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Novel insights into the role of
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in epigenetic regulation

Marta Russo, Francesco Pileri and Serena Ghisletti*

Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
Inflammation-dependent changes in gene expression programs in innate

immune cells, such as macrophages, involve extensive reprogramming of

metabolism. This reprogramming is essential for the production of metabolites

required for chromatin modifications, such as acetyl-CoA, and regulate their

usage and availability impacting the macrophage epigenome. One of the most

transcriptionally induced proinflammatory mediator is nitric oxide (NO), which

has been shown to inhibit key metabolic enzymes involved in the production of

these metabolites. Recent evidence indicates that NO inhibits mitochondrial

enzymes such as pyruvate dehydrogenase (PDH) in macrophages induced by

inflammatory stimulus. PDH is involved in the production of acetyl-CoA, which is

essential for chromatin modifications in the nucleus, such as histone acetylation.

In addition, acetyl-CoA levels in inflamed macrophages are regulated by ATP

citrate lyase (ACLY) and citrate transporter SLC25A1. Interestingly, acetyl-CoA

producing enzymes, such as PDH and ACLY, have also been reported to be

present in the nucleus and to support the local generation of cofactors such as

acetyl-CoA. Here, we will discuss the mechanisms involved in the regulation of

acetyl-CoA production by metabolic enzymes, their inhibition by prolonged

exposure to inflammation stimuli, their involvement in dynamic inflammatory

expression changes and how these emerging findings could have significant

implications for the design of novel therapeutic approaches.

KEYWORDS
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Introduction

During the inflammatory response, specific cells of the innate immune system, such as

macrophages, serve as an internal defense mechanism against infection and tissue damage.

By recognizing pathogen-associated molecular patterns, macrophages undergo

significant changes in gene expression programs and activate an extensive

reprogramming of their metabolism (1–3). Recent research has shed light on the

intricate relationship between transcription factors and chromatin modifications that

contribute to the activation of proinflammatory mediators in response to inflammatory
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stimuli. It is well established that dynamic change of macrophage

activation is directed by the activation of specific transcription

factors (TFs). Macrophage lineage-determining TFs such as PU.1

and IRF8 and signal-regulated TFs (such as NFkB and STATs

family members) bind to genomic regulatory regions to enable

different gene expression programs (4–11). In this way, when

exposed to pro-inflammatory stimuli such as lipopolysaccharide

(LPS) and interferon gamma (IFNg), macrophages undergo

classical activation, which results in the expression of

proinflammatory cytokines, chemokines, reactive oxygen species

(ROS), and microbicidal molecules such as nitric oxide (NO).

Moreover, inflammatory conditions lead to the transcriptional

upregulation of genes responsible for metabolic pathways.

Recently, it has been established that metabolic reprogramming

plays a significant role in macrophage pro-inflammatory response,

including the upregulation of glycolysis, modifications to the
Frontiers in Endocrinology 02
tricarboxylic acid (TCA) cycle, and the impairment of

mitochondrial respiration (12–14). Briefly, the remodeling of

TCA cycle in the activation of classical macrophages is primarily

driven by the tight regulation by the inflammatory stimulus of

aconitate decarboxylase 1 (ACOD1) (15), generating the metabolite

itaconate, which exerts various immunoregulatory effects (16–19).

In turn, accumulation of itaconate inhibits succinate dehydrogenase

(SDH), resulting also in succinate accumulation (13, 20). The

discussion on how changes of metabolites levels impact on

epigenetic regulation in inflammatory states are outside of our

main focus and have been extensively covered in recent review

articles (3, 21–26).

In this Mini Review, we aim to discuss emerging concepts

related to metabolic reprogramming and transcriptional activation

in macrophages induced by inflammatory stimuli. Specifically, we

will focus on how nitric oxide, produced by macrophages upon
FIGURE 1

In LPS-activated macrophages the induction of the iNOS gene results in a burst of nitric oxide (NO) production. NO has a pleiotropic effect inside
the cell which results in the inhibition of the electron transport chain (OXPHOS), the E2 and E3 subunit of the pyruvate dehydrogenase (PDH), and
few enzymes of the TCA cycle (ACO2, IDH, OGDH).
FIGURE 2

Citrate accumulates in the mitochondria of LPS-activated macrophages and it is exported to the cytosol through its carrier (SLC25A1). In the cytosol
ATP Citrate Lyase (ACLY) converts citrate to acetyl-CoA, which is used in the nucleus to acetylate histones and thus activate target inflammatory
genes. Inhibiting either ACLY activity or the citrate transporter results in a reduction of inflammatory genes activation.
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prolonged exposure to LPS, affects metabolic remodeling and

consequently regulates the transcription of inflammatory genes.

Recent studies have revealed the mechanism by which NO blocks

the activity of mitochondrial TCA cycle enzymes, including

pyruvate dehydrogenase (PDH), which impacts acetyl-CoA

production (27–29). acetyl-CoA content , in inflamed

macrophages, is also dependent on citrate accumulated in

mitochondria, which is transported to the cytosol by SLC25A1, a

citrate-malate transporter, and then cleaved into oxaloacetate and

acetyl-CoA by ATP citrate lyase (ACLY) in the cytosol. Thus, we

will also explore the roles of SLC25A1 and ACLY in regulating

acetyl-CoA levels in macrophages exposed to LPS, which can

impact histone acetylation and inflammatory gene expression

(30–32). Furthermore, we will discuss how enzymes that produce

acetyl-CoA, such as PDH and ACLY, can be recruited to the nucleus

to generate acetyl-CoA locally, which in turn can impact histone

acetylation and transcriptional activation of proinflammatory

mediators (33, 34). Finally, we will discuss how these emerging

findings have implications for the development of new therapeutic

strategies to treat inflammatory diseases.
Nitric oxide is a central player
in inflammation-induced
metabolism remodeling

Central to the inflammatory response in macrophages is the

transcriptional induction of inducible nitric oxide synthase (iNOS),

which produces significant amounts of nitric oxide (NO) and

reactive nitrogen species (RNS). One of the essential steps for

iNOS transcriptional activation is the binding of transcription

factors induced by inflammatory stimuli on iNOS promoter

region, such as NF-kB, AP1, IRFs and STATs family members

(35). Inflammatory macrophages convert arginine into NO through

iNOS activity, being this crucial for host defense and pathogen

killing (36). Recent studies suggest that the production of nitric

oxide plays a critical role in the metabolic reprogramming of

macrophages during activation.

First of all, the generation of NO plays a key role in the pro-

inflammatory switch of macrophages by inhibiting mitochondrial

respiration. This is achieved through nitrosation of NADH

dehydrogenase (Complex I) and reversible inhibition of

cytochrome c oxidase (Complex IV) (37–39), with recent

evidence indicating that NO primarily decreases the activity of

complexes I and II, with minor effects on complexes III and IV (14).

Thus, NO and NO-derived reactive nitrogen species can inactivate

all iron-sulfur-containing complexes of the mitochondrial transport

chain, thereby inhibiting electron transport and ATP production

(14) (Figure 1).

Secondly, in addition to its effects on mitochondrial respiration,

NO also modulates metabolic remodeling in inflammatory

macrophages by regulating the TCA cycle. Specifically, NO has been

shown to inhibit pyruvate dehydrogenase (PDH) (27, 28) (Figure 1),

which is part of the mitochondrial a-ketoacid dehydrogenase family of

multi-subunit enzyme complexes that also includes oxoglutarate
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dehydrogenase (OGDH) and branched-chain ketoacid

dehydrogenase complex (BCKDC). These complexes have a similar

catalytic mechanism involving coupled reactions with three subunits:

E1, E2, and E3. The E1 subunit decarboxylates an a-ketoacid and

transfers the corresponding acyl group to a thiamine pyrophosphate

cofactor. The E2 subunit (dihydrolipoamide acyltransferase) then

transfers the acyl group to the thiol of CoA, producing acyl-CoA,

and the E3 subunit (dihydrolipoamide dehydrogenase) reoxidizes the

lipoic arm, coupled to NADH production (40).

Mechanisms targeting different subunits of PDH have been

recently proposed to regulate its activity (Figure 1). One such

mechanism involves the generation of reactive nitrogen species

(RNS), which induce covalent S-modifications on the lipoic arm of

the PDH E2 subunit (29). This results in the formation of adducts that

hinder catalytic activity, and this mechanism appears to be highly

specific and effective due to the targeted delivery of RNS modifications

on the lipoic arm via CoA (27, 29). As alternative and complementary

mechanism, also the E3 subunit can be directly nitrosylated by NO in

LPS activated macrophages (28). It is important to note that the same

mechanisms here described for PDH can be applied also for other

enzymes belonging to the same family, such as OGDH and BCKDC

(Figure 1). Moreover, NO has been demonstrated to inhibit aconitase

(ACO2) and other enzymes of the TCA cycle, such as isocitrate

dehydrogenase (IDH) (39, 41, 42) (Figure 1).

In this manner, NO plays a unique and fundamental role in

regulating the balance of the key metabolites for macrophage

function such as acetyl-CoA, itaconate, succinate and citrate.

Thus, NO takes center stage not only as an orchestrator of

changes in macrophage mitochondrial metabolism during

prolonged stimulation, but also a potential regulator of

downstream epigenomic changes.
SLC25A1 and ACLY regulate
inflammatory gene expression

During the early stages of an inflammatory response, there is an

upregulation of glycolysis, leading to an increased production of

pyruvate. This pyruvate is then utilized by PDH to enter the TCA

cycle (30). Simultaneously, the inflammatory stimulus causes a

transcriptional downregulation of isocitrate dehydrogenase (IDH)

enzyme, resulting in the accumulation of mitochondrial citrate (12,

13). To maintain appropriate levels of acetyl-CoA, the accumulated

mitochondrial citrate is exported to the cytosol, where it undergoes

cleavage by ACLY, in an ATP-consuming reaction that generates

oxaloacetate and acetyl-CoA (Figure 2). Notably, macrophages lack

the expression of acyl-CoA synthase short-chain family member 2

(ACSS2), which is responsible for converting acetate to acetyl-CoA,

representing the major route to cytosolic acetyl-CoA that does not

involve citrate. Inflammatory macrophages show activation of

ACLY, as evidenced by an increase in its phosphorylation, despite

no changes in gene expression or protein levels (30, 31, 43). Acetyl-

CoA generated by ACLY can be incorporated into histones, thereby

promoting chromosome accessibility and regulating macrophage

activation induced by LPS and IL4 (30, 44) (Figure 2).
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An additional layer of regulation of acetyl-CoA levels in

inflammatory macrophages involves citrate transport. In this regard,

the mitochondrial citrate carrier (CIC), also known as SLC25A1, plays

crucial role in exporting citrate/isocitrate from the mitochondria in

exchange for the entry of cytosolic malate (23) (Figure 2). The

induction of CIC and the export of citrate have been shown to

regulate inflammatory mediators in macrophages (45).

Recent discoveries have highlighted the significance of exported

citrate and cytosolic acetyl-CoA generation as signaling metabolites

that govern metabolite reprogramming to support inflammatory

responses (32). In activated macrophages, inhibiting CIC promotes

metabolic flux in the TCA cycle, leading to a reduction in

mitochondrial citrate and succinate accumulation, which in turn

suppresses inflammatory responses at the metabolic level (32).

Blocking CIC or treating with an ACLY inhibitor impaired the

LPS-induced production of proinflammatory mediators such as

interleukin1b (IL1b), iNOS, tumor necrosis factor (TNF) and

prostaglandin E2 (PGE2) (30, 31, 46) (Figure 2).
Acetyl-CoA producing enzymes act at
a nuclear level

Acetyl-CoA, a molecule that faces difficulty in crossing cellular

membranes, has two possible ways to enter the nucleus: either

through nuclear pores or by being produced directly within the

nucleus. Similarly, citrate, which has the ability to diffuse across

nuclear pores, can be utilized within the nucleus to generate acetyl-

CoA specifically for histone acetylation.

Interestingly, the cytosolic enzyme ACLY is present in the

nucleus and plays a role in enhancing histone acetylation, thereby

promoting the transcriptional activation of specific genes (47).

Although the regulation of histone acetylation levels primarily

relies on histone acetyltransferases and deacetylases, it has been

recognized that acetyl-CoA derived from exported citrate also

contributes to the process of histone acetylation. Consequently,

the nucleus is now acknowledged as an active metabolic

compartment where the generation of acetyl-CoA takes place.

Besides ACLY, also the other acetyl-CoA producing enzyme

PDH has been extensively demonstrated to be present and

functional in the nucleus. Despite its primary localization in the

mitochondria, PDH has been reported to undergo translocation

from the mitochondria to the nucleus in response to specific stimuli,

thereby playing a role in histone acetylation regulation (34, 48–52).

The challenge lies in understanding how this large

macromolecular enzyme complex, which can reach sizes up to 10

MDa, is able to traverse from the mitochondria to the nucleus,

considering its inability to pass through nuclear pores. As it lacks a

nuclear localization signal (NLS), the mechanism behind PDH’s

translocation remains unclear. Recent studies have proposed a non-

canonical nuclear import pathway that does not involve the nuclear

pore complex (34). In this proposed mechanism, PDH translocation

is facilitated by tethering the mitochondria to the nucleus through

the involvement of Mitofusin 2 (MFN2), a protein crucial for

regulating mitochondrial fusion (34, 53).
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Interestingly, a recent biochemical study utilizing mass

spectrometry has provided intriguing findings regarding the

flexibility of PDH’s structure. It was discovered that under

physiological ionic strength, PDH exhibits pliability, allowing it to

change its size and dissociate into sub-megadalton individual

components (33). These findings suggest that PDH is a dynamic

complex capable of dissociating into smaller components, which

may facilitate its translocation into the nucleus. In addition, it has

been recently reported that also aconitase 2 and 2-oxoglutarate

dehydrogenase are present and act at a nuclear level (54). By

proximity labeling mass spectrometry, these enzymes have been

shown to be spatially close to nuclear proteins (54).

Further exploration into the mechanisms underlying the

translocation of metabolic enzymes into the nucleus, as well as

their involvement in epigenetic regulation in activated

macrophages, holds the potential to unveil novel insights into the

intricate interplay between metabolism and gene expression.
Discussion

The existence of such an intricate interplay between cellular

metabolism and macrophage transcriptional response has led to the

exploration of metabolic reprogramming as a novel therapeutic

strategy for controlling macrophage activity in inflammatory

diseases. Indeed, the possibility to modulate the intracellular

metabolic pathways has recently emerged as a potential novel

strategy to reshape dysfunctional macrophage functions, offering

new therapeutic opportunities (55–58).

For example, severalACLY inhibitors have shownpromising results

in various therapeutic areas, including the modulation of inflammation

and the reductionof atheroscleroticdiseaseprogression. (30, 31).Usinga

model of LPS-induced peritonitis, Lauterbach et al. demonstrated that

the treatment with BMS 303141, a specific small-molecule inhibitor of

ACLY, determines a decrease in the protein levels of IL-6 and IL-12p70

in both the peritoneum and serum of the BMS-injected mice (30).

Moreover, in a recent study fromBaardmanet al. the role ofACLY in the

pathology of atherosclerotic disease was investigated (31). Myeloid

ACLY deficiency resulted in stable plaque formation characterized by

increased collagen deposition and fibrous cap, as well as a smaller

necrotic core. Furthermore, bempedoic acid (ETC-1002), a specific

and well tolerated liver-targeting ACLY inhibitor, has been recently

approved for clinical use by FDA for the treatment of cardiovascular

disease. Similarly, Li et al. showed that the pharmacological inhibition of

citrate export (through the mitochondrial citrate carrier (CIC))

inactivated peripheral macrophages and contributes to prevent the

formation of cerebral thrombosis (32).

Alternatively, enhancing mitochondrial function, such as through

the inhibition of iNOS or through the inhibition of the RNS species

generated in inflamed macrophages, could be a valuable strategy to

improve the reprogramming of the TCA cycle and effectively control

inflammatory diseases. By restoring mitochondrial function, it may be

possible to promote metabolic adaptations that can regulate

inflammation and restore cellular homeostasis. Van den Bossche

et al. demonstrated that inhibition of iNOS in mouse macrophages
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effectively mitigated the decrease in mitochondrial respiration caused

by LPS and IFNg stimuli (14). Consequently, this inhibition led to

enhanced metabolic function and facilitated the repolarization of

macrophages from a pro-inflammatory phenotype to an anti-

inflammatory phenotype. However, the therapeutic application of

iNOS inhibitors is limited by their moderate potency and poor

selectivity against different isoforms of NOS. Indeed, these inhibitors

have shown efficacy in animal models for various diseases, but none

have successfully advanced through clinical trials due to concerns about

toxicity and selectivity. To overcome these challenges, a deeper

understanding of the structural and pharmacophoric requirements

for potent and selective iNOS inhibitors is still needed (59). Finally,

Seim et al., demonstrated that the pharmacological inhibition of RNS in

activated macrophages has a significant impact on restoring the

functional lipoic arms and activities of PDH and OGDH, suggesting

a potential therapeutical relevance of RNS inhibition for numerous

physiological and pathological conditions in which RNS accumulate,

such as inflammation, neurodegeneration, and cancer (29).
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