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Introduction: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial

disease. As a clinical empirical prescription of traditional Chinese medicine,

Qushi Huayu decoction (QHD) has attracted considerable attention for its

advantages in multi-target treatment of NAFLD. However, the intervention

mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has

not been reported.

Methods: Therefore, we verified the therapeutic effect of QHD on high-fat diet

(HFD)-induced NAFLD in rats by physiological parameters and histopathological

examination. In addition, studies on gut microbiota and serum lipidomics based

on 16S rRNA sequencing and ultra-high performance liquid chromatography-

mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic

mechanism of NAFLD in QHD.

Results: The changes in gut microbiota in NAFLD rats are mainly reflected in their

diversity and composition, while QHD treated rats restored these changes. The

genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides

were predominant in the NAFLD group, whereas, Turicibacter, Blautia,

Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and

Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses,

including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE),

phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS),

lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly

different between the NAFLD and the control groups, while QHD treatment

significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC),

lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally,

Spearman’s correlation analysis showed that NAFLD related differential lipid
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molecules were mainly associated with the genera of Bacteroides, Blautia,

Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were

also significantly correlated with the biological parameters of NAFLD.

Discussion: Taken together, QHD may exert beneficial effects by regulating the

gut microbiota and thus intervening in serum lipids.
KEYWORDS

Qushi Huayu decoction, non-alcoholic fatty liver disease, lipidomics, gut microbiota,
traditional Chinese medicine
1 Introduction

Non-alcoholic fatty liver disease (NAFLD), one of the most

significant forms of chronic liver disease worldwide, is characterized

by hepatic steatosis. Non-alcoholic steatohepatitis is the advanced

form of NAFLD, and a certain proportion of patients will progress

to cirrhosis and hepatocellular carcinoma (1–4). The global

prevalence of NAFLD is 32.4%, and the incidence rate of NAFLD

will continue to increase in the coming years due to the obesity

pandemic (5, 6). Strategies to raise awareness and address all aspects

of NAFLD are urgently needed.

Traditional Chinese medicine is widely used as an alternative

medicine and shows remarkable efficacy in NAFLD due to its multi-

target advantages (7, 8). However, each coin has two sides. Due to

the complex components and interactions in the Chinese herbs, it is

difficult to elucidate the mechanism of prescriptions containing

several herbs. As a clinical empirical prescription, Qushi Huayu

decoction (QHD) has been used in the intervention of NAFLD in

China for several decades (9, 10). The efficacy of QHD has been

demonstrated in several models of NAFLD in vivo and in vitro (9,

11–13), and the mechanisms include regulation of branched-chain

amino acid metabolism disorder, upregulation of AMPK/SIRT1/

UCP-1 signaling pathway (14), modulation of fatty acid b-oxidation
(15), regulation of gut microbiota composition, and protection of

intestinal tight junctions (16).

Altered gut microbiota is closely associated with the

pathogenesis of several metabolic diseases, including obesity, type

2 diabetes and NAFLD (17–19). In particular, dysbiosis of gut

microbiota and its metabolites promotes the development of

NAFLD through multiple mechanisms, including disruption of

lipid metabolism in the liver, promoting fat accumulation and

lipotoxicity (20).

Under normal physiological conditions, lipids exist in the form

of aggregates within the membrane and perform various functions.

In addition to being components of biological membranes, lipids

are also involved in energy metabolism and storage and can play an

important role as signaling molecules (21). Accumulating research

has demonstrated that NAFLD is typically accompanied by

excessive specific lipids, such as free fatty acid, ceramides, free

cholesterol, and bile acids, not just triglycerides (TG, a traditional

clinical biochemical marker of NAFLD). These excess lipids may
02
cause liver toxicity through various mechanisms, including JNK and

death receptors (22), endoplasmic reticulum stress, mitochondrial

dysfunction, and oxidative stress, leading to hepatocyte damage and

inflammation. This condition, known as lipotoxicity, may cause the

progression of NAFLD to NASH (20). Although lipids have

important pathological significance for NAFLD, they are

currently one of the least studied cellular biomolecules (23). The

recent rise of high-throughput measurement based lipidomics is an

emerging large-scale study of lipid metabolites, revealing disordered

pathways and lipid biomarkers that can be used to demonstrate

therapeutic efficacy (24–26). Through this advanced technology, the

pathological mechanism of NAFLD can be understood on a broader

lipid profiling and the efficacy of drugs can be evaluated.

Therefore, 16S rRNA sequencing and serum lipidomics based

on ultra-high performance liquid chromatography-mass

spectrometry (UPLC-MS)-analysis were performed to investigate

the effect of QHD in NAFLD intervention, screen for dominant gut

genera and serum lipid metabolites, and evaluate the relationship

between gut microbiota and serum lipid metabolites.
2 Materials and methods

2.1 Preparation of QHD

The method of preparation was according to an earlier report

(16). Artemisiae scopariae herba (“Yinchen” in Chinese), Polygoni

cuspinati rhizome et radix (“Huzhang” in Chinese), Herba hyperici

japonica (“Tianjihuang” in Chinese), Curcumae longae rhizome

(“Jianghuang” in Chinese) and Gardeniae fructus (“Zhizi” in

Chinese) were prepared in the ratio of 6: 4: 4: 3: 3. The

concentration for the final stock solution of QHD extract was

adjusted to 0.93 g/crude herb/mL.
2.2 Animal treatment

Wistar rats were obtained from the Shanghai Experimental

Animal Center of Chinese Academy of Sciences. All experimental

procedures were approved by the Animal Studies Ethics Committee

of Shanghai University of Traditional Chinese Medicine (Ethical
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https://doi.org/10.3389/fendo.2023.1272214
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ni et al. 10.3389/fendo.2023.1272214
number: PZSHUTCM201127007). A total of 24 male Wistar rats

weighing 160~180 g were kept at 23 ± 3°C with a 12h light/dark

cycle. After one week of acclimation, we randomly divided the rats

into the control, NAFLD, and NAFLD+QHD groups (n=8 per

group). A standard diet was given to control rats for 8 weeks, while

those in the NAFLD and NAFLD+QHD groups were NAFLD-

induced by feeding high-fat diet (HFD) containing 2% cholesterol

and 10% lard (No. FB-M10L2CH) for 8 weeks. Rats in the NAFLD

+QHD group were administrated 0.1 mL/kg QHD by gavage for the

last 4 weeks. The dosage was determined by the results of previous

studies on QHD in NAFLD rats (9, 12). The control rats and

NAFLD rats received equal sterile water.
2.3 Physiological parameters
measurements

After an overnight fast of 12 h, fasting blood glucose (FBG) was

measured with a glucometer (Yuwell, model 740, Jiangsu, China).

After anesthesia, blood was collected from the abdominal aorta, and

serum was separated by centrifugation (1000 × g, 4°C, 15 min).

Serum insulin was detected using ELISA kits (Crystal Chem).

Homeostasis model assessment of insulin resistance (HOMA-IR)

was performed: HOMA-IR = FBG (mmol/L) × insulin (mU/L)/22.5).

An alanine aminotransferase (ALT) biochemistry assay kit came

from the Nanjing Jiancheng Institute of Biotechnology was used to

examine serum ALT according to the manufacturer’s instructions.

After excision, the livers were weighed. Some of the tissues were

fixed with formalin for histopathological observation, and the rest

were immediately frozen for further analysis. Liver TG was

determined using a TG assay kit purchased from Dongou Biology

Technique Co. Ltd. (Zhejiang, China) according to the

manufacturer’s instructions.
2.4 Histological analyses

Lipids of liver tissues from different groups were observed by

staining with oil red O dye. Liver tissues were stored in tubes and snap

frozen in liquid nitrogen. The 10 mm thick liver sections were stained

with oil red to visualize the lipid accumulation within the hepatocyte.

To observe the pathological changes, the liver tissues were fixed in 4%

paraformaldehyde and embedded in paraffin. The 3 mm thick liver

sections were stained with hematoxylin and eosin (HE) and examined

under a light microscope. The NAFLD activity score (NAS) was

evaluated with a higher score indicating increasing severity according

to the following features: hepatocyte steatosis (< 5% = 0; 5~33% = 1;

33~66% = 2; >66% = 3); lobular inflammation (Necrotic foci were

counted at 20x) (none = 0; < 2 = 1; 2~4 foci = 2; > 4 foci = 3); and

hepatocellular ballooning (none = 0; few = 1; prominent = 2) (27).
2.5 16S rRNA sequencing

After 8 weeks of experiment, rats are individually housed in a

metabolic cage, and feces and urine are immediately dropped into the
Frontiers in Endocrinology 03
containers below separately. During the collection process, we need to

ensure that the feces are fresh and the operation is aseptic to obtain

subsequent reliable gut microbiota analysis data. As themetabolic cages

were used, feces were collected separately in a collection bottle, and we

obtained the feces samples from the bottle. Feces samples of each rat

were collected separately and stored in -80°C freezers until processing.

We applied the OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek,

Norcross, GA, USA) to extract total bacterial DNA. We used a

NanoDrop NC2000 spectrophotometer and agarose gel

electrophoresis to evaluate the extracted DNAs (Supplementary

Table S1). The V3-V4 regions of 16S rRNA were identified by

primers 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’). The Illumina NovaSeq

platform with NovaSeq 6000 SP Reagent Kit (500 cycles) was used

to perform the sequencing.

The bioinformatics analysis of the microbiome was performed

using QIIME2 2019.4. The demux plugin was used to demultiplex

the raw sequence data, followed by primer cutting with the cutadapt

plugin. DADA2 plugin was then utilized for quality filtering,

denoising, merging and chimera removal. Operational taxonomic

units (OTUs) were compared using MAFFT, and FastTree 2 was

utilized to construct a phylogeny. The diversity plugin was used to

estimate alpha and beta diversity metrics. Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States 2 (PICRUSt2) analysis based on KEGG pathway was

performed to predict the function of the gut microbiota.
2.6 Lipidomics analysis

2.6.1 Lipids extraction
Blood was collected from rats and allowed to stand at room

temperature before serum was obtained by centrifugation (1000 × g,

4°C, 15 min). Briefly, 50 mL of serum was collected; 1.5 mL of

dichloromethane/methanol (2/1, vol/vol) and two internal

standards, LPC (12:0) and PC (11:0/11:0), were added; and the

homogenate was centrifuged (3,000 rpm, 15 min). The bottom layer

of the resulting liquid was moved into a new centrifuge tube, adding

1.5 mL dichloromethane/methanol (2/1, vol/vol), and the top layer

of the liquid was treated to obtain the homogenate. Two resulting

liquids were mixed and dried in a freeze-concentration centrifugal

dryer. Then we dissolved the powder in isopropanol/methanol (1/1,

vol/vol) and saved it at minus 20°C for lipidome analysis.
2.6.2 UPLC-MS analysis
Lipidome analysis was performed on an Ultimate™ 3000 UPLC

coupled a Q Exactive hybrid quadrupole-Orbitrap Mass

Spectrometers system (Thermo Fisher) with a hypersil GOLD

C18 column (100×2.1 mm, 1.9 mm). The temperature of column

was set at 45°C. Eluents A was 10 mmol/L ammonium formate in

40% water and 60% acetonitrile; and eluent B was 10 mmol/L

ammonium formate in 90% isopropanol and 10% acetonitrile. We

set the flow rate at 0.35 mL/min, injected ten microliters, and set the

gradient at 30~100% B in 14.5 min, 100% B in 14.5~16.5 min,

100~30% B in 16.50~16.51 min, and 30% B in 16.51~20 min.
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The spray voltages of MS were at 3.0 kV in the ESI+ mode and

at 2.8 kV in the ESI- mode. The capillary temperature was set at

350°C, with a sheath gas flow rate of 35 arb, an aux gas flow rate of

15 arb, and a sweep gas flow rate at one arb. The heater temperature

was maintained at 350°C. The S-Lens RF level was 50. MS operation

was performed at a resolving power of 70,000 in full scan mode (ESI

+, 250~1500 m/z; ESI-, 200~1500m/z).

2.6.3 Primary data processing
First, the raw data were received by performing Xcalibur (version

3.0), and LipidSearch (version 4.0) was operated to identify and

quantify the lipids. The identification was based on the retention

time, exact mass, and pattern of precursor ions and MS2. The key

procedure included a precursor tolerance of 5 ppm, a product tolerance

of 10 ppm, an intensity threshold of product ion of 5%, an m-score

threshold of 3.0, a quantitation m/z tolerance of ±5.0 ppm, and a

quantification RT range of ±1.0 min. The main mode filter was main

isomer peak and ID quality filters A, B, C, and D; and the adduct ions

were: +H, +NH4, and +Na for ESI+ mode, and −H, +HCOO, and

+CH3COO for ESI- mode. Alignment parameters were LC-MS data

within 0.25 min RT time window; m-score threshold: 3.0; c-score

threshold: 2.0; all isomer peak; ID quality filters A, B, C and D. Data

acquired from each experimental rat constructed a raw data matrix,

including the sample information, the identified lipids, lipid

classification, retention time, charge-mass ratio, and peak area.

2.6.4 Lipids analysis
Lipid analyses were performed on the lipid metabolites using

SIMCA software (version 14.1) and SPSS (version 21.0). Metabolic

enrichment of differential lipids was performed using

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca).
2.7 Statistical analysis

The software GraphPad Prism (version 9.0.0) was used for

statistical analysis. All data are shown as the mean ± standard
Frontiers in Endocrinology 04
deviation. We used the Shapiro-Wilk normality test to verify

normality. One-way ANOVA was utilized to examine the

normally distributed data among the groups. The data that did

not satisfy normal distribution were examined using the Kruskal-

Wallis test. Differences with statistical significance were marked by:

* P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001.
3 Results

3.1 QHD attenuated NAFLD-induced
insulin resistance and hepatic changes

To investigate whether QHD can attenuated NAFLD, the rats

were randomly assigned into 3 groups, control, NAFLD, and

NAFLD+QHD groups (n=8 per group, Figure 1). After HFD

feeding, NAFLD rats showed significantly increased body weight

(P = 0.0056, Figure 2A), liver weight (P < 0.0001, Figure 2B), liver/

body ratio (P = 0.0003, Figure 2C), HOMA-IR index (P = 0.0135,

Figure 2F), serum ALT (P = 0.0018, Figure 2G), and hepatic TG

(P = 0.0005, Figure 2H) compared with rats in the Control group.

Compared with the NAFLD group, the body weight (P = 0.0194),

liver weight (P < 0.0001) and liver/body ratio (P = 0.0197) of the

NAFLD+QHD rats were significantly reduced. QHD treatment also

reduced insulin (P = 0.0108, Figure 2D) and improved HOMA-IR

(P = 0.0018) in NAFLD rats. However, FBG did not differ

significantly (P > 0.05, Figure 2E). Apparently, QHD restored

liver function and TG accumulation in the liver, as indicated by

decreased serum ALT (P < 0.0001) and hepatic TG (P =

0.0409), respectively.

In HE-stained histopathologic images, liver samples from the

NAFLD group showed hepatocyte degeneration, inflammatory

infiltration, abundant steatosis, and prominent hepatocyte

ballooning. These histopathologic features were alleviated in the

NAFLD+QHD group (Figure 2J). NAS score was relatively lower in

NAFLD+QHD group than NAFLD (P = 0.0023, Figure 2I). The

histopathological image with oil red O staining showed prominent
FIGURE 1

Schematic illustration showing the design of the experiment.
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hepatic steatosis, large lipid droplets, a darkly stained central lobular

area, and a lightly stained marginal area in NAFLD rats. The above

pathological changes were significantly reduced after QHD

treatment. These outcomes implied that the NAFLD model

induced by HFD was successful, and the histopathological

changes were ameliorated after QHD administration.
Frontiers in Endocrinology 05
3.2 QHD altered gut microbiota dysbiosis
in NAFLD rats

Increasing evidence confirmed that gut microbiota is vital in

developing NAFLD (5, 28–31). We conducted 16S rRNA

sequencing of fecal samples to study the influence of QHD on gut
A B

D E F

G IH

J

C

FIGURE 2

Evaluation of the therapeutic effects of QHD on NAFLD rats (n=8). (A) Body weight; (B) liver weight; (C) liver/body ratio; (D) insulin; (E) fasting blood
glucose; (F) HOMA-IR; (G) serum ALT; (H) hepatic TG; (I) NAS score. (J) Representative pictures of HE staining (100× and 200× original
magnification) and oil red O staining (400× original magnification) of rats’ liver. Statistical significance was considered at * P < 0.05, ** P < 0.01, *** P
< 0.001, and **** P < 0.0001. QHD, Qushi Huayu decoction; NAFLD, non-alcoholic fatty liver disease; HOMA-IR, homeostasis model assessment of
insulin resistance; ALT, alanine aminotransferase; HE, hematoxylin-eosin; NAS, NAFLD activity score.
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microbiota. HFD induced lower diversity and richness of gut

microbiota, as proved by the reduction of richness, ace and

Chao1 indexes (Figure 3A). However, QHD supplementation

restored these indexes caused by HFD, indicating that QHD

increased gut microbiota alpha-diversity. Besides, b-diversity was

set to generate a nonmetric multidimensional scaling (NMDS)

analysis at the OUT level. As shown in Figure 3B, the HFD group

was separated from the other two groups, indicating gut microbiota

dysbiosis caused by HFD. Venn diagram displayed the unique and

shared OUT among three groups (Figure 3C). There were 656

OTUs and 250 unique OTUs in control rats, 386 OTUs and 35

unique OTUs in NAFLD rats, and 439 OTUs and 34 unique OTUs

in NAFLD+QHD rats.

Cluster histograms displayed the taxonomy abundance of gut

microbiota in phylum and genus levels in each sample and each

group (Figures 3D, E). At the phylum level, Firmicutes and

Proteobacteria dominated the gut microbiota in the three groups. The

abundances of Firmicutes rose, while Proteobacteria and Bacteroidetes
Frontiers in Endocrinology 06
declined in NAFLD and NAFLD+QHD rats. At the genus level,

Lactobacillus, Allobaculum, Blautia, Proteus, Phascolarctobacterium,

Lachnoclostridium and Bacteroides were particularly increased in the

gut microbiota of feces of NAFLD rats than those of the control group,

whereas Bacteroidales_S24-7_group_norank, Turicibacter, Escherichia-

Shigella, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-014,

Lachnospiraceae_NK4A136_group, and Clostridium_sensu_stricto_1

decreased in NAFLD rats. Meanwhile, gut microbiota in NAFLD

+QHD rats is changing as illustrated by the decrease in Lactobacillus,

B laut ia , Bactero idale s_S24-7_group_norank, Proteus ,

Phascolarctobacterium, and Bacteroides, while Romboutsia,

Turicibacter, Allobaculum, Clostridium_sensu_stricto_1, Psychrobacter,

Sporosarcina and Bifidobacterium increased significantly in the gut

microbiota of NAFLD+QHD rats.

Linear discriminant analysis of effect size (LEfSe) analysis was

performed to analyze predominant gut microbiota in the rats

(Figures 4A, B). From the results, it could be concluded that

compared to the control group, genera Blautia, Lactobacillus,
A B

D

E

C

FIGURE 3

QHD altered gut microbiota diversity and composition in NAFLD rats (n=6). (A) Gut microbiota a-diversity; (B) NMDS analysis; (C) Venn diagram
showed the overlap of OTUs. Barplot showing relative abundance of gut microbiota in (D) phylum and (E) genus levels. NAFLD, non-alcoholic fatty
liver disease; QHD, Qushi Huayu decoction; NMDS, nonmetric multidimensional scaling.
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Allobaculum, Lachnoclostridium and Bacteroides were predominant

in the NAFLD, whereas Turicibacter, Blautia, Sporosarcina,

Romboutsia, Clostridium_sensu_stricto:1, Allobaculum, and

Psychrobacter were predominant in the NAFLD+QHD group

compared with the NAFLD group.

To predict the function of the gut microbiota, we performed

PICRUSt2 based on KEGG database and presented the average

abundance of all samples by a bar graph (Figure 4C), which showed

that the gut microbiota is largely involved in lipid metabolism.
Frontiers in Endocrinology 07
3.3 QHD reversed lipid metabolomics in
NAFLD rats

There is little knowledge about how lipids modulate NAFLD in

rats. Therefore, UPLC-MS-based lipidomics was used to

comprehensively characterize the lipid response upon NAFLD

modeling and QHD treatment. Three-dimensional PCA plots of

lipids obtained in positive (R2X=0.719, Q2 = 0.539, Figure 5A) and

negative (R2X=0.652, Q2 = 0.533, Figure 5B) ion modes of serum
A B

C

FIGURE 4

Dominant gut microbiota and function prediction (n=6). Taxonomic cladograms and linear discriminant analysis scores from LefSe analysis of (A)
Comparison between NAFLD and control groups; (B) Comparison between NAFLD and NAFLD+QHD groups are shown. (C) PICRUSt2 analysis based
on KEGG pathway was performed to predict the function of the gut microbiota. NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu
decoction; LEfSe, linear discriminant analysis of effect size.
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samples indicated an obvious divergence of circulating lipid

metabolites in NAFLD rats from the other two groups, indicating

that the circulating lipid profile was altered by HFD and QHD

administration could reverse lipid metabolomics. The orthogonal

projections to latent structures-discriminant analysis (OPLS-DA)

scoring plots showed each pair of comparison, Control vs. NAFLD

in positive ion modes (R2X=0.545, R2Y=0.994, Q2 = 0.942,

Figure 5C), NAFLD vs. NAFLD+QHD in positive ion modes

(R2X=0.781, R2Y=1, Q2 = 0.91, Figure 5E), Control vs. NAFLD in

negative ion modes (R2X=0.553, R2Y=0.993, Q2 = 0.944, Figure 5D)

and NAFLD vs. NAFLD+QHD in negative ion modes (R2X=0.776,

R2Y=1, Q2 = 0.802, Figure 5F) were separated clearly in the model.

3.4 Lipid subclasses and molecules differed
after QHD treatment

The lipids in serum consisted of six lipid classes, including

glycerophospholipids, sphingolipids, glycerolipids, sterol lipids,
Frontiers in Endocrinology 08
FAs, and prenol lipids. The lipid molecules were examined in the

positive and negative ionization modes. 1024 lipids from 17

subclasses were detected in positive ionization mode, including

ceramide (Cer), cholesteryl ester (ChE), coenzyme (Co),

d iacy lg lycerol (DG), lysophosphat idy lchol ine (LPC) ,

lysophosphatidylethanolamines (LPE), lysophosphatidylserine

(LPS), monoglyceride (MG), phosphatidylcholine (PC),

phosphatidylethanolamine (PE), phosphatidylglycerol (PG),

phytosphingosine (phSM), phosphat idyl inositol (PI) ,

phosphatidylserine (PS), sphingosine (So), sphingomyelin (SM),

and TG. In negative ion mode, 418 lipid species from 18 subclasses

were found, including Cer, FA, lysophosphatidic acid (LPA), LPC,

LPE, lysophosphoglycerol (LPG), lysophosphatidylinositol (LPI),

LPS, (o-acyl)-1-hydroxy fatty acid (OAHFA), phosphatidic acid

(PA), platelet-activating factor (PAF), PC, PE, PG, phSM, PI, PS,

and SM. In Figure 6A, the Sankey diagram showed the classification

of main lipid classes and the detected number of lipid molecules of

each subclass. As shown by the pie charts, we analyzed the
A B

D

E F

C

FIGURE 5

Multivariate analysis of circulating lipid profile (n=6). Three-dimensional PCA plots showing the serum lipid metabolites (A) in the positive ion mode
and (B) in the negative ion mode. OPLS-DA plots of serum lipid metabolites profiling of the control and NAFLD rats (C) in the positive ion mode and
(D) in the negative ion mode. OPLS-DA plots of lipid metabolites profiling of the NAFLD and NAFLD+QHD rats (E) in the positive ion mode and (F) in
the negative ion mode. NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu decoction; PCA, principal component analyze; OPLS-DA,
orthogonal projections to latent structures-discriminant analysis.
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categories of lipids and summed the peak areas of each type of lipid

molecule to exhibit the variation trend of each lipid subclass

(Figure 6B). Among these subclasses, PC was the most abundant

(60.8%), followed by LPC (15.1%) and TG (13.9%). In addition, the

content of each subclass of lipid was compared. Remarkably, the

abundance of DG, TG, PA, PC, PE and PS increased notably, while

LPI and PG decreased significantly in NAFLD rats. In addition, the

levels of DG, TG, LPC, LPE, PA and PAF decreased after QHD

administration (Figure 7). 34 differential lipids were screened
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between the comparisons according to: variable importance in

projection (VIP) > 1.5 and P < 0.05 (Figure 8A). The heat map

was used to compare the relative abundances of 34 differential lipids

(Figure 8B). These outcomes indicated that QHD treatment could

particularly impact the lipid in NAFLD rats. To explore the

metabolic enrichment of the 34 differential lipids based on the

KEGG database, we performed pathway analysis using

MetaboAnalyst 5.0. As shown in Figure 8D, the differential lipids

were enriched in glycerophospholipid metabolism.
A

B

FIGURE 6

Classification and proportion of circulating lipids in rats. (A) Sankey diagram showing the lipid molecules numbers of each subclass and the
classification; (B) Pie chart plot representing the proportion of each lipid subclass (expressed as a percentage of the total lipids). Cer, ceramide; ChE,
cholesteryl ester; Co, coenzyme; DG, diacylglycerol; FA, fatty acid; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE,
lysophosphatidylethanolamines; LPG, lysophosphoglycerol; LPI, lysophosphatidylinositol; LPS, lysophosphatidylserine; MG, monoglyceride; OAHFA,
(o-acyl)-1-hydroxy fatty acid; PA, phosphatidic acid; PAF, platelet-activating factor; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; phSM, phytosphingosine; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; So, sphingosine; TG,
triglycerides; NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu decoction.
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3.5 Associations between differential gut
microbiota and circulating lipid metabolites
in NAFLD rats

The relationship between lipids, differential genera and

biological parameters was assessed using Spearman’s correlation

analysis (Figure 8C). When evaluating the correlations with changes

in biological parameters, Blautia and Lachnoclostridium were

positively correlated with liver weight, hepatic TG, and NAS

score. Bacteroides was positively correlated with liver weight;

Clostridium_sensu_stricto_1 was negatively correlated with

insulin, HOMA-IR, serum ALT, liver weight, hepatic TG, NAS
Frontiers in Endocrinology 10
score, and body weight; and Turicibacter was negatively correlated

with FBG, serum ALT, liver weight, hepatic TG, and body weight.

The correlation analysis of 34 differential lipids and biological

outcomes showed that 33 lipids were positively correlated with liver

weight; 32 lipids were positively correlated with NAS score and

body weight; 31 lipids were positively correlated with insulin,

HOMA-IR, and hepatic TG; 30 lipids were were positively

correlated with FBG, and 12 lipids were positively correlated with

serum ATL. Nevertheless, PC (36:5) showed negatively correlated

with FBG, HOMA-IR, and serum ATL.

Furthermore, we found that Bacteroides was positively

correlated with 17 lipids; Blautia and Lachnoclostridium were
A B D
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I

H

J K L

C

FIGURE 7

(A–L) Significant changes in circulating lipid subclasses (n=6). Statistical significance was considered at * P < 0.05, ** P < 0.01, *** P < 0.001, and
**** P < 0.0001. DG, diacylglycerol; TG, triglycerides; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS,
phosphatidylserine; LPI, lysophosphatidylinositol; PG, phosphatidylglycerol; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamines; PAF,
platelet-activating factor; NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu decoction.
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positively correlated with 33 lipids; Lactobacillus was positively

correlated with PE(16:0/18:2); and Sporosarcina was positively

correlated with PC(36:5). Whereas Clostridium_sensu_stricto_1

was negatively correlated with 32 lipids; and Turicibacter was

negatively correlated with 18 lipids.
4 Discussion

The increasing risk of NAFLD has been confirmed by many

studies. A recent global epidemiologic study of NAFLD found that

the global prevalence of NAFLD is about 30% and rising (32).

Individuals are increasingly being affected by NAFLD at an earlier

age, meaning there is more time for them to develop severe

complications (33). QHD has been clinically used for NAFLD

treatment in China for decades. In recent studies, the mechanism

of QHD in NAFLD is related to the biological functions of reducing
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oxidative stress, regulating intestinal microbiota, regulating body

metabolism and signaling pathways, promoting browning of white

adipose tissue, and inhibiting lipogenesis (9, 12, 14, 15, 34, 35).

Furthermore, it has been reported that many bioactive components

of QHD have significant anti-NAFLD activities. For example, the

therapeutic effect of geniposide and chlorogenic acid combination

on NAFLD was confirmed by ameliorating HFD-induced NASH in

mice (36). In addition, Wan et al. demonstrated that chlorogenic

acid may also prevent fatty liver by upregulating the expression of

peroxisomal proliferator-activated receptor a (37). Scoparone is a

potent constituent of “Yinchen” and a potential drug candidate for

NAFLD, which has a broad spectrum of pharmacological activities,

including anti-fibrotic, antioxidant, anti-inflammatory, and

hypolipidemic properties (38). One of the active ingredients in

QHD, emodin, an anthraquinone derivative and the active

ingredient in Huzhang”, has been found to have a broad

spectrum of pharmacological activit ies, such as anti-
A B

D

C

FIGURE 8

Differential lipid screening and Spearman’s correlation analysis. The projection value VIP > 1.5 in OPLS-DA and P < 0.05 of Students t-test were
selected as potential biomarkers for further analysis (n=6). (A) The Venn diagram showing the overlap of differential lipid metabolites between the
control and NAFLD groups and between the NAFLD and NAFLD+QHD groups; (B) Heatmap of the 34 differential lipids; (C) Heatmap showing
Spearman’s correlation analysis among biological parameters, major gut genera, and lipid metabolites, with significance was indicated at * P < 0.05.
(D) Lipid metabolic pathway analysis based on differential lipids in serum. VIP, variable importance in projection; OPLS-DA, orthogonal projections to
latent structures-discriminant analysis; NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu decoction.
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inflammatory, antiviral, antibacterial, anti-fibrotic, and

hypolipidemic properties, and hepatoprotective activities (39).

Curcumin is extracted from “Jianghuang” and has been shown to

have several potentially therapeutic properties, including anti-

inflammatory, antioxidant, and anti-fibrotic (40).

Understanding the functions connected with the microbial

community is important because gut microbiota changes are related

to NAFLD and the treatments (41). We herein proved that HFD

caused dramatic decrease in bacterial diversity and richness, as verified

by the reduction in richness, ace, and Chao1 indexes, whereas QHD

administration significantly recovered the indexes. The gut microbiota

composition in NAFLD rats was different from the other two groups

according to b-diversity. LefSe was performed to identify genera of

Allobaculum, Bacteroides, Blautia, Clostridium_sensu_stricto_1,

Lachnoclostridium, Lactobacillus, Romboutsia, Sporosarcina,

Turicibacter, and Psychrobacter as important microbial biomarkers.

In our study, Blautia was found positively correlated with liver weight,

hepatic TG and NAS score; and Bacteroides was positively correlated

with liver weight. As mentioned in the literature, Blautia may be

involved in alleviating obesity, inflammation and insulin resistance

(42). What’s more, the most consistent gut microbiota signatures

associated with NAFLD are increased Bacteroides (43). Bacteroides

was the dominant genus in NAFLD rats, while the abundance of

Bacteroides decreased after QHD administration in our study. It has

been reported that Bacteroides and Blautia can produce acetate, which

can negatively regulate insulin signaling in adipocytes, leading to

suppressed fat deposition (44). However, previous studies found

inconsistent results for Blautia (29). Lachnoclostridium, a short-

chain fatty acids producer, was previously reported to be enriched

and significantly downregulated by QHD (16), which was in line with

our results. Lachnoclostridium was also positively correlated with

NAFLD status, namely liver weight, hepatic TG, and NAS score in

our study. Our study showed that Clostridium_sensu_stricto_1 was

significantly reduced by an 8-week HFD and was restored by QHD

treatment. Clostridium_sensu_stricto_1 was negatively correlated with

insulin, HOMA-IR, serum ALT, liver weight, hepatic TG, NAS

score, and body weight. Previous studies found that growth

differentiation factor 15 regulates TG metabolism to modulate

inflammation and showed a significant positive correlation with

Clostridium_sensu_stricto_1 (45). In our research, Turicibacter was

negatively correlated with FBG, serum ALT, liver weight, hepatic TG,

and body weight. Turicibacter showed a strong positive association

with liver malondialdehyde in a previous study (46). In addition, gut

dysbiosis in NAFLD is characterized by alterations in the intestinal

barrier that allow bacteria or bacterial products, such as

lipopolysaccharide, to enter the portal circulation. Bacterial

translocation has been shown to increase the expression of specific

receptors on the surface of hepatocytes, such as TLRs, which are

relevant for a pro-inflammatory response mediated by IL-1b, TNF-a
and interferons. It was found that lipopolysaccharide levels may be

negatively correlated with Allobaculum (47). In addition, Lactobacillus

has been reported to be associated with insulin resistance and

correlated with FBG and glycated hemoglobin levels (48). While

recent studies have identified gut microbiota associated with the

potentially beneficial genera, including Lactobacillus (49). The level

of Lactobacillus was higher in NAFLD rats than in the other groups in
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our study. However, whether the differential microbiota plays a

corresponding role needs further verification.

Currently, biopsy is required in NAFLD patients to obtain a

conclusive diagnosis, and screening for serum lipid differences is

undoubtedly a promising method. As traditional lipid risk factors,

TC and TG could not explicitly explain the pathogenic mechanism

of NAFLD. Lipidomics can explore the structures and functions of

the full range of lipids in an organism to explain the pathways and

interactions, helping us to understand the complexity of lipid

dysregulation in NAFLD (50, 51). HFD injures liver, thereby

affecting lipid transport and metabolism. As a risk factor for the

progression of NAFLD, lipids changed significantly. Thus, we

investigated the circulating lipids in NAFLD rats treated with or

without QHD, and explored whether lipids measured in serum

could be correlated with gut microbiota in NAFLD. We identified

signatures of serum lipid species in the rats. Untargeted lipidomics

in this study revealed a total of 24 different lipid subclasses in both

the negative and positive ion modes. Serum lipidomics analysis

revealed that DG, TG, PA, PC, PE, PS, LPI and PG were mainly

altered in NAFLD. We observed that DG, TG, PA, LPC, LPE and

PAF levels were significantly reduced by QHD. We also found 34

NAFLD-related lipids that were regulated by QHD treatment.

Among the 34 differential lipids, 33 lipids were positively

correlated with liver weight; 32 lipids were positively correlated

with body weight and NAS score; 31 lipids were positively

correlated with insulin, HOMA-IR, and hepatic TG; 30 lipids

were were positively correlated with FBG; and 12 were positively

correlated with serum ATL, whereas PC (36:5) was negatively

correlated with serum ATL, FBG and HOMA-IR. As one of the

primary structural lipids of eukaryote cell membranes,

glycerophospholipids regulate multiple cellular metabolic

processes (52). PE and PC are the most abundant phospholipids

in all mammalian cell membranes. In our study, among the 34

lipids, PE lipid molecules were decreased significantly in the

NAFLD+QHD group. The hepatic PC/PE molar ratio is a key

determinant of liver health. Changes in the hepatic PC/PE molar

ratio have been associated with the development of NAFLD in

humans (53). In our experiment, NAFLD rats had significantly

lower serum PC/PE levels, which were elevated after QHD

administration compared to the model group, although there was

no statistical difference (Figure 7F). Bioactive lipid intermediates

such as PC, LPC, are proposed to be associated with the

development of hepatic lipotoxicity or insulin resistance, which

are important players in NAFLD (54). In the liver, PC is involved in

the secretion of very-low-density lipoprotein and the metabolism of

high-density lipoprotein. Synthesized PC is the most abundant lipid

component (up to 70% molar ratio) of plasma very-low-density

lipoprotein and also constitutes nearly 40% of nascent high-density

lipoprotein (55). In this study, QHD treatment increased serum PC

(38:4) and PC (36:5), and decreased PC (17:4/18:1) and PC (17:4/

18:0). LPC is derived by hydrolytic cleavage of PC catalyzed by the

phospholipase A2 enzymes (54). In the liver, LPC upregulates genes

involved in cholesterol biosynthesis and downregulates genes

involved in fatty acid oxidation. Higher concentrations of LPC

can disrupt mitochondrial integrity and increase cytochrome C

release (55). The essential signaling molecules LPE and LPC are also
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derived from PE and PC, respectively. In our study, LPC and LPE

subclasses were decreased in the NAFLD+QHD rats. Interestingly,

PA was decreased in the NAFLD+QHD rats. PA can be converted

into cytidine diphosphate-diacylglycerol, a substrate for the

synthesis of PI, PG, and cardiolipins, or can be dephosphorylated

by phosphatidate phosphohydrolase to form DG, which acts as a

precursor molecule for the synthesis of TG, PC, PE, and PS.

Diacylglycerol acyltransferase catalyzes DG acylation, the last step

in TG synthesis. The newly synthesized TG can be directed from the

endoplasmic reticulum lipid bilayer to form cytosolic lipid droplets

(56, 57). NAFLD begins with the accumulation of TG in the liver

(20). In our study, both DG and TG were increased in rats with

NAFLD, indicating increased accumulation of lipid droplets.

However, reduced levels of DG and TG were observed in NAFLD

+QHD rats. Cer is the key precursor in the biosynthesis of various

sphingolipids. Cer and SM are incorporated into VLDL during

lipoprotein assembly by microsomal TG transfer protein.

Phospholipid transfer protein can transfer SM between VLDL

and HDL (58). Through oxidization, the FAs taken up by

hepatocytes either produce energy and ketone bodies, or are re-

esterified to DGs and TGs. Newly-synthesized TG can be secreted as

VLDL or be stored as lipid droplets (59). However, compared to the

NAFLD group, SM and Cer did not change in the NAFLD+QHD

group. Our results indicate that QHD appears to be promising for

alleviating lipid metabolic disorders in rats with HFD-induced

NAFLD, and provide the basis for similar studies in larger

cohorts to identify new lipid molecular species that have not been

associated with NAFLD previously.

Our focus was then on the relationship between gut

microbiota and lipid metabolism. The gut microbiome has been

shown to influence lipid metabolism and lipid levels in peripheral

tissues. A recent meta-analysis found that probiotics can

effectively affect blood lipids (60). A multi-omics study showed

that microbiota can induce monounsaturated fatty acid

production and polyunsaturated fatty acid elongation, resulting

in significant changes in the acyl chain spectrum of glycerol

phospholipids (61). Changes in gut microbiota composition that

occur during NAFLD development can interfere with lipid

metabolism in the liver, allowing for fat accumulation and

lipotoxicity (20). An altered gut microbiota can alter the

synthesis of fasting-induced adipocyte factor, a lipoprotein lipase

inhibitor involved in the release of free FAs from VLDL particles

into the liver. Therefore, suppression of this factor is associated

with an increased lipid accumulation in the liver (22). Several

studies have suggested an association between lipid metabolism

and gut microbiota (51, 62–64). New evidence in our study

showed that gut microbiota composition was associated with

lipid profiles after QHD treatment. It was found that the gut

microbiota in our study was largely involved in lipid metabolism

according to the pathway analysis based on the KEGG database

(Figure 4C), in addition, the levels of several lipid metabolites were

associated with the different genera of gut microbiota levels,

revealing a potential communication of gut microbiota with

plasma lipid profiles in NAFLD. The comprehensive analysis of

lipidomics and 16S rRNA amplicon sequencing highlighted a
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possible microbiota-derived biosynthesis of lipids. Furthermore,

our study revealed that the lipid metabolic profile in rat serum was

h igh ly cor r e l a t ed wi th Blau t ia , Lachnoc l o s t r i d ium,

Clostridium_sensu_stricto_1 and Turicibacter. Based on these

results, a potential link between gut microbiota and serum lipid

profiles was suggested. However, it is noteworthy that genetics, gut

microbiota, and dietary intake may also contribute to host lipid

profiles. Moreover, the underlying mechanisms of these

associations remain unclear and require further investigation.

However, the limitation of the study was that the

supplementation with specific species of bacteria or lipid

metabolites needed to be validated for NAFLD rats. To clarify the

relationship between lipids and gut microbiota in NAFLD models,

further in-depth research is needed. Moreover, studies in human

subjects with or without NAFLD have yet to be performed.

5 Conclusion

QHD supplementation can systematically alleviate hepatic

steatosis in NAFLD rats. The application of a multiomics

approach reveals that QHD supplementation can improve the

structure of the dysfunctional gut microbiota and regulate DG,

TG, PA, LPC, LPE and PAF. The differential circulating lipids were

mainly assoc ia ted with genera Bactero ides , B laut ia ,

Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter,

which were significantly correlated with biological parameters.

Taken together, these findings indicate that the regulation of gut

microbiota and lipid homeostasis may be critical in the mechanisms

of QHD in the treatment of NAFLD, providing a scientific basis for

future clinical applications and experimental studies of QHD.
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