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Objective: To assess the causal effect of type 2 diabetes mellitus (T2DM) onmale

infertility (MI) and erectile dysfunction (ED) by Mendelian randomization

(MR) analysis.

Methods: Data for T2DM, MI, and ED were obtained from genome-wide

association studies (GWAS) involving 298, 957, 73, 479, and 223, 805

Europeans, respectively. We performed univariate MR analysis using MR Egger,

Weighted median (WM) and Inverse variance weighted (IVW) methods to assess

causal effects among the three. Through the Genotype Tissue Expression (GTEx)

database, single-nucleotide polymorphisms (SNPs) that affect the expression

levels of T2DM-related genes were located using expression quantitative trait

loci (eQTL).

Results:MR analysis showed a significant causal relationship between T2DM and

ED (WM, OR: 1.180, 95%CI: 1.010-1.378, P = 0.037; IVW, OR: 1.190, 95%CI: 1.084-

1.300, P < 0.001). There is also a significant causal relationship between T2DM

and MI (MR Egger, OR: 0.549, 95%CI: 0.317-0.952, P = 0.037; WM, OR: 0.593,

95%CI: 0.400, P = 0.010; IVW, OR: 0.767, 95%CI: 0.600-0.980, P = 0.034). ED

may not cause MI (P > 0.05). We also found that rs6585827 corresponding to the

PLEKHA1 gene associated with T2DM is an eQTL variant affecting the expression

of this gene.

Conclusion: T2DM has a direct causal effect on ED and MI. The level of PLEKHA1

expression suppressed by rs6585827 is potentially associated with a lower risk

of T2DM.

KEYWORDS

type 2 diabetes mellitus, male infertility, erectile dysfunction, Mendelian randomization

(MR) analysis, expression quantitative trait loci (eQTL)
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Introduction

Infertility has become a common global problem, affecting 10-

15% of couples, with approximately 40% of cases being caused by

the male factor (1). Common causes and risk factors of male

infertility (MI) have been hypothesized and confirmed in various

studies, including erectile dysfunction (ED) (2), smoking, alcohol

consumption, and hormonal disorders, etc. (3). An insightful review

suggests that MI symptoms may serve as future markers of

mortality and health status (4).

Type 2 diabetes mellitus (T2DM) is a heterogeneous disease

caused by the interaction of genetic, environmental and other

factors. It is the main type of diagnosed DM cases (5, 6),

accounting for about 90%-95% (7). In recent years, the incidence

of T2DM has been increasing worldwide (8), and T2DM and its

complications including ED have become a huge burden on global

public health (9). T2DM usually affects male reproductive function

at multiple levels, including structural changes in reproductive

organs, ejaculation, and ED (10, 11). Potential related factors:

diabetes can lead to nerve damage, and nerve damage in sexual

organs can lead to ED (12); Diabetes can cause vascular damage,

including obstruction and sclerosis, which may affect the ability of

blood flow to the penis (13); In addition, diabetes is usually

accompanied by chronic inflammation, which may affect various

systems of the body, including the reproductive system (14).

However, it needs more direct and accurate data to prove that

diabetes has an impact on male infertility and ED. It is particularly

important to clarify the relationship between T2DM, MI and ED,

and to explore the pathogenesis of T2DM.

In recent years, significant progress has been made in

identifying genomic regions associated with complex traits and

diseases through GWAS. However, a challenge in interpreting

GWAS findings is that most of the associated SNPs are located in

intergenic regions. It is therefore difficult to infer functional genes

and variants in these regions. Expression quantitative trait loci

(eQTL) analysis can locate SNPs that affect the expression level of

one or more genes, providing an effective and feasible strategy for

evaluating the biological mechanism of SNPs in non-coding regions

(15). Researchers are using genotype tissue expression (GTEx) data

to enhance the functional interpretation of GWAS findings and

identification of disease-associated genes to assess tissue-specific

gene expression and regulation in many different tissues (16).

Therefore, this study conducted Mendelian randomization (MR)

analysis through genetic variants related to “type-2 diabetes

mellitus”, “erectile dysfunction” and “male infertility” derived

from the GWAS database.

Randomized controlled trials (RCTs) should be an ideal study

design to confirm the causal relationship between diabetes and ED.

However, conducting RCTs in reality faces difficulties. MR

minimizes the effects of measurement error and directional

causality. Since these instrumental variables (IVs) remain

constant after conception and are expected to be free from

potential founders, the MR approach overcomes some limitations

of traditional epidemiological studies. The MR-Egger approach

provides a progressively consistent measure of causal effect,
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adjusting for horizontal pleiotropy by pooling individual SNP-

specific Wald ratios via adaptive Egger regression. The WM

(weighted median) method produces progressively consistent

causal effect estimates by using the weighted median of the Wald

ratios, provided that at least 50% of the variants meet the effective

IV of the exclusion limits. The IVW (inverse variance weighted)

method is the most widely used and accepted MRmethod because it

is the most effective method in the presence of effective IVs and can

also consider heterogeneity in the analysis of causality. Therefore,

this study mainly used MR-Egger, WM and IVW, a total of three

algorithms for univariate MR analysis to evaluate the causal

relationship between T2DM, ED and MI.
Methods

Data sources

The data on T2DM, MI, and ED were obtained from three

different Genome-Wide Association Studies (GWAS) conducted on

European populations, including 298,957 (17), 73,479, and 223,805

(18) individuals, respectively (Supplementary Table S1). All

summary GWAS data were sourced from the IEU GWAS

database (https://gwas.mrcieu.ac.uk/). The GSE9006 dataset

analyzed gene expressions in peripheral blood mononuclear cells

(PBMCs) from 24 healthy volunteers, 43 individuals with Type 1

Diabetes (T1D), and 12 individuals from the USA population

diagnosed with T2D. Additionally, it includes transcriptional level

data from 36 individuals from the USA population with T2DM (19)

(Supplementary Table S2).
Study design

This project proposes three main hypotheses: 1) SNPs used as

IVs are significantly associated with T2DM, ED, andMI phenotypes

and reach genome-wide significance thresholds; 2) SNPs are

independent of confounding factors; 3) SNPs were only associated

with MI and ED through T2DM or ED, but not through other

pathways. In addition, expression quantitative trait loci (eQTL)

analysis can locate SNPs that affect the expression level of one or

more genes, we use the GTEx database (https://www.gtexportal.org/

home/) to assess the tissue in many different tissues specific gene

expression and regulation.
Mendelian randomization analysis

First, we selected instrumental variables IVs. Use the clustering

threshold (r 2 < 0.001, kb = 10000) in the PLINK clustering method

to remove SNPs that are biased by linkage disequilibrium (LD), and

according to the allele frequency and allele incompatibility of the

palindrome (incompatible alleles) low-quality SNPs were removed,

and SNPs significantly associated with T2DM, ED and MI

phenotypes were retained (P < 5×10-8). MR analysis was
frontiersin.org
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performed with T2DM and ED as exposure factors, and MI and ED

as outcome. Additionally, Cochran’s Q statistical tests were

performed to confirm heterogeneity among the selected IVs,

where less heterogeneity indicates more reliable MR estimates,

and horizontal pleiotropy was performed on the MR Egger

algorithm test. Leave-one-out sensitivity analyzes can be used to

assess the impact of individual SNPs on causality estimates.
T2DM models

All animals were approved by the Ethics Committee

(Institutional Review Board) of Shanghai Ruijin Hospital. To

induce T2DM, diabetes was induced by a single intraperitoneal

injection of 60 mg/kg streptozotocin (STZ) (Sigma Aldrich,

Shanghai; mixed in a freshly prepared cold 0.1 mol/L citric acid

cradle, pH 4.2-4.5). Three male SPF grade SD rats (6-7-week-old),

body weight (220 ± 20 g), feed them adaptively for one week, fast for

16 h, and inject STZ (60 mg/kg) intraperitoneally. Three uninjected

STZ rats were used as the normal control group, and the rats in the

control group were injected with citrate buffer intraperitoneally.

Three days after STZ infusion, blood glucose levels in tail vein blood

were measured using the OneTouch Ultra system (Johnson &

Johnson Medical, Shanghai, China), and checked once a week.

Only when the blood glucose concentration remains consistently

above 16.7 mmol/L and exhibits symptoms such as excessive thirst,

excessive eating, frequent urination, and weight loss, can the

modeling be considered successful (Supplementary Figure S1A)

(20). Besides, severe steatosis was observed in the liver tissues of

T2DM mice; the hepatic lobule structure was not clear, the volume

of liver cells was significantly increased and disordered, and fat

vacuoles of different sizes were present in the cytoplasm; intestinal

villi were irregular in shape and disorderly in surface arrangement,

and some villi were thicker, wider, unequal in thickness; the shape

of pancreatic islets in T2DM rats was irregular, the islets were

atrophic, the color was pale and gray, and the tissue was thin

(Supplementary Figure S1B).
Western blot

The rat semen, penis tissue, and peripheral blood samples

frozen in groups in liquid nitrogen were taken out, and the total

protein of the samples was extracted with RIPA lysis buffer

according to the instructions of the protein extraction kit. The

protein solution extracted above was subjected to polyacrylamide

gel electrophoresis (SDS-PAGE, 10% separating gel), and then

transferred to PVDF membrane, blocked for 30 min at 37°C, and

the primary antibody (PLEKHA1 antibody: 10238-1-AP), incubate

overnight at 4°C, and after elution of the primary antibody, incubate

with the secondary antibody at 37°C for 90 min, use the Odyssey

two-color infrared laser imaging system and Alpha software to scan

and semi-quantitatively analyze the protein bands, and use mouse
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anti-b-actin (1:1000) as an internal reference, the relative

expression of PLEKHA1 protein was calculated.
Statistical analysis

MR is based on the principle of random distribution of genetic

genes. When the frequency of SNPs is highly consistent with the

changes in exposure variables, it can be preliminarily considered

that SNPs are related to exposure variables. All statistical tests were

two-sided and considered to show statistical significance at p-values

<0.05. The causal relationship among T2DM, MI and ED was

assessed using 3 methods with IVW as the main analysis method.

We explored horizontal pleiotropy by the MR-Egger method.

Leave-one-out sensitivity analysis and heterogeneity analysis were

used to demonstrate the reliability of pleiotropic effects of IVs and

to correct abnormal results caused by outliers.
Results

Selected SNPs and IVs validation

In this study, the identification and information of genetic

variation related to “type-2 diabetes mellitus”, “erectile dysfunction”

and “male infertility” comes from the GWAS database. For the

GWAS data that are significantly associated with the above disease

phenotypes, after excluding LD for SNPs that caused bias and low

quality, 58 and 105 SNPs were retained as IVs (P < 5×10-8),

respectively. The genes to which each SNP belonged were further

retrieved, and their details were summarized in a table (Table 1).
The causal relationship between type-2
diabetes mellitus and erectile dysfunction

To assess the causal effect between T2DM and ED, we employed

three-step two-sample MR analysis in this work, and the results are

listed in Table 2 and Figures 1A, B. Our results found a significant

causal relationship between T2DM and ED in the European

population (WM, OR: 1.180, 95%CI: 1.010-1.378, P = 0.037; IVW,

OR: 1.190, 95%CI: 1.084-1.300, P < 0.001) (Table 2, Figure 1C).

To evaluate the MR hypothesis in the work, we selected SNPs

with a genome-wide significance level of P < 5 × 10-8 to meet our

first condition. Leave-one-out sensitivity analysis showed that

deleting of any SNP did not significantly change the results,

indicating the reliability of the results (Figure 1C). Cochran’s Q

test was applied to assess the heterogeneity among the selected

SNPs, and the results showed that neither MR Egger nor IVW

analysis had statistically significant heterogeneity. No evidence of

directional pleiotropy was found as measured by MR-Egger

regression (P for intercept > 0.176). The above results verified our

hypothesis that the SNPs used as IVs were significantly associated
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TABLE 1 Details of 58 SNPs.

SNPs se P val b effect_allele other_allele Gene names

rs10244051 0.0062 7.865E-18 0.0479 G T NA

rs1065461 0.0074 1.756E-09 0.0388 C T TCF19

rs10758593 0.0062 2.5568E-11 0.0393 A G GLIS3

rs10842994 0.0081 7.5998E-13 -0.0575 T C NA

rs10906115 0.0063 4.958E-08 -0.0339 G A NA

rs10965250 0.0093 3.7128E-46 -0.1298 A G NA

rs11063069 0.0078 3.435E-10 0.0469 G A CCND2-AS1

rs11603334 0.009 1.7231E-24 -0.0881 A G ARAP1

rs11708067 0.0078 9.324E-31 -0.0839 G A ADCY5

rs12571751 0.0062 3.1383E-22 -0.0559 G A ZMIZ1

rs1260326 0.0065 3.1849E-18 0.0543 C T GCKR

rs13133548 0.0066 4.9951E-08 0.0334 A G FAM13A

rs13266634 0.0068 1.3011E-47 -0.0897 T C SLC30A8

rs13389219 0.007 1.321E-29 -0.0715 T C COBLL1

rs1359790 0.0073 1.3431E-15 -0.0585 A G NA

rs16826069 0.0079 6.97E-09 0.0465 G A MACF1

rs1727307 0.0067 6.189E-10 0.0384 G A PITPNM2,ENSG00000280381

rs1801212 0.0073 7.0909E-21 0.063 A G WFS1,ENSG00000286176

rs2237895 0.0066 1.8289E-38 0.0797 C A KCNQ1

rs2395163 0.0078 1.721E-09 0.0488 C T NA

rs243021 0.0065 4.5952E-11 0.0402 A G MIR4432HG

rs2796441 0.0063 4.8607E-11 -0.04 A G TLE1-DT

rs2943641 0.0069 1.4279E-18 0.0603 C T NA

rs340874 0.0063 1.4051E-15 0.0486 C T PROX1,PROX1-AS1,ENSG00000274895

rs35658696 0.0175 7.4422E-15 0.1222 G A PAM

rs35720761 0.0104 8.3119E-16 -0.0721 T C THADA

rs4077129 0.0079 3.523E-08 -0.0395 C T PIM3

rs4402960 0.0066 8.3138E-49 0.0919 T G IGF2BP2

rs4457053 0.0075 3.6788E-13 -0.0466 A G ZBED3-AS1,ENSG00000284762,ENSG00000285000

rs4502156 0.0065 9.5521E-11 -0.04 C T NA

rs459193 0.0072 6.7066E-15 0.0537 G A NA

rs4607103 0.0069 6.759E-10 -0.0415 T C ADAMTS9-AS2

rs4812831 0.01 1.321E-08 0.0587 A G HNF4A,HNF4A-AS1

rs4886707 0.007 4.321E-09 -0.0388 T C NA

rs5015480 0.0065 1.3599E-30 -0.0709 T C NA

rs516946 0.0076 9.324E-20 0.0652 C T ANK1,ENSG00000253389

rs5219 0.0065 1.523E-22 -0.063 C T KCNJ11

rs55834942 0.0085 1.348E-12 -0.0514 A G HNF1A

rs58542926 0.0116 3.3558E-15 0.0836 T C TM6SF2,ENSG00000267629

(Continued)
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with ED, and the causal estimate between T2DM and the risk of ED

didn’t receive confounding factors.
The causal relationship between type-2
diabetes mellitus and MI

Subsequently, we further evaluated the effect of T2DM on MI.

The results showed (Table 3, Figures 2A, B) that there was a

significant causal relationship between T2DM and MI (MR Egger,

OR: 0.549, 95%CI: 0.317-0.952, P = 0.037; WM, OR: 0.593, 95% CI:

0.400, P = 0.010; IVW, OR: 0.767, 95%CI: 0.600-0.980, P = 0.034)

(Figure 2C). Leave-one-out analysis demonstrated the reliability of

the results (Figure 2C). Finally, for the causal effect between ED and

MI, we also performed MR analysis. Surprisingly, although there

was a tendency for ED to cause MI, there was no significant

difference (P > 0.05) (Supplementary Figure 2, Supplementary

Table S3). In conclusion, our 3-step two-sample MR analysis
Frontiers in Endocrinology 05
indicated that T2DM causes ED and MI, whereas ED may not

cause MI. We also supplement the MR Analysis of relevant data of

other populations, including East Asian, Hispanic or Latin

American and Mixed (Supplementary Figure S3).
rs6585827-suppressed PLEKHA1
expression levels are associated with a
lower risk of T2DM

We searched the genes corresponding to 58 SNPs through the

GTEx database and found that rs6585827 corresponding to the

PLEKHA1 gene is an eQTL variation that affects the expression of

this gene. This finding suggested an association between the G to A

mutation of rs6585827 and the expression level of the PLEKHA1

gene (Table 1). In addition, we also used the gene expression data of

the patients in the GSE9006 dataset to intersect the obtained

T2DM-related differential genes and the genes corresponding to
TABLE 1 Continued

SNPs se P val b effect_allele other_allele Gene names

rs60980157 0.0079 6.6344E-16 -0.0615 T C GPSM1

rs6585827 0.0065 9.531E-09 -0.0361 A G PLEKHA1

rs6813195 0.007 1.5329E-12 -0.0461 T C NA

rs6905288 0.0065 5.773E-11 0.0401 A G NA

rs7177055 0.0072 5.652E-14 0.0528 A G NA

rs7202877 0.0099 3.1427E-14 -0.0726 G T NA

rs72928978 0.0104 1.838E-08 -0.0479 A G TPCN2

rs730497 0.0084 3.069E-08 0.0413 A G GCK

rs731839 0.0067 7.4216E-13 -0.0443 A G PEPD

rs7501939 0.0064 2.3818E-24 -0.0622 C T HNF1B

rs7756992 0.0067 1.3259E-61 0.1073 G A CDKAL1

rs7903146 0.0069 1E-200 0.241 T C TCF7L2

rs7961581 0.0069 7.246E-09 -0.0386 T C TSPAN8

rs8042680 0.0068 1.664E-10 0.0427 A C PRC1,PRC1-AS1,ENSG00000284946

rs8108269 0.0072 5.1535E-16 0.0543 G T NA

rs864745 0.0065 2.8728E-30 -0.0701 C T JAZF1

rs9379084 0.0129 1.4689E-17 -0.0946 A G RREB1

rs9388489 0.0067 1.187E-08 0.0345 G A ENSG00000286215

rs972283 0.007 1.509E-12 0.0473 G A NA
SE, standard error; NA, Not Available.
TABLE 2 Significant causal relationship between T2DM and erectile dysfunction (ED).

exposure outcome method nsnp b se pval or or_lci95 or_uci95 Q Q_pval egger_intercept pval_intercept

T2DM ED MR Egger 58 0.143 0.098 0.148 1.154 0.953 1.397 63.092 0.240 0.002 0.758

T2DM ED WM 58 0.165 0.079 0.037 1.180 1.010 1.379

T2DM ED IVW 58 0.170 0.045 0.000 1.185 1.084 1.295 63.200 0.267
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the SNPs, and only found the PLEKHA1 gene (Figure 3A). Clinical

and epidemiological findings point to an association between

T2DM and osteoporosis. PLEKHA1 was found to be differentially

expressed in circulating monocytes of osteoporotic subjects and in

PBMCs of diabetic and non-diabetic subjects. Co-genetic assay

available for osteoporosis and T2DM (21).

Genome-wide eQTL Study describes the NES (Normalized

Effect Size) and 95% CI (Confidence Interval) of eQTL in a single

tissue (Figure 3B). According to the expression of PLEKHA1 in

different tissues in Figure 3C, the expression in whole blood was

abnormally down-regulated. Subsequently, we compared the

expression of PLEKHA1 in the G-to-A chromosome 10 locus

122406099. The results showed that PLEKHA1 was significantly

down-regulated in patients with GA genotype and AA genotype

compared with 193 patients carrying GG genotype, with a P value of

1.34e-8 between the three groups (Figure 3D). In addition,

combined with Table 1, the b value between rs6585827 and

PLEKHA1 was -0.036. It can be concluded that the mutation

from G to A at rs6585827 leads to the downregulation of
Frontiers in Endocrinology 06
PLEKHA1 gene, and the suppressed PLEKHA1 expression level is

associated with a lower risk of T2DM. Finally, combined the

transcript level data of whole blood samples from 36 T2DM

patients in the USA population, the differential analysis of the

expression of PLEKHA1 gene between the healthy group and the

T2DM group was carried out. The results showed that PLEKHA1

was abnormally upregulated in the T2DM group (P < 0.05)

(Figure 3E). The WB results further validated our analysis, the

protein expression of PLEKHA1 was up-regulated in the T2DM

group of rat semen, penis tissue, and peripheral blood samples

(Figure 3F). This result suggests that the PLEKHA1 gene may not be

mutated in T2DM patients, but it is associated with the risk of

T2DM. Figure 3G shows us the main findings of this study.
Discussions

Unlike risk factors for MI such as lifestyle and environmental

factors, we aimed to reveal the association between the endocrine
TABLE 3 Significant causal relationship between T2DM and male infertility (MI).

exposure outcome method nsnp b se pval or or_lci95 or_uci95 Q Q_pval egger_intercept pval_intercept

T2DM Male infertility MR Egger 58 0.600 0.281 0.037 0.549 0.317 0.952 37.358 0.974 0.024 0.189

T2DM Male infertility WM 58 0.523 0.202 0.010 0.593 0.399 0.880

T2DM Male infertility IVW 58 0.265 0.125 0.034 0.767 0.600 0.980 39.131 0.966
A

B

DC

FIGURE 1

Effect of T2DM on erectile dysfunction (ED). (A) Schematic diagram of the steps of the two-sample MR analysis. (B) Scatterplot showing the
distribution of individual rate estimates for T2DM as a result of ED. Each scatterplot also contains trendlines derived from 3 different MR methods to
indicate causality. (C) MR analysis forest plot of the association between T2DM and ED. The circles next to each SNP represent causal estimates for
each IV, respectively, and the lowest two circles show multiple-instrument MR analysis using Egger regression and inverse-variance weighted
methods. Horizontal lines denote 95% CIs. (D) MR leave-one-out sensitivity analysis, used to estimate the causal effect of T2DM on ED, each black
point represents an IVW, the red point represents the estimated value using all IVs, and the horizontal line represents the 95% confidence interval.
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disease T2DM and MI and ED. Through MR analysis, we found

that in the European population, T2DM can cause ED and MI. Our

findings on the relationship between T2DM and ED are consistent

with previous studies. A meta-analysis including 863 men with

diabetes and 5385 healthy controls showed a higher prevalence of

ED in diabetic patients (22). In addition, a prospective cohort study

of 615 Egyptian men also concluded the negative impact of T2DM

on ED (23). Bovijn and colleagues similarly found T2DM to be a

causal risk factor for ED following univariate MR (18). The findings

of Skeldon et al. highlight the importance of ED as a marker of

undiagnosed diabetes and should be a trigger to initiate diabetes

screening, especially in middle-aged men (24). T2DM is the

mechanism by which ED is affected and the pathophysiology is

multifactorial, including vascular, neurological and hormonal

influences (25). Glycosylation-induced microvascular damage and

insufficient oxygen and blood supply to nerves have traditionally

been considered etiological (26). Hypogonadism and decreased

levels of free and total testes due to T2DM may also be associated

with the prevalence of ED (27).

ED and MI are two distinct men’s health concerns, yet there are

common risk factors between the two. For example, diabetes may

cause damage to blood vessels and nerves, thereby affecting both ED

and sperm quality and quantity, resulting in MI (28). Researchers

surveyed more than 500 male partners of infertile couples and

found that about 1.2% of infertile men suffer from T2DM (29). A

new study showed that the prevalence of infertility in men with
Frontiers in Endocrinology 07
T2DM has reached 35.1%, which is significantly higher compared

with normal participants (30). In addition, this study also found an

interesting phenomenon, we did not observe that ED can directly

cause MI. This means that MI may be caused by T2DM itself and its

related biological mechanisms, rather than the result of ED alone.

Even in patients with ED and normal sperm quality and quantity, it

is still possible to improve fertility through assisted reproductive

technology. In summary, ED may not be the direct cause of MI, but

one of the factors affecting sexual behavior. Therefore, in the

evaluation and treatment of infertility problems, factors such as

erectile function and sperm quality need to be considered

comprehensively to find possible causes and formulate

corresponding solutions.

The pathogenesis of T2DM is complex, and genetic factors

increase the susceptibility to T2D (31, 32). SNP (Single Nucleotide

Polymorphism) is one of the most common forms of genetic

variation in the genome and the smallest type of variation in

DNA sequences. A SNP occurs when a single nucleotide (A, T, C,

G) is substituted or inserted/deleted in a DNA sequence. We

conducted an eQTL study on the 58 SNPs involved in the MR

analysis, and found that rs6585827 corresponding to the PLEKHA1

gene is an eQTL variation that affects the expression of the gene,

and the rs6585827 mutation from G to A suppresses the expression

level of PLEKHA1 and lower risk of T2DM relevant. Western blot

analysis experiments further validated our analysis. PLEKHA1 (also

known as TAPP1) encodes a pleckstrin homology domain-
A

B

DC

FIGURE 2

Effect of T2DM on male infertility (MI). (A) Schematic diagram of the steps of the two-sample MR analysis. (B) Scatterplot showing the distribution of
individual rate estimates for T2DM as a result of MI. Each scatterplot also contains trendlines derived from 3 different MR methods to indicate
causality. (C) MR analysis forest plot of the association between T2DM and MI. The circles next to each SNP represent causal estimates for each IV,
respectively, and the lowest two circles show multiple-instrument MR analysis using Egger regression and inverse-variance weighted methods.
Horizontal lines denote 95% CIs. (D) MR leave-one-out sensitivity analysis, used to estimate the causal effect of T2DM on MI, each black point
represents an IVW, the red point represents the estimated value using all IVs, and the horizontal line represents the 95% confidence interval.
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containing adapter protein, which is localized to the plasma

membrane where it specifically binds phosphatidylinositol 3,4-

bisphosphate. At present, the research on this gene mainly

focuses on the reports related to age-related macular

degeneration, and there are relatively few studies on PLEKHA1

gene in T2DM. The latest study found that PLEKHA1 may

represent an important biomarker that may initiate diabetic

nephropathy by activating related immune cells (33). Some

scholars found that PLEKHA1 mRNA was upregulated in PBMCs

of T2DM subjects compared with healthy subjects, and highlighted

PLEKHA1 as an important potential pleiotropic gene (21). This is

consistent with our analysis that the PLEKHA1 gene is upregulated

in T2DM patients and is associated with the risk of T2DM. In the

genome, there are two main types of DNA regions: coding regions

and noncoding regions. Coding regions contain the genetic

sequences required to encode proteins, while non-coding regions

contain other types of functional sequences. SNPs in non-coding

regions refer to SNPs that occur in non-coding regions of the

genome, and they may affect gene regulatory elements,

transcription factor binding sites, or other regulatory sequences,

thereby affecting intergenic expression and function (34). However,

these non-coding SNPs do not directly lead to protein-coding

variation. Therefore, genes are not always expressed concordantly

in non-coding and coding regions (32). And T2DM, like all

complex diseases, is also a disease involving multiple genes and

multiple factors, and each gene has a small but cumulative effect

(35). Therefore, the expression of PLEKHA1 in patients is often
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regulated by many factors. This also potentially explains why the

rs6585827 mutation in the non-coding region can inhibit the

expression of PLEKHA1, while the expression of PLEKHA1 is

upregulated in patients. In addition, some studies have reported

that PLEKHA1 is relatively highly expressed in the testis [35]. It is

worthy of researchers to further explore the intrinsic molecular

mechanism of PLEKHA1 abnormality promoting T2DM and

its complications.
Limitation

This study only investigated the impact of SNP on gene

expression regulation starting from eQTL analysis. However,

different data types reflect various aspects of the same biological

process. Therefore, integration of data from different modes such as

pQTL (protein quantitative trait loci), sQTL (splice quantitative

trait loci), and meQTL (DNA methylation quantitative trait loci) is

necessary to assess the genetic influence of SNPs on protein

expression, RNA splicing, DNA methylation, and other molecular

phenotypes. Comprehensive analysis can provide more information

annotation about SNPs, facilitating the interpretation of

GWAS results.

In conclusion, this study demonstrates that T2DM has a direct

causal effect on ED and MI and anchors the PLEKHA1 gene that is

repressed in T2DM due to the rs6585827 mutation. Next, it can be

considered to combine clinical sample analysis to further study the
A B

D E F

G

C

FIGURE 3

eQTL analysis revealed that rs6585827-suppressed PLEKHA1 expression levels were associated with a lower risk of T2DM. (A) Venn diagram; (B)
PLEKHA1 gene acts as a protective factor in bulk tissue; (C) PLEKHA1 gene expression in different tissues; (D) PLEKHA1 down-regulated in GA and AA
genotypes; (E) Expression levels of PLEKHA1 in healthy and T2DM groups. (F) The expression of PLEKHA1 protein in the T2DM group of rat semen,
penis tissue, and peripheral blood samples. (G) Research schematic diagram of this project.
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association between the expression changes of this gene in T2DM

patients and disease progression, and to conduct experimental

research on the function and mechanism of PLEKHA1 in the

development of T2DM. This will help to identify PLEKHA1 or its

related pathways as potential therapeutic targets, so as to develop

new therapeutic strategies and reduce the health burden of T2DM

and its related complications such as ED and MI.
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