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Hormone resistance in cancer
Introduction

Hormone-dependent cancers are the most common non-cutaneous tumors

experienced by all sexes. This year, nearly 700,000 combined new cases of breast,

ovarian, endometrial, prostate, and thyroid cancers will be diagnosed in the United

States (1). Antagonizing hormone signaling pathways is a widely used treatment strategy

(2–6). However, due to acquired mutations of hormone receptors, indirect cofactor-

mediated changes in cell behavior, and heterogeneity within tumors, the therapeutic

durability of these treatments is often short-lived (7–13). In late-stage disease, a lethal,

intractable small-blue cell tumor or neuroendocrine-like phenotype may emerge displaying

genetic, epigenetic, and hormonal properties promoting cellular plasticity (11, 12, Imamura

et al., 14). Specific neuroendocrine tumor features are poorly defined and vary across tissue

origin (14, 15). Therefore, understanding these mechanisms of treatment resistance and

finding commonalities among neuroendocrine subsets of cancer is vital to uncover new

targeted therapies beyond hormone therapy that halt disease progression.
Hormones and cancers

Hormone receptor signaling

Hormones often serve as activating ligands for their respective nuclear hormone receptor

(NHR) proteins: Estrogen Receptor (ER) in breast, ovarian, and endometrial tissue, and

Androgen Receptor (AR) in prostate tissue (16, 17). Thyroid carcinomas are often fueled by

Thyroid–Stimulating Hormone (TSH) produced in the pituitary gland, responsible for the

endocrine secretion of many hormones (Mousa et al.). NHRs act as potent activators of

oncogenes in transformed cells (4, 17). Ultimately, maintenance of hormone signaling pathways

despite attempted blockades is a mechanism of disease progression (18–20).
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Hormone therapy in cancer

Targeting hormone signaling pathways are a clinical mainstay

for treating hormone–dependent cancers. Exogenous L–Thyroxine

(T4) is a common treatment to promote a negative feedback loop of

TSH signals in papillary and follicular thyroid cancers (Mousa

et al.). Similarly, gonadotropin releasing hormone (GnRH)

antagonists, or agonists through feedback, castrate prostate cancer

patients by halting testicular production of androgens (21).

Androgen and estrogen biosynthesis inhibitors, abiraterone

acetate and aromatase inhibitors, respectively, inhibit enzymes

that synthesize hormones in patients (22, 23). Second–generation

AR antagonists like enzalutamide and darolutamide impede AR

interaction with testosterone (24). ER–targeted therapies include

the Selective Estrogen Receptor Modulators/Degraders (SERM/Ds).

SERMs tamoxifen and raloxifene bind to the ER ligand binding

domain and obstruct ER signaling breast tissue (25, 26). Selective

Estrogen Receptor Degraders (SERDs) bind and target ER for

proteasomal degradation (27, 28).
Hormone therapy resistance

Unfortunately, the response to hormone therapy is temporary.

As discussed in Mousa et al., L–Thyroxine may in fact stimulate

tumor cell proliferation in patients with therapy–resistant thyroid

cancer. Breast and prostate tumors often exhibit NHR mutations

that render most treatments ineffective, including activating

mutations where enzalutamide and tamoxifen can serve as

functional NHR ligands. (7, 8, 20, 29–33). Cancer cells employ

growth pathways aside from NHR signaling and utilize alternative

cofactors and coregulatory molecules promoting disease

progression (2, 9, 10, 34–38). Since NHR family proteins are

structurally similar, other NHRs such as Glucocorticoid Receptor

(GR) can compensate for loss of AR/ER activity (39, 40). These

resistance mechanisms allow for initially hormone–driven tumors
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to become metastatic, hormone–indifferent disease (18). Imamura

et al. found these cancers often display a high degree of lineage–

plasticity and sometimes complete loss of NHR–dependence in

Neuroendocrine Prostate Cancer (NEPC) and Triple–Negative

Breast Cancer (TNBC) (41).
Neuroendocrine differentiation and
hormone independence

Neuroendocrine tumor characteristics

Since very few neuroendocrine molecular markers exist across

tumor types, specifically defining these populations and targeting

these poorly differentiated, aggressive cancer cells remains elusive.

Neuroendocrine tumors typically display markers of neuronal

differentiation and can originate in various anatomical locations.

Nevertheless, they exhibit histological and clinical resemblances

(42). Neuroendocrine subsets seen in late–stage cancers are poorly

differentiated, with large nuclear–to–cytoplasmic ratios, that

aberrantly activate stem cell gene pathways (34, 43, 44).

Some genetic similarities are shared across various small–cell

neuroendocrine (SCN) diseases such as small–cell lung cancer

(SCLC) and NEPC, regardless of their tissue of origin (44). These

can include RB1 deletion, TP53 mutation, and N–MYC

overexpression (42, 44–47). In hormone dependent tumors, de

novo incidence of SCN/NEPC is rare, and most cases result from

therapeutic pressure (48, 49). Further complicating the topic is that

neuroendocrine neoplasms occur in many sites: the central nervous

system, respiratory tract, gastrointestinal tract, thyroid, breast, and

urogenital system, and yet share similar pathologic features (50).

Although progress has been made in the management of these

lineage plastic neuroendocrine cancers, such as Delta–like–ligand–3

(DLL3) targeted molecules (51, 52), more research is needed to

further characterize the exact molecular mechanisms of progression

to an SCN phenotype (Figure 1).
FIGURE 1

Hormone–driven cancer progression to neuroendocrine phenotype.
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Emerging factors in SCN tumors

A recently developed SCN phenotype grading system was used by

Bae et al. to demonstrate oncogenic function of the transcription factor

ZBTB7A in NEPC (42). ZBTB (Zinc finger and broad–complex,

tramtrack and bric–a–brac domain containing) protein family

members are multifunctional transcription factors that play

significant roles cell proliferation, differentiation, and development.

(53, 54). Elevated expression of ZBTB7A has been linked to tumor

formation and metastasis in different cancer types, including breast,

prostate, lung, ovarian, and colon cancer (55, 56). Interestingly,

pituitary neuroendocrine tumors (PitNETs) are characterized by

overexpression of prolactin, Studies have demonstrated that ZBTB20

plays a role in controlling prolactin expression in the pituitary gland

and contributes to the development of hepatocellular carcinoma (57–

59). Lin et al. describe a patient in whom a PitNET had developed

resistance to standard of care therapy was treated with

hydroxychloroquine and experienced a significant reduction in

prolactin secretion. Given the established crosstalk between prolactin

and estrogen receptor signaling in breast cancer, ZBTB family

transcription factors could play key roles in the emergence and

therapy resistance neuroendocrine cancers (37, Bae et al., 60). These

factors may drive lineage–plasticity across tumor types and the loss of

NHR–dependence that characterizes SNC/NEPC.
Summary

Hormone driven cancers are common malignancies that

sometimes differentiate into lethal, aggressive neuroendocrine

subtypes. In breast and prostate cancer, neuroendocrine

differentiation often emerges after the failure of hormone targeted

therapies. Currently, a limited number of dependable
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neuroendocrine molecular markers exist across tissues. Further

research is required to discover genetic similarities that can pave

the way for effective targeted therapies capable of eradicating

multiple subtypes of neuroendocrine and lineage plastic tumors.
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