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Causal effects of nonalcoholic
fatty liver disease on cerebral
cortical structure: a Mendelian
randomization analysis

Zhiliang Mai1,2 and Hua Mao1*

1Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
2Department of Anatomy, Guangdong Medical University, Zhanjiang, China
Background: Previous studies have highlighted changes in the cerebral cortical

structure and cognitive function among nonalcoholic fatty liver disease (NAFLD)

patients. However, the impact of NAFLD on cerebral cortical structure and

specific affected brain regions remains unclear. Therefore, we aimed to

explore the potential causal relationship between NAFLD and cerebral cortical

structure.

Methods: We conducted a Mendelian randomization (MR) study using genetic

predictors of alanine aminotransferase (ALT), NAFLD, and percent liver fat (PLF)

and combined them with genome-wide association study (GWAS) summary

statistics from the ENIGMA Consortium. Several methods were used to assess

the effect of NAFLD on full cortex and specific brain regions, along with sensitivity

analyses.

Results: At the global level, PLF nominally decreased SA of full cortex; at the

functional level, ALT presented a nominal association with reduced SA of

parahippocampal gyrus, TH of pars opercularis, TH of pars orbitalis, and TH of

pericalcarine cortex. Besides, NAFLD presented a nominal association with

reduced SA of parahippocampal gyrus, TH of pars opercularis, TH of pars

triangularis and TH of pericalcarine cortex, but increased TH of entorhinal

cortex, lateral orbitofrontal cortex and temporal pole. Furthermore, PLF

presented a nominal association with reduced SA of parahippocampal gyrus,

TH of pars opercularis, TH of cuneus and lingual gyrus, but increased TH of

entorhinal cortex.

Conclusion: NAFLD is suggestively associated with atrophy in specific functional

regions of the human brain.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) has emerged as one

of the most common chronic liver diseases, affecting 32.4% of the

world population (1). It is generally defined as a spectrum of

diseases, ranging from nonalcoholic fatty liver, nonalcoholic

steatohepatitis (NASH), and liver cirrhosis, which can increase

the risk of hepatocellular carcinoma (2). In addition, recent

studies indicated that NAFLD is a multi-system disease that can

affect various organs and systems, including kidney dysfunction (3),

cardiovascular diseases (4), and extrahepatic tumors (5).

Neuropsychiatric diseases are considered as one of the

manifestations of NAFLD, such as dementia, depression, and

impaired brain health. To be more specific, a system review

revealed that patients with NAFLD had an overall 1.44-fold

increased risk of cognitive impairment compared with healthy

controls (6). Moreover, a study demonstrated that NAFLD

constitutes an independent risk factor for anxiety and depression.

Besides, previous works have demonstrated close interplays

between NAFLD and brain health, including smaller total brain

volume, decreased cerebral blood blow and greater arterial stiffness

(7–9). These findings suggest there are associations between

NAFLD and the whole brain. However, it is also important to

identify the link between specific brain region and NAFLD, which

may know more about the mechanism of liver-brain axis, and help

pave the way to the treatment target of dementia.

The human cerebral cortex, the outer gray matter layer of the

brain, plays an important role in cognitive function. Surface area

(SA) and thickness (TH) are regarded as important indicators of the

human cerebral cortex to study the associations between the brain

and the neuropsychiatric diseases (10). Given the uncertainty about

the effect of NAFLD on the specific brain regions, further studies

that explore the potential impact of NAFLD on the health of specific

brain region are warranted.

Mendelian randomization (MR) is an analytic method that uses

genetic variants as instruments to estimate the causal effect of risk

factors on outcomes (11). MR has become an important method in

the recent medical literature because it can overcome the limitations

of observational analyses, which are often biased by confounding

factors. To date, the use of MR has succeeded in assessing causal

relationships in the studies of NAFLD, including several risk factors

of NAFLD (12, 13) and relationship between NAFLD and other

diseases (14, 15). However, to the best of our knowledge, the causal

relation between NAFLD and cerebral cortical structure has not

been demonstrated yet.

Hence, the present study used human genetic data within the

MR framework to reveal the effect of NAFLD on the SA and TH of

full cortex. We also carried out subgroup analyses based on specific

brain regions. Considering NAFLD is closely associated with

alanine transaminase (ALT) and percent liver fat (PLF), we also

selected ALT and PLF as exposures. In the end, three sets of

parameters: ALT, NAFLD, and PLF, were used to conduct the

MR estimates. Our results shed light on the patterns and

mechanisms of brain damage caused by NAFLD and provided

new insights into the possible existence of a liver-brain axis.
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2 Materials and methods

2.1 Exposure data

2.1.1 Alanine transaminase
We obtained the summary statistics of ALT from a recent

genome-wide association study (GWAS) by Pazoki Raha et al. (16),

which included 437,267 individuals of European ancestry. Of note,

the ALT levels were log 10 transformed to approximate normal

distribution (corresponding to per 10 times of ALT) in the

original article.

2.1.2 Non-alcoholic fatty liver disease
Genetic associations with NAFLD were extracted from the

largest GWAS meta-analysis to date, which consisted of 8,434

NAFLD cases and 770,180 controls of European ancestry,

comprising data from 4 cohorts: Electronic Medical Records and

Genomics (eMERGE), UK Biobank, FinnGen and Estonian

Biobank (17). In the eMERGE cohort, NAFLD was defined by the

use of electronic health record (EHR) codes (ICD-9: 571.5, ICD9:

571.8, ICD-9: 571.9, ICD-10: K75.81, ICD-10: K76.0 and ICD-10:

K76.9). In the UK Biobank and Estonian Biobank, NAFLD

diagnosis was established from hospital records (ICD-10: K74.0

and K74.2 [hepatic fibrosis], K75.8 [non-alcoholic steatohepatitis],

K76.0 [NAFLD] and K76.9 [other specified diseases of the liver]). In

the FinnGen Consortium, NAFLD was defined by EHR code K76.0.

2.1.3 Percent liver fat
Genetic associations with PLF were extracted from a GWAS

from a cohort (18) that consisted of 32,858 European participants

from the UK Biobank. The cohort used deep learning to process

over 38,000 abdominal MRI scans to quantify volume, fat, and iron

in seven organs and tissues, including the liver. The GWAS of PLF

adjusted for several covariates, including age at imaging visit, age

squared, sex, imaging center, scan date, scan time, genotyping

batch, and genetic relatedness.
2.2 Outcome data

We obtained the GWAS data for SA and TH from the ENIGMA

Consortium (19). The ENIGMA Consortium conducted a genome-

wide association meta-analysis study on cortical structures, which

included the SA and TH of the full cortex, as well as SA and TH for

thirty-four brain cortical regions with known functional

specializations. The thirty-four brain regions were defined using

the Desikan-Killiany cortical atlas, and established coarse partitions

of the cortex. The SA and TH were measured using MRI in 51,665

individuals from 60 cohorts around the world, with approximately

94% of European descent. Both SA and TH of brain regions were

weighted by the entire brain, indicating the SA and TH of specific

regions across the SA and TH of the entire brain. These data can be

accessed at https://enigma.ini.usc.edu/research/download-enigma-

gwas-results/. All GWASs data used in the study are shown in

Table S1.
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2.3 Instrumental variable selection

To identify the causal relationship between NAFLD and the

cerebral cortical structure, we used three sets of genetic instruments,

including: i) index Single Nucleotide Polymorphisms (SNP)

representing ALT, ii) index SNPs representing NAFLD, and iii)

index SNPs representing PLF. Genetic instruments were selected via

the following criteria: i) a GWAS-correlated P-value of 5 × 10-8, ii)

the minor allele frequency (MAF) threshold of the variants of

interest was 0.01, iii) a linkage disequilibrium (LD) r2 of < 0.001,

and < 10 MB from the index variant, iv) an F statistic of 10 was

regarded as sufficiently robust to counteract weak instrument bias.

Finally, when no SNP in the outcome dataset met this criterion,

proxy SNPs with LD set at r2 > 0.8 were used. The study flow chart is

presented in Figure 1.
2.4 Ethics

This study used publicly available data from participant studies

that were approved by an ethical standards committee with respect

to human experimentation. No separate ethical approval was

required in this study.
2.5 MR analysis

Three different methods of MR [inverse-variance weighted

(IVW), MR Egger, and weighted median] were performed to

address variant heterogeneity and the pleiotropy effect. IVW was

used as the main analysis, because it is reported to be slightly more

powerful than other methods under certain conditions (20). However,

IVW assumes that all genetic variants are valid instruments (21),
Frontiers in Endocrinology 03
whichmay not be true in practice. Therefore, MR-Egger and weighted

median were used as complements to improve the IVW estimates as

they could provide more robust estimates in a broader set of

scenarios. MR-Egger method allows all genetic variants to have

pleiotropic effect but requires that the pleiotropic effects be

independent of the variant-exposure association (22). Weighted

median allows for the use of invalid instruments when less than

half of the instruments used in the MR analysis are valid (22). We

only performed MR-Egger and weighted median when PIVW < 0.05.

When all methods had consistent b directions, the effect estimates

were considered significant (23). For significant estimates, we further

assessed horizontal pleiotropy using the MR-PRESSO global test (24,

25). If the SNP was identified by MR-PRESSO outlier test as outliers,

it would be removed and then the MR analysis was re-performed.

Additionally, as the MR estimate may be biased in the present of

invalid instruments, several sensitivity analyses were performed. MR-

Egger regression test was used to obtain the intercept, which was an

indicator for directional pleiotropy (P < 0.05 was considered as the

presence of directional pleiotropy) (26). Funnel plots were used to

assess the probable pleiotropy and heterogeneity. The Cochran’s Q

test was also used to evaluate heterogeneity (27).

Additionally, we established a multiple testing significance

threshold at different outcome (full cortex, specific brain regions),

defined as P < 0.05/(3×n) (where n is the number of outcomes).

Therefore, a P value less than 8.3 × 10−3 (0.05/6) was considered

statistically significant in the estimation of SA and TH of full cortex,

while a P value less than 2.5 × 10−4 (0.05/204) was considered

statistically significant in the estimation of SA and TH of certain

brain region. A P value less than 0.05 was considered nominally

significant evidence for a potential causal association (23, 28, 29).

All analyses were performed using the package TwoSampleMR (30)

(version 0.5.6) and package MRPRESSO (25) (version 1.0) in R

(version 4.1.3).
ALT NAFLD PLF

SA and TH of full cortex SA and TH of 34 brain regions

IVW

MR-Egger and Weighted Median

Consistent βIVW, βMR-Egger, βWeighted Median direction?

PIVW < 0.05

No
Insignificant

Yes

Cochran’ s Q test MR-Egger
intercept test Leave-one-out Funnel plot

MR-PRESSO global testRemoved outliers
P < 0.05

P > 0.05

FIGURE 1

Study flame chart of the Mendelian randomization study revealing the causal relationship between alanine transaminase, non-alcoholic fatty liver
disease, and percent liver fat and the cerebral cortical structure. ALT, alanine transaminase; IVW, inverse-variance weighted; MR-PRESSO, Mendelian
randomization-pleiotropy residual sum and outlier; NAFLD, non-alcoholic fatty liver disease; PLF, percent liver fat; SA, surface area; TH, thickness.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1276576
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mai and Mao 10.3389/fendo.2023.1276576
3 Results

In total, 10 index SNPs were selected to genetically predict ALT,

10 index SNPs were used to genetically predict PLF and 4 SNPs

predict NAFLD. F statistics for these genetic instruments were all

larger than the normally selected value of 10, ranging from 10.6 to

23,115.9, indicating no evidence of no weak instruments (31). SNP

rs429358 was overlapped in PLF and NAFLD. SNP rs58542926 was

overlapped in ALT and PLF. There was no overlapping between

ALT and NAFLD. All the details about the SNPs were shown in the

Table S2.

MR analysis was performed to evaluate the causal relationships

of NAFLD with SA and TH of brain region and full cortex

(Figure 1). Table 1 showed the NAFLD’s causal effect on the full

cortex. All the results about the main analysis were presented in

Table S3 and Figure 2. Table 2 and Figure 3 showed the nominally

significant brain regions affected by NAFLD.

As is shown in the Table 1, PLF was found to decrease SA of

full cortex (b = -900.7396 mm2, 95% CI: -1625.1751 mm2 to

-176.3041 mm2, p = 0.01481) but had no causal relationship with

TH (b = -0.0047 mm, 95% CI: -0.0105 mm to 0.0011 mm, p =

0.11007). Heterogeneity was not observed by Cochran’s Q test (p

= 0.93, Table 3). The P value for MR-Egger intercept is 0.32,

indicating there is no pleiotropy (Table 3). ALT had no causal

relationship with the SA and TH of full cortex (bSA = -6700.0683

mm2, 95% CI: -15685.3599 mm2 to 2285.2232 mm2, pSA =

0.14387; bTH = -0.0338 mm, 95% CI: -0.0921 mm to 0.0244

mm, pTH = 0.25534). Genetic predicted NAFLD had no causal

relationship with the SA and TH of full cortex (bSA = -880.5200

mm2, 95% CI: -1775.4473 mm2 to 14.4072 mm2, pSA = 0.05380;

bTH = -0.0019 mm, 95% CI: -0.0076 mm to 0.0038 mm, pTH
= 0.51819).
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3.1 Causal estimates of genetically
predicted ALT on the brain regions

The genetically predicted ALT was nominally associated with

reduced SA in the parahippocampal gyrus (b = -60.4594 mm2, 95%

CI: -104.9948 mm2 to -15.9239 mm2, p = 0.0078). A similar result was

obtained when analyzing index SNPs predicted ALT and TH of several

brain regions, including pars opercularis (b = -0.0861 mm, 95% CI:

-0.1402 mm to -0.0319 mm, p = 0.00185), pars orbitalis (b = -0.1023

mm, 95% CI: -0.1874 mm to -0.0172 mm, p = 0.01849) and

pericalcarine cortex (b = -0.0913 mm, 95% CI: -0.1767 mm to -0.006

mm, p = 0.03603).
3.2 Causal estimates of genetically
predicted NAFLD on the brain regions

The genetically predicted NAFLD was nominally associated with

reduced SA in the parahippocampal gyrus (b = -5.3315 mm2, 95% CI:

-9.2083 mm2 to -1.4547 mm2, p = 0.00703). NAFLD was also found to

be nominally associated with reduced TH of cuneus (b = -0.0075 mm,

95% CI: -0.0130 mm to -0.0020 mm, p = 0.00719), lingual gyrus (b =

-0.0063 mm, 95% CI: -0.0112 mm to -0.0015 mm, p = 0.01093), pars

opercularis (b = -0.0072 mm, 95% CI: -0.0117 mm to -0.0027 mm, p =

0.00171), pars triangularis (b = -0.0058 mm, 95% CI: -0.0109 mm to

-0.0008 mm, p = 0.02205), and pericalcarine cortex (b = -0.0086 mm,

95% CI: -0.0141 mm to -0.0031 mm, p = 0.00208). However, there was

nominally significant evidence that the NAFLD was associated with

increased TH of the entorhinal cortex (b = 0.0251 mm, 95% CI: 0.0093

mm to 0.0410mm, p = 0.00191), lateral orbitofrontal cortex (b = 0.0062
mm, 95% CI: 0.0003 mm to 0.0121 mm, p = 0.04105) and temporal

pole (b = 0.0143 mm, 95% CI: 0.0005 mm to 0.0281 mm, p = 0.04204).
TABLE 1 Mendelian randomization estimates from alanine transaminase, non-alcoholic fatty liver disease and percent liver fat on genetically
predicted full cortex.

Exposures
Outcomes

Method b (95%CI) SE P value

ALT

Surface area of full cortex IVW -6700.0683 (-15685.3599, 2285.2232) 4584.3320 0.14387

Thickness of full cortex IVW -0.0338 (-0.0921, 0.0244) 0.0297 0.25534

NAFLD

Surface area of full cortex IVW -880.5200 (-1775.4473, 14.4072) 456.5955 0.05380

Thickness of full cortex IVW -0.0019 (-0.0076, 0.0038) 0.0029 0.51819

PLF

Surface area of full cortex IVW -900.7396 (-1625.1751, -176.3041) 369.6100 0.01481

Thickness of full cortex IVW -0.0047 (-0.0105, 0.0011) 0.0030 0.11007
fro
ALT, alanine transaminase; IVW, inverse-variance weighted; NAFLD, non-alcoholic fatty liver disease; PLF, percent liver fat; SE, Standard error.
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TABLE 2 Mendelian randomization estimates from alanine transaminase, non-alcoholic fatty liver disease and percent liver fat on genetically
predicted specific brain regions.

Exposures
Outcomes

Method b (95%CI) SE P value

ALT

Surface area of parahippocampal gyrus IVW -60.4594 (-104.9948, -15.9239) 22.72216 0.00780

Thickness of pars opercularis IVW -0.0861 (-0.1402, -0.0319) 0.02764 0.00185

Thickness of pars orbitalis IVW -0.1023 (-0.1874, -0.0172) 0.04343 0.01849

Thickness of pericalcarine cortex IVW -0.0913 (-0.1767, -0.006) 0.04356 0.03603

NAFLD

Surface area of parahippocampal gyrus IVW -5.3315 (-9.2083, -1.4547) 1.97796 0.00703

Thickness of cuneus IVW -0.0075 (-0.0130, -0.0020) 0.00280 0.00719

Thickness of entorhinal cortex IVW 0.0251 (0.0093,0.0410) 0.00810 0.00191

Thickness of lateral orbitofrontal cortex IVW 0.0062 (0.0003,0.0121) 0.00303 0.04105

Thickness of lingual gyrus IVW -0.0063 (-0.0112, -0.0015) 0.00249 0.01093

Thickness of pars opercularis IVW -0.0072 (-0.0117, -0.0027) 0.00230 0.00171

Thickness of pars triangularis IVW -0.0058 (-0.0109, -0.0008) 0.00255 0.02205

Thickness of pericalcarine cortex IVW -0.0086 (-0.0141, -0.0031) 0.00280 0.00208

Thickness of temporal pole IVW 0.0143 (0.0005, 0.0281) 0.00703 0.04204

PLF

Surface area of parahippocampal gyrus IVW -6.0644 (-9.9393, -2.1895) 1.97698 0.00216

Thickness of cuneus IVW -0.0077 (-0.0132, -0.0021) 0.00282 0.00659

Thickness of entorhinal cortex IVW 0.0246 (0.0027, 0.0465) 0.01115 0.02740

Thickness of lingual gyrus IVW -0.0063 (-0.0119, -0.0006) 0.00290 0.03117

Thickness of pars opercularis IVW -0.0077 (-0.0123, -0.0031) 0.00235 0.00105
F
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ALT, alanine transaminase; IVW, inverse-variance weighted; NAFLD, non-alcoholic fatty liver disease; PLF, percent liver fat; SE, Standard error.
FIGURE 2

Inverse-variance weighted estimates from alanine transaminase, non-alcoholic fatty liver disease, and percent liver fat on cerebral cortical structure.
The color of each block represented the p value of each analysis: red blocks indicated p < 0.05 and blue blocks indicated p ≥ 0.05. A p value < 2.5 ×
10−4 was considered statistically significant, while a p value < 0.05 was considered nominally significant. The brain regions whose p values were less
than 0.05 are highlighted in bold in the left of the figure. ALT, alanine transaminase; NAFLD, non-alcoholic fatty liver disease; PLF, percent liver fat.
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TABLE 3 Heterogeneity and pleiotropy tests of the significant and nominally significant Mendelian randomization estimates.

Exposures Outcomes
Cochrane’s Q test MR−Egger intercept test

Q-value PQ Intercept PIntercept

ALT

Surface area of parahippocampal gyrus 1.88701 0.93 0.38531 0.64

Thickness of pars opercularis 6.1745 0.4 0.00079 0.45

Thickness of pars orbitalis 1.67879 0.95 -0.00064 0.69

Thickness of pericalcarine cortex 11.38044 0.08 0.00295 0.04

NAFLD

Surface area of parahippocampal gyrus 0.65043 0.72 -1.02464 0.65

Thickness of entorhinal cortex 0.48841 0.78 -0.00475 0.61

Thickness of lateral orbitofrontal cortex 0.1001 0.95 0.00077 0.81

Thickness of pars opercularis 0.18859 0.91 -0.00068 0.79

Thickness of pars triangularis 0.32784 0.85 -0.00088 0.76

Thickness of pericalcarine cortex 0.04032 0.98 0.00039 0.9

Thickness of temporal pole 0.76527 0.68 0.00015 0.98

PLF

Surface area of full cortex 3.09366 0.93 76.57317 0.32

Surface area of parahippocampal gyrus 2.17483 0.98 -0.41264 0.32

Thickness of cuneus 6.49498 0.59 0.0002 0.73

Thickness of entorhinal cortex 15.07717 0.06 0.00026 0.91

Thickness of lingual gyrus 10.98328 0.2 0.00005 0.93

Thickness of pars opercularis 3.93683 0.86 0.00008 0.86
F
rontiers in Endocrinology
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ALT, alanine transaminase; NAFLD, non-alcoholic fatty liver disease; PLF, percent liver fat.
FIGURE 3

The two-sample Mendelian randomization framework showed that NAFLD potentially influenced cerebral cortical structure. The influence on the
surface area of brain regions was shown in blue and the influence on the thickness of brain regions was shown in orange. NAFLD, non-alcoholic
fatty liver disease; SA, surface area; TH, thickness.
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3.3 Causal estimates of genetically
predicted PLF on the brain regions

The PLF was nominally associated with reduced SA of the

parahippocampal gyrus (b = -6.0644 mm2, 95% CI: -9.9393 mm2 to

-2.1895 mm2, p = 0.00216). In addition, genetic predisposition to

PLF was nominally associated with decreased TH in several regions,

including the cuneus (b = -0.0077 mm, 95% CI: -0.0132 mm to

-0.0021 mm, p = 0.00659), lingual gyrus (b = -0.0063 mm, 95% CI:

-0.0119 mm to -0.0006 mm, p = 0.03117), and pars opercularis (b =

-0.0077 mm, 95% CI: -0.0123 mm to -0.0031 mm, p = 0.00105).

However, a positive association was obtained when analyzing index

SNPs predicted PLF and TH of entorhinal cortex (b = 0.0246 mm,

95% CI: 0.0027 mm to 0.0465 mm, p = 0.02740).
3.4 Sensitivity analysis

For both significant and nominally significant estimates, we

next performed MR-Egger and weighted median analyses. All of

these results were directionally consistent with the IVW analyses

except for estimates of NAFLD on the TH of cuneus and lingual

gyrus (Table S4), which were considered as insignificant. For the

remaining significant and nominally significant estimates, we

performed MR-PRESSO global tests, but no horizontal pleiotropy

was detected (Table S5). Cochran’s Q test, MR-Egger intercept test,

leave-one-out analyses, and funnel plot were also performed.

Table 3 showed that no heterogeneity was detected (all pQ >

0.05). Besides, all P-values of MR Egger intercept tests were >

0.05. Scatter plots, leave-one-out analyses and funnel plots were

shown in Supplementarys Figure S1–S9. The estimates were not

biased by single SNP, indicating that estimates were not violated.
4 Discussion

To the best of our knowledge, our study is the first to determine

the causal relationship between NAFLD and the cerebral cortical

structure. Our results showed that ALT, PLF, and NAFLD could

affect the cerebral cortical structure, and supported the findings of

earlier observational studies indicating the pathophysiologic

interactions between NAFLD and brain functions, thereby

highlighting the existence of the liver-brain axis.

At the global level, we found that genetically predicted PLF was

nominally associated with decreased SA of full cortex. To the best of

our knowledge, a limited number of studies have published the

evaluation of the association between PLF and full cortex. A

previous study (8) showed that higher liver fat was associated

with decreased total-cerebral blood flow and gray matter- cerebral

blood flow, which could be an explanation for our findings. Also,

the study revealed that NAFLD was linked with lower total brain

volume. However, our findings showed that SNPs predicted

NAFLD have no relationship with the SA and TH of full cortex.

This could be because only 4 SNPs were used for MR analysis. At

the brain region level analysis, the suggestive relationships were

mostly about TH of brain regions. This suggested that measuring
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the TH of brain regions can be a measure to evaluate the extent of

damage caused by NAFLD to the brain. Besides, most of the

differences in cortical structure observed in intelligence, cognitive

function and neuropsychiatric diseases have been reported for TH

(32–34), perhaps suggesting that NAFLD causes neuropsychiatric

diseases by mediating the destruction of the TH of specific

brain regions.

The present study provided evidence that ALT, NAFLD and

PLF were all nominally associated with decreased SA of

parahippocampal gyrus. The parahippocampal gyrus is an

essential site that coordinates with hippocampus (35) to be

responsible for memory encoding, storage and retrieval. It has

been proved to be vital in the mechanism of several brain diseases

and psychiatric condition, such as Posttraumatic stress disorder

(36), Alzheimer’s disease (37) and schizophrenia (38). Besides,

some studies indicated that liver diseases could have impact on

parahippocampal gyrus. Jiang et al. (39) showed that people with

advanced liver fibrosis had worse cognitive functioning and

decreased grey matter in the hippocampus and parahippocampal

gyrus. Chen et al. (40) found that patients with cirrhosis tended to

damage parahippocampal gyrus and other gray matter regions, and

decrease brain microstructural complexity, which may contribute to

the cognitive impairment. The underlying mechanism of alterations

of parahippocampal gyrus in patients with liver diseases warrants

further investigations. Whether NAFLD will lead to changes of

parahippocampal gyrus and thus lead to neuropsychiatric disorders

could also be expected in the future studies.

Besides, our study found that the TH of pars opercularis is

nominally influenced by ALT, NAFLD and PLF. The nominally

causal effect of ALT on pars orbitalis and NAFLD on the TH of pars

triangularis were also observed. These parts make up the inferior

frontal gyrus, which is a key region in language processing and

speech production, along with various cognitive functions, such as

motor inhibition (41), response inhibition (42), and social cognitive

processes (43). Our findings were consistent with previous studies.

Chen et al. (44) suggested there is aberrant spontaneous activity of

inferior frontal gyrus in the patients with low-grade hepatic

encephalopathy. Yang et al. (45) also found a decreased

functional connectivity between right dorsolateral prefrontal

cortex and inferior frontal gyrus in the patients with cirrhosis.

These studies illustrate the connection between inferior frontal

gyrus and liver. However, whether NAFLD will lead to these

functional changes or neuropsychiatric disorders mediating the

alteration of TH of the three parts could also be expected in the

future studies.

NAFLD may have an influence on the morbidity of

complications in patients with diabetes, involving diabetic

retinopathy (46, 47), which indicated the relationship between the

liver and the eyes. Our study also indicates a suggestively significant

association between ALT and TH of pericalcarine, as well as

association between PLF and TH of cuneus. The pericalcarine, the

primary visual cortex, processes the visual signals. Also, the

pericalcarine can activate the cuneus, which responds to the

visual stimuli (48). Considering the NAFLD may have an

influence on the pericalcarine and cuneus, the connection

between liver and eyes could probably be explained.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1276576
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mai and Mao 10.3389/fendo.2023.1276576
Several mechanisms that NAFLD affects brain health are

considered and constantly evolving. (1) liver fat may activate

microglial cells in the brain by inducing inflammation, and thus

resulting in elevated expression of inflammatory cytokines (49); (2)

similar with obesity, patients with NAFLD may also increase brain

insulin resistance, thereby causing oxidative stress, excessive free

fatty acids, and brain mitochondrial disorders (50); (3) impaired

liver function can cause insufficient detoxification and allows

neurotoxins to enter the cerebral circulation, which can increase

permeability of blood–brain barrier and neuroinflammation

(51, 52).

Notably, some of our estimates deviated from logical

expectation. NAFLD should lead to a smaller TH of the brain

regions. However, in our study, genetically predicted NAFLD leads

to increased TH of lateral orbitofrontal cortex, temporal pole and

entorhinal cortex. Similarly, PLF correlated with larger TH of

entorhinal cortex. The possible explanation may be a

compensatory hypertrophy or encephaledema. Further studies are

needed to investigate the underlying mechanism.

The primary strength of our study is a comprehensive MR

study, which can overcome the shortcomings of observational

studies. Our study assessed the associations between NAFLD and

specific brain regions, and may pave the way to understand the

mechanisms that link NAFLD to dementia and other

neuropsychiatric diseases. This is essential to achieving more

optimized surveillance and providing treatments for patients

with NAFLD. However, this study has several limitations. First,

the groups in our study were all European, and the conclusions in

other populations should be interpreted with caution. Second, the

present study did not investigate severity of the changes of brain

region. Third, the underlying mechanisms of the change of brain

regions warrant further investigation. Future studies should

investigate the mechanism underlying the association between

NAFLD and neuropsychiatric diseases to explore novel treatments

for neuropsychiatric disorders in patients with NAFLD.
5 Conclusion

This is the first comprehensive MR analysis that reveals

associations between NAFLD and the cerebral cortical structure.

Our estimates illustrate that NAFLD suggestively decreases specific

functional regions of the human brain. For patients with NAFLD, a

brain MRI could potentially be used for early diagnosis of

neuropsychiatric disorders. The mechanisms of the association

between NAFLD and brain function alterations should be

studied further.
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thickness of pars opercularis; (C) thickness of pars orbitalis; (D) thickness
of pericalcarine cortex. The scatter plots represented the instrument

variable effects on the exposure and the outcome variables (black

point), with the confidence intervals for both estimates denoted by the
horizontal and vertical lines, respectively. Each colored slope was

indicative of the causal effect of a unit increase in the exposure on the
outcome, estimated by the method in the legend utilized to shade the

trendline that was, inverse-variance weighted (light blue), weighted
median (light green) and MR-Egger (dark blue).

SUPPLEMENTARY FIGURE 2

Leave-one-out plots of nominal significant estimates from genetically

predicted alanine transaminase on (A) surface area of parahippocampal
gyrus; (B) thickness of pars opercularis; (C) thickness of pars orbitalis; (D)
thickness of pericalcarine cortex. The leave-one-out analysis was performed
by recalculating the Mendelian randomization estimates using the Inverse-

variance weighted estimates method, by sequentially dropping one SNP at a

time to examine whether a single SNP that might have a large horizontal
pleiotropic effect and influence the estimates.

SUPPLEMENTARY FIGURE 3

Funnel plots of significant and nominal significant estimates from genetically
predicted alanine transaminase on (A) surface area of parahippocampal gyrus;

(B) thickness of pars opercularis; (C) thickness of pars orbitalis; (D) thickness
of pericalcarine cortex. Funnel plots was used to visualize overall
heterogeneity of Mendelian randomization estimates for the effect of

exposure on the outcomes before elimination.

SUPPLEMENTARY FIGURE 4

Scatter plots of nominal significant estimates from genetically predicted non-

alcoholic fatty liver disease on (A) surface area of parahippocampal gyrus; (B)
thickness of entorhinal cortex; (C) thickness of lateral orbitofrontal cortex; (d)
thickness of pars opercularis; (E) thickness of pars triangularis; (F) thickness of
pericalcarine cortex; (G) thickness of temporal pole. The scatter plots
represented the instrument variable effects on the exposure and the

outcome variables (black point), with the confidence intervals for both
estimates denoted by the horizontal and vertical lines, respectively. Each

colored slope was indicative of the causal effect of a unit increase in the

exposure on the outcome, estimated by the method in the legend utilized to
shade the trendline that was, inverse-variance weighted (light blue), weighted

median (light green) and MR-Egger (dark blue).

SUPPLEMENTARY FIGURE 5

Leave-one-out plots of significant and nominal significant estimates from

genetically predicted non-alcoholic fatty liver disease on (A) surface area of

parahippocampal gyrus; (B) thickness of entorhinal cortex; (C) thickness of
lateral orbitofrontal cortex; (D) thickness of pars opercularis; (E) thickness of
pars triangularis; (f) thickness of pericalcarine cortex; (G) thickness of
temporal pole. The leave-one-out analysis was performed by recalculating

the Mendelian randomization estimates using the Inverse-variance weighted
estimates method, by sequentially dropping one SNP at a time to examine

whether a single SNP that might have a large horizontal pleiotropic effect and

influence the estimates.

SUPPLEMENTARY FIGURE 6

Funnel plots of significant and nominal significant estimates from genetically
predicted non-alcoholic fatty liver disease on (A) surface area of

parahippocampal gyrus; (B) thickness of entorhinal cortex; (C) thickness of
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lateral orbitofrontal cortex; (D) thickness of pars opercularis; (E) thickness of
pars triangularis; (F) thickness of pericalcarine cortex; (G) thickness of

temporal pole. Funnel plots was used to visualize overall heterogeneity of

Mendelian randomization estimates for the effect of exposure on the
outcomes before elimination.

SUPPLEMENTARY FIGURE 7

Scatter plots of significant estimates from genetically predicted percent liver
fat on (A) surface area of full cortex; (B) surface area of parahippocampal

gyrus; (C) thickness of cuneus; (D) thickness of entorhinal cortex; (E)
thickness of lingual gyrus; (F) thickness of pars opercularis. The scatter
plots represented the instrument variable effects on the exposure and the

outcome variables (black point), with the confidence intervals for both
estimates denoted by the horizontal and vertical lines, respectively. Each

colored slope was indicative of the causal effect of a unit increase in the
exposure on the outcome, estimated by the method in the legend utilized to

shade the trendline that was, inverse-variance weighted (light blue), weighted

median (light green) and MR-Egger (dark blue).

SUPPLEMENTARY FIGURE 8

Leave-one-out plots of significant and nominal significant estimates from
genetically predicted percent liver fat on (A) surface area of full cortex; (B)
surface area of parahippocampal gyrus; (C) thickness of cuneus; (D) thickness
of entorhinal cortex; (E) thickness of lingual gyrus; (F) thickness of pars

opercularis. The leave-one-out analysis was performed by recalculating the
Mendelian randomization estimates using the Inverse-variance weighted

estimates method, by sequentially dropping one SNP at a time to examine

whether a single SNP that might have a large horizontal pleiotropic effect and
influence the estimates.

SUPPLEMENTARY FIGURE 9

Funnel plots of significant and nominal significant estimates from

genetically predicted percent liver fat on (A) surface area of full cortex;
(B) surface area of parahippocampal gyrus; (C) thickness of cuneus; (D)
thickness of entorhinal cortex; (E) thickness of lingual gyrus; (F) thickness of
pars opercularis. Funnel plots was used to visualize overall heterogeneity of

Mendelian randomization estimates for the effect of exposure on the

outcomes before elimination.

SUPPLEMENTARY TABLE 1

Case definition and exclusion criteria in the GWASs used in the
present study.

SUPPLEMENTARY TABLE 2

Details about Single Nucleotide Polymorphisms used as exposures.

SUPPLEMENTARY TABLE 3

Inverse-variance weighted estimates of the effect of alanine transaminase,
non-alcoholic fatty liver disease and percent liver fat on brain.

SUPPLEMENTARY TABLE 4

Inverse-variance weighted, MR-Egger and weighted median estimates of the
significant and nominally significant Mendelian randomization estimates.

SUPPLEMENTARY TABLE 5

MR-PRESSO estimates of the significant and nominally significant Mendelian

randomization estimates.
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