

(43) was conducted to identify the unique biological properties,

including biological processes (BP), cellular components (CC), and

molecular functions (MF). All mRNAs in the module were

extracted for GO and KEGG pathway enrichment analyses, and

analyzed on the metascape platform (https://metascape.org/) (44).

Categories with the minimum overlap number of 3 and the

hypergeometric test Benjamini-Hochberg adjusted p-value < 0.05

were selected.

Metabolism-related pathways and functional classes were

chosen based on the results of enrichment analysis and the

enriched mRNAs (including candidate mRNAs and one-step

neighbors) were added to the MMI network to create a module of

enriched mRNAs and metabolites, which was combined with the

module of interacting candidate mRNAs to create a subnetwork

comprising candidate mRNAs and metabolites.

Kaplan-Meier survival analyses (45) for candidate mRNAs in the

subnetwork were conducted using the “survival” package in R to

confirm the prognostic effect. Overall survival (OS) was defined as the

time from thedateof initial surgical resection to thedateofdeath or last

contact (censored), truncated at 120 months. Survival curves were

drawn using Kaplan-Meier analysis and were compared using the log-

rank test for assessing statistical significance. Basedon the results of the

survival analysis, candidate mRNAs were identified as biomarkers.

2.4.2 Biomarkers’ classification
effectiveness assessment

To assess the effectiveness of identified biomarkers for LUAD,

594 samples from the cohort of TCGA-LUAD were used.
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Traditional machine learning methods, including K-nearest

neighbor (KNN) (46), Support Vector Machine (SVM) (47),

Decision Tree (48), Naive Bayes (49), and Logistic regression (50)

were applied for sample classification using identified biomarkers.

Their performance was visualized as the area under (AUC) the

receiver operating characteristic (ROC) curves.

2.4.3 Protein levels of biomarkers
Images depicting protein expression in normal tissue and

pathology of tumor tissue sections were downloaded from the

Human Protein Atlas (HPA, https://www.proteinatlas.org/)

database to determine differential expression at the protein level.
2.5 Validation of biomarkers

Furthermore, Kaplan-Meier survival analysis was conducted in

five independent GEO- LUAD datasets (GSE36465, GSE42127,

GSE68465, GSE72094, and GSE87340) to further validate the

prognostic value of biomarkers. A total of 204 samples of LUAD

from CPTAC comprised an independent dataset and were used to

validate the effectiveness of the identified biomarkers.

A literature review was conducted by searching the PubMed

database for all articles published in the English Language on the

relevant topics of identification of biomarkers for LUAD and the

relationship between biomarkers and metabolites.
3 Results

3.1 Candidate mRNAs

First, in the TCGA dataset, using Student’s t-test with a false-

discovery rate (FDR) < 0.05 and | log2(fold-change) | >= 1, 4376

DEmRNAs between the 535 LUAD samples and 59 non-tumor

samples were extracted; among them, 2448 and 1928 DEmRNAs

were upregulated and downregulated, respectively (Figure 2A). A

total of 887 metabolism-related DEmRNAs (Table S2) were

obtained from the overlap of 4376 DEmRNAs and 4134 mRNAs

from the MMI network. Using the STRING database, a

metabolism-related DEmRNA interaction network was

constructed with 887 nodes and 1852 edges (the entire network

was detailed in Supplementary Table S3).

For the metabolism-related DEmRNA DNN model, the initial

input layer was set with the FPKM values of 887 DEmRNAs, three

hidden layers of 400, 100, and 40 neurons, and the 1/0 label as the

output layer (Figure 2B). The 594 samples were split randomly with

80% in the training set and 20% in the testing set. Through the

output label and after setting batch size = 16, epoch = 2000, and

learning rate = 0.00001, the validation accuracy curve and loss curve

both conformed to the general law of deep learning. The accuracy

reached 99.7% (Figure 2C). Thus, the regularization optimization

was effective.

Python’s DeepExplainer SHAP module was applied to interpret

the contribution of each mRNA to each sample in the DNN model;
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SHAP values were obtained using force_plot. It demonstrated that

each feature contributes differently to the prediction of the model

from the base value (ybase) to the final fetch f(xi). Based on the

definition of the weight of the mRNA in the DNN model,

the arithmetic mean of the absolute SHAP values representing the

influence of the feature on the importance of all samples were

calculated by summary_plot and expressed as the corresponding
Frontiers in Endocrinology 06
weight values. To select candidate mRNAs with high contributions

to DNN models, a scatterplot was generated for a single variable,

and different histograms were plotted on the upper boundary of the

scatterplot (Figure 2D). According to the distribution of mRNAs in

the scatterplot, mRNAs arranged according to the weight values

were mainly concentrated on two sides of the weight value of

0.00075; therefore, we chose these 38 mRNAs with weight value >
B

C

D

E

A

FIGURE 2

Candidate mRNAs. (A) Volcano plot of differentially expressed (DE)mRNAs between tumor and non-tumor samples. Red and green represented
upregulated and downregulated DEmRNAs, respectively. (B) The structure of the DNN model. (C) The accuracy curve and the loss curve of the
mRNA DNN model. (D) The joint distribution of weight values. The x-axis represents the weight-value of each mRNA and the y-axis represents 887
mRNAs, as 1–887 to indicate each mRNA. (E) The weight values of the top 38 candidate mRNAs.
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0.00075 as candidate mRNAs (Figure 2E). Statistical analysis

showed that the top 38 mRNAs contributed 0.1558 to the total,

while the remaining 849 mRNAs contributed 0.1109.
3.2 Analysis of the candidate
mRNA module

A total of 38 candidate mRNAs were identified by differential

expression analysis and DNN model screening. From the STRING

database’s protein interaction data, the metabolism-related

DEmRNA network of LUAD was built. From this network, 10

candidate mRNAs (CAT, CAV1, ENO1, GAPDH, GPX2, GPX3,

NQO1, P4HB, PDIA4, and PDIA6) showed interactions. The

metabolism-related DEmRNAs network was segmented into an

interacting candidate mRNA module (Figure 3A) that included

these 10 candidate mRNAs for interaction and the 42 one-step

neighbor mRNAs that they were connected with.

The metascape platform was used to conduct functional

enrichment analysis based on GO and KEGG databases for

candidate mRNAs of LUAD. Categories with the minimum

overlap number of 3 and the hypergeometric test Benjamini-

Hochberg adjusted p-value < 0.05 were selected. Fifty-two

mRNAs were identified as considerably enriched in functional

classes relevant to metabolic processes by GO enrichment analysis

(Figure 3B), and arachidonic acid and glutathione metabolic
Frontiers in Endocrinology 07
pathways were included among the top 10 of the KEGG

enrichment results (Figure 3C).

The KEGG database showed two metabolic pathways, namely

glutathione metabolism (51) and arachidonic acid metabolism (52),

which were chosen for subsequent analyses (Figure 4). First, in the

glutathione metabolism pathway, reduced glutathione (GSH) is

converted to oxidized glutathione by the enzymes GPX2 and

GPX3 in glutathione metabolism (GSSG). Several prevalent

human diseases, including lung cancer, are partially caused by

impaired glutathione metabolism. Nevertheless, GPX2 and GPX3

are engaged in the body’s metabolic mechanism for maintaining

glutathione levels, which can successfully prevent lung cancer (53).

In addition to being crucial for lowering inflammatory reactions,

improving immunological function, and ensuring normal gene and

protein expression, stabilizing glutathione metabolism also controls

the proliferation and death of human cells.

In the metabolism of arachidonic acid, arachidonic acid

functions through GPX2 and GPX3 to form 15(S)-HPETE (54).

One of the six monohydroperoxy fatty acids generated by the non-

enzymatic oxidation of arachidonic acid is 15(S)-HPETE

(leukotrienes). Hydroxy fatty acid (+/-)15-HETE, which is more

stable, is produced by reducing hydroperoxides. Arachidonic acid

belongs to a group of bioactive substances produced by the 5-

lipoxygenase pathway in oxidative metabolism, implicated in

pathophysiological roles such as inflammation (55), acute

hypersensitivity (56), and host defensive reactions. The lung is an
B C

A

FIGURE 3

Analysis of the candidate mRNAs module. (A) The candidate mRNAs module. Results of the enrichment analyses of 52 mRNAs were represented in a
bubble diagram; (B) The findings of the GO enrichment analysis for functions linked to metabolic processes, with -log10 P >= 10; (C) The results of
the KEGG enrichment analysis, assuming -log10P >= 8.
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important organ that is significantly affected (57). Additionally,

there are three ways that arachidonic acid metabolites can influence

the development and metastasis of lung cancer as follows:

prostacyclin inhibits platelet-tumor cell contact; thromboxane

increases platelet-tumor cell contact and thus encourages tumor

cell invasion; prostaglandins' cytoprotective activity maintains the

integrity of epithelial cells and affects tissues' responses to pro-

tumorigenic substances, and through lipoxygenases (58).
3.3 Biomarkers

3.3.1 Biomarkers’ identification
Twenty mRNAs, including six candidate mRNAs (CAV1,

ENO1, GPX2, GPX3, NQO1, and P4HB) and 14 one-step

neighbor mRNAs (GPI, GPX5, GPX8, GSTA2, GSTA3, GSTM5,

HPGDS, MIF, MMP9, PIK3R1, PTGIS, PTPRC, TRAP1, and XDH)

were enriched in the functional classes of glutathione and

arachidonic acid metabolic pathways and metabolism-related

biological processes.

A module of enriched mRNAs-metabolites was extracted from

MMIs, including 20 mRNAs and 71 metabolites (Table S4). It was

further refined to eliminate unimportant metabolites such as water,
Frontiers in Endocrinology 08
oxygen, H+, etc., and metabolites with a degree of 1, such as

phosphate, xanthine, hypoxanthine, etc. Thus the refined module

(Figure 5A) consisted of 15 mRNAs and 29 metabolites, including 5

candidate mRNAs (Table S5). This refined module was then

combined with the module of interacting candidate mRNAs to

create the subnetwork comprising candidate mRNAs and

metabolites. Irrelevant mRNAs with a degree of 1 that did not

contribute to the mRNA-metabolite association were removed

(Figure 5B). Thus, the final subnetwork was constructed,

including 10 candidate mRNAs together with 11 one-step

neighbor mRNAs and 29 metabolites. Eight primary categories—

energy, coenzymes, hydrogen peroxide, glutathione, prostaglandins,

ketones, acids, and dopamine pigments—were utilized to classify

the metabolites to conveniently display the types of mRNAs-

linked metabolites.

Using the univariate Kaplan-Meier survival analysis, the

predictive significance of candidate mRNAs in LUAD was

assessed. The “ggsurvplot” package was used to plot survival

curves, and log-rank tests were used to compare results

(Figures 6A–J). Except for NQO1, the remaining nine candidate

mRNAs had a substantial predictive ability. Next, we conducted a

literature-based validation of NQO1’s prognostic outcome in

LUAD (59). We found that NQO1 is a potential therapeutic
FIGURE 4

Glutathione and arachidonic acid metabolic pathways: Red tags showed enriched mRNAs.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1270772
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fu et al. 10.3389/fendo.2023.1270772
target and predictive biomarker for LUAD. All the ten candidate

mRNAs were identified as biomarkers.

To investigate biomarkers’ function and correlations with the

cancer phenotype, GSEA (https://www.gsea-msigdb.org/gsea/) (60)

was performed using the expression data. The KEGG gene set was

selected and biomarkers were ranked. In cancer, biomarkers were

significantly enriched for glycolysis/gluconeogenesis, while

arachidonic acid metabolism, glutathione metabolism, tryptophan

metabolism, and peroxisome were enriched in the normal setting

(Figure 6K). These findings shed light on the intricate relationship

between biomarker expression and metabolic processes, thereby

affirming the relevance and credibility of the identified metabolism-

related biomarkers.

3.3.2 Biomarkers’ classification
effectiveness assessment

We assessed the effectiveness of biomarker-based classification

in LUAD using traditional machine learning techniques (SVM,
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KNN, Decision Trees, Naive Bayes, and logistic regression). The

classification effectiveness of each biomarker is shown in Figure 7. A

total of 594 samples were split into a training set and a test set in a

ratio of 8:2. TPR (sensitivity) was used as the vertical coordinate and

FPR (1-specificity) as the horizontal coordinate to plot the ROC

curves against different critical values. Most machine learning

methods had good classification performance (AUC > 0.700),

demonstrating the classification effectiveness and diagnostic

values of all biomarkers for LUAD samples.

3.3.3 Differential expression analysis
Differential expression of the 10 biomarkers was analyzed

between cancer and normal samples at the mRNA and protein

level (Figure 8). In the CPTAC, all 10 biomarkers’ coding proteins

showed differential expression, and their expressions matched their

mRNA levels in TCGA. The HPA database was searched for the

expression profiles of the proteins corresponding to each of the 10

biomarkers in normal tissue and tumor tissue sections. The
B

A

FIGURE 5

Candidate mRNAs and metabolites relationships. (A) The module of enriched mRNAs-metabolites. (B) Subnetwork of the relationships between
metabolites and candidate mRNAs, and their one-step neighbor mRNAs.
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detection of homologous antibodies demonstrated that the

differential protein expression in the samples was compatible with

the information in the CPTAC database.
3.4 Validation of biomarkers

Prognostic values for biomarkers in LUAD were validated in

five independent datasets obtained from GEO (Table 3). The
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percentage of validated significant prognosis for biomarkers was

more than 70% and reached up to 90% in the GSE87340 dataset.

Each biomarker was validated in more than three datasets.

Combining the results of the TCGA and independent GEO

datasets suggested that these biomarkers were stable predictors

for survival in LUAD.

An independent CPTAC dataset was used to validate

biomarkers’ classification effectiveness for tumor and normal

samples (Figure 9). Eight biomarkers (AUC > 0.900), NQO1
B C

D E F

G H I

J K

A

FIGURE 6

Biomarkers’ survival analysis and gene set enrichment analysis (GSEA). (A–J) Survival curves using biomarker expression. Survival time is on the x-axis
and survival probability is on the y-axis. (K) GSEA results were shown on the chart.
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(AUC > 0.750), and GPX2 (AUC > 0.600) in all machine learning

methods showed good classification performance, both on TCGA

and CPTAC datasets. The results demonstrated the potential

diagnostic values of all biomarkers for LUAD.

Finally, a literature review was carried out by searching the

PubMed database for all publications published in English for the

relevant biomarkers for LUAD. All 10 biomarkers had been

validated in the literature as potential prognostic markers for

LUAD (61–69). Four metabolites were directly connected to

biomarkers in the subnetwork (Figure 5B). Cancer development

may be linked to alterations in GPX2 and GPX3 activities, which

were associated with glutathione (C00051), oxidized glutathione

(C00127), and hydrogen peroxide (C00027). Glutathione is a

specific tripeptide and engages in numerous intercellular

activities. Cancer cells with high glutathione levels are resistant to

chemotherapy (70). Oxidized glutathione (GSSG) is formed by

glutathione peroxidases (GPXs). The GSSG content rises due to

GPX3 overexpression, in turn, increasing glutathione levels (71).

Hydrogen peroxide accelerates cell proliferation and decreases

rapamycin-induced autophagy along with increasing intracellular

reactive oxygen species (ROS) levels. Elevated intracellular levels of

hydrogen peroxide and ROS lead to PTEN inactivation and AKT/

mTOR pathway activation, which prevents autophagy and

promotes LUAD cell growth (72). NQO1 is intimately connected

to NADPH (C00005) and reduces the malignant characteristics of

LUAD (73). miR-485-5p targets NADPH to oxidize NQO1 and

inhibit PI3K/Akt, thus counteracting the inhibitory effect of NQO1
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on the malignant phenotype of LUAD cells, thereby preventing

LUAD cell proliferation and migration.
4 Discussion

LUAD is the most widely occurring subtype of lung cancer and

among the major causes of death due to cancers. Cancer is a

metabolic disease, and metabolic reprogramming is a result of

certain oncogenic changes that promote cancer development and

progression through complex interactions with the tumor

ecosystem (74). Given this background, we constructed an MMI

network to understand cancer metabolism comprehensively. As a

result, 10 metabolism-related biomarkers were identified from a

metabolic perspective using the DNN model in the MMI network.

The survival prognosis and classification effectiveness of biomarkers

were confirmed by the literature and data from TCGA, CPTAC, and

GEO. ENO1, GAPDH, NQO1, PDIA4, and PDIA6 may serve as

potential targets for cancer therapy (69, 75–77).

To strengthen our findings of the 10 metabolism-related

biomarkers, we conducted differential expression analysis and

survival analysis in the datasets derived from eight different

cancer cohorts (including LUSC, BRCA, CESC, KICH, LIHC,

PAAD, PRAD, and STAD) from TCGA (Table S6). The results of

the differential expression analysis revealed that the expression

patterns of the 10 biomarkers differed among seven cancers

(including BRCA, CESC, KICH, LIHC, PAAD, PRAD, and
B C D
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A

FIGURE 7

Biomarkers’ classification effectiveness assessment under using different classifier models in TCGA. (A) CAT, (B) CAV1, (C) ENO1, (D) GAPDH,
(E) GPX2, (F) GPX3, (G) NQO1, (H) P4HB, (I) PDIA4, and (J) PDIA6.
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B

C

A

FIGURE 8

Differentially expression analysis for biomarkers. (A) Box plot shows the differential expression of mRNAs. The Y-axis is the biomarkers’ expression
after log2 transformation. (B) Box plot shows the differential expression of proteins. The Y-axis is the proteins’ expression value after log2
transformation. (C) Proteins’ differential expression in the HPA database. The left side of the panel shows the antibody numbers.
TABLE 3 Survival prognosis.

GSE68465 GSE36471 GSE42127 GSE72094 GSE87340

CAT 0.0023 0.0030 0.0157 <0.0001 0.0002

CAV1 0.0180 0.1739 0.0433 0.0022 <0.0001

ENO1 0.1045 0.0027 0.0092 0.1032 0.0023

GAPDH 0.0019 0.0023 0.0084 <0.0001 0.0001

GPX2 0.0151 0.0007 0.0031 0.0003 0.1247

GPX3 0.0423 0.0447 0.0075 0.0002 0.0053

NQO1 0.0062 0.1604 0.0793 0.0151 0.0414

P4HB 0.0902 0.0190 0.0585 0.0216 0.0122

PDIA4 0.1178 0.0368 0.0038 0.0611 <0.0001

PDIA6 0.0223 0.0400 0.0028 0.0107 0.0001

Ratio 70% 80% 80% 80% 90%
F
rontiers in Endocrinolo
gy
 12
Ratio: Ratio of biomarkers with prognostic survival (p less than 0.05).
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STAD) compared to LUAD. Additionally, survival analysis

indicated that the prognostic significance of the 10 biomarkers

was statistically insignificant (p > 0.05) for the majority of these

seven cancers. These observations suggested that the identified

biomarkers in LUAD were not biomarkers for these seven cancers

and were not consistently regulated in these seven cancers. LUAD

and lung squamous cell cancer are the two predominant subtypes of

NSCLC, and so, a comparison of the 10 biomarkers was performed

in these two subtypes (Tables S6, S7). CAT, ENO1, NQO1, P4HB,

and PDIA6 were unique to LUAD, while CAV1, GAPDH, GPX2,

GPX3, and PDIA4 exhibited consistent trends in differential

expression in both LUAD and lung squamous cell cancer, significant

prognostic survival prediction (p<0.05), and excellent classification

effectiveness. These mRNAs may serve as potential biomarkers for

NSCLC. Furthermore, we conducted a differential analysis for

biomarker expression in different stages of LUAD samples from

TCGA (Table S8). GAPDH and P4HB were significantly different

(p<0.05) between stages I and II, while ENO1, GAPDH, and PDIA6

were significantly different (p<0.05) between stages I and III andCAT,

ENO1, GAPDH, P4HB, and PDIA6 were significantly different

(p<0.05) between stages I and II+III. These are potential biomarkers

for staging patients with LUAD.

Using four public databases (KEGG, Reactome, Human-GEM,

BRENDA), we constructed an MMI network and it was found to be

comprehensive and reliable. In the network, we established a

metabolism-related mRNA DNN model, and candidate mRNAs

were identified more precisely using the DNN model along with

weight values. This was due to the inherent advantage of the DNN

model to change the multidimensional weights of each feature

during learning and describe intricate relationships between

mRNAs. Therefore, it was more accurate at filtering features than
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conventional machine learning techniques. Moreover, when using

the DNN model, the learning state of the model is usually assessed

based on the decrease in the validation loss rate and the training loss

rate during the learning process. In this situation, two phenomena

are commonly encountered during deep learning: overfitting and

underfitting. When the model was overfitting (Figure S1A), model

regularization and reducing the learning rate are common

optimization techniques; whereas, when the model was

underfitting (Figure S1B), it is necessary to reduce both the

learning rate and the batch size to improve the generalization

ability. If both the validation loss rate and training loss rate

converge to 0 (Figure S1C), no further training is required and

the model is more suitable for generalization. Based on these

considerations and the sample size of the TCGA dataset used in

this study, batch size = 16, epoch = 2000, and learning rate =

0.00001 were chosen.

The identified biomarkers in this study were enriched in

metabolic function classes and pathways in LUAD, and can

potentially characterize a patient’s dysfunction. Hence, the

classification effectiveness of ten biomarkers which was assessed

overall was based on GPX2 and GPX3 as factors from the enriched

pathways and CAV1, ENO1, NQO1, and P4HB as factors from

functional classes to determine whether a patient had cancer. The

594 samples (including 535 tumor samples and 59 normal samples)

from TCGA were split into a training set and a testing set in a ratio

of 8:2. The independent CPTAC dataset was used for validation in

the same way (Figure 10). Both in the TCGA dataset and the

CPTAC independent dataset, the majority of machine learning

approaches showed good classification effectiveness (AUC > 0.800),

highlighting the potential diagnostic values of biomarker

combinations for LUAD samples.
B C D
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A

FIGURE 9

Validation of biomarkers’ classification effectiveness assessment using different classifier models in the CPTAC independent dataset. (A) CAT,
(B) CAV1, (C) ENO1, (D) GAPDH, (E) GPX2, (F) GPX3, (G) NQO1, (H) P4HB, (I) PDIA4, and (J) PDIA6.
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To examine the synergistic effect of the 10 markers on the

prediction of patient prognosis, Lasso-penalized Cox regression

(78) was conducted to screen biomarkers for building a risk

model. The optimal value of the Lasso penalty parameter, l, was
determined as 0.0078 through 10‐fold cross-validation (Figure S2).

Then, to select the best model as the risk model (79), the outcomes

of the Lasso analysis were evaluated using multifactorial Cox

regression analysis. CAV1, ENO1, and GAPDH (which were

defined as risk mRNAs) were used with a p-value threshold of

0.05 (Table 4), and the final risk model was constructed as follows:

RiskScore = (0:0024� EXPCAV1) + (0:0009� EXPENO1)

+ (0:0005� EXPGAPDH) :

For all tumor samples in TCGA, risk scores were computed and

divided into high‐ and low‐risk groups using the median risk score

as the cutoff. Distributions of risk scores, survival statuses, and

survival curves (Figure S3A) are shown. To validate the risk model,

GSE36471, GSE42127, GSE68465, and GSE72094 were used as the

validation datasets. Risk scores were computed and high‐ and low‐

risk groups were obtained (Figures S3B–E). Patients in the risk-

score-high group died more and had slightly shorter survival than

those in the risk-score-low group. Kaplan-Meier curves illustrated
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patients with LUAD in the risk-score-high group had a worse

overall survival rate than those in the risk-score-low group in all five

datasets. DEmRNAs between high- and low-risk groups were

identified and highly expressed DEmRNAs in the high-risk group

were enriched in the cell cycle, including the mitochondrial cell

cycle process, cell division, and regulation of the cell cycle process.

Mounting evidence shows that cancer metabolism is intertwined

with cell cycle regulatory mechanisms. Therapy aimed at cell cycle

machinery thereby inhibits cancer cell division while also reversing

malignant cell metabolism (80). Hence, the outcomes of the

enrichment analysis supported the risk model which was based

on metabolism-related biomarkers and confirmed the above-

mentioned mRNAs ’ distinct roles in metabolism. The

classification effectiveness of the risk model for high‐ and low‐risk

score groups in the samples from TCGA (Figure S4A) and

GSE36471, GSE42127, GSE68465, and GSE72094 (Figures S4B–E)

was good (AUC > 0.750). Consequently, the risk model had a good

prognostic predictive value and classification effectiveness for

LUAD, which also proved the reliability of these biomarkers.
5 Conclusions

In conclusion, from the metabolism perspective, we constructed

the MMI network and the DNNmodel and successfully applied them

to predictions for LUAD. The importance of the 10 identified

metabolism-related biomarkers was confirmed for prediction of

survival and classification effectiveness. This integrated method and

approach may offer a novel perspective to identify biomarkers for

other malignancies.
TABLE 4 Multivariate Cox regression analyses.

HR 95% CI p-value

ENO1 1.0008 1.0001-1.0015 0.031

CAV1 1.0023 1.0003-1.0043 0.022

GAPDH 1.0006 1.0003-1.0008 <0.001
B C
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A

FIGURE 10

Biomarkers’ classification effectiveness assessment using different classifier models in TCGA. (A) Ten biomarkers were assessed as an overall factor.
(B) GPX2, GPX3 as a factor. (C) CAV1, ENO1, NQO1, and P4HB as a factor. Biomarkers’ classification effectiveness assessment using different classifier
models in CPTAC. (D) Ten biomarkers were assessed as an overall factor. (E) GPX2, GPX3 as a factor. (F) CAV1, ENO1, NQO1, and P4HB as a factor.
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