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Ximo Wang5, Yubao Chen6, Huailin Gao7*, Fengjiang Wei1*
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Tianjin, China, 3Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China, 4Geriatric
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Aims: We aimed to construct a prediction model of type 2 diabetes mellitus

(T2DM) in a Han Chinese cohort using a genetic risk score (GRS) and a

nongenetic risk score (NGRS).

Methods: A total of 297 Han Chinese subjects who were free from type 2

diabetes mellitus were selected from the Tianjin Medical University Chronic

Disease Cohort for a prospective cohort study. Clinical characteristics were

collected at baseline and subsequently tracked for a duration of 9 years.

Genome-wide association studies (GWASs) were performed for T2DM-related

phenotypes. The GRS was constructed using 13 T2DM-related quantitative trait

single nucleotide polymorphisms (SNPs) loci derived from GWASs, and NGRS

was calculated from 4 biochemical indicators of independent risk that screened

by multifactorial Cox regressions.

Results: We found that HOMA-IR, uric acid, and low HDL were independent risk

factors for T2DM (HR >1; P<0.05), and the NGRS model was created using these

three nongenetic risk factors, with an area under the ROC curve (AUC) of 0.678;

high fasting glucose (FPG >5 mmol/L) was a key risk factor for T2DM (HR = 7.174,

P< 0.001), and its addition to the NGRS model caused a significant improvement

in AUC (from 0.678 to 0.764). By adding 13 SNPs associated with T2DM to the

GRS prediction model, the AUC increased to 0.892. The final combined

prediction model was created by taking the arithmetic sum of the two models,

which had an AUC of 0.908, a sensitivity of 0.845, and a specificity of 0.839.
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Conclusions: We constructed a comprehensive prediction model for type 2

diabetes out of a Han Chinese cohort. Along with independent risk factors, GRS is

a crucial element to predicting the risk of type 2 diabetes mellitus.
KEYWORDS

type 2 diabetes mellitus, cohort study, genome-wide association study, Han Chinese,
prediction model, genetic risk factors
1 Introduction

Diabetes is a group of clinically and genetically heterogeneous

diseases that are diagnosed by extraordinarily high blood glucose levels.

It is a prevalent and rapidly growing noncommunicable chronic disease

worldwide, with an expected increase in the number of affected adults

from 2017 to 2045 of 50%, reaching a total of 693 million (1). In our

country, approximately 92.4 million adults are already affected by

diabetes (2), and approximately 90% of them have T2DM. It is well

accepted that genetical and lifestyle factors contribute to T2DM (3).

Numerous genetic studies have shown that there is a clear genetic

predisposition to diabetes and its complexities (4). In recent years,

researchers have identified more than 100 susceptibility genes and 200

susceptibility loci associated with the occurrence, development, and

prognosis of T2DMby linkage analysis and large-scale GWASs (5), and

the polygenic risk score calculated from these genes can predict the

likelihood of developing T2DM (6). Sixty percent of the genes

associated with T2DM found in Asian populations could be

validated in Chinese populations (7). Hu et al. (8)confirmed the

association of eight genes, namely PPARG, KCNJ11, CDKAL1,

CDKN2A-CDKN2B, IDE-KIF11HHEX, IGF2BP2, and SLC30A8, with

the prevalence of T2DM in a Chinese population study. Xu et al. (9)

found that CDKAL1 (rs7756992) and SLC30A8 (rs13266634,

rs2466293) were significantly associated with T2DM. In addition to

genetic susceptibility, factors highly associated with the development of

T2DM include age (10), obesity (11), lipid metabolism disorders (12),

waist circumference (13), clinical biochemical indicators such as uric

acid (14) and environmental factors such as lifestyle (15) and dietary

habits (16).

Prediction of the risk of developing diabetes is important

because of the large individual differences and the high number

of complications. Diabetes models have been successfully

established in some countries, such as the Framingham risk score

diabetes model in the United States (17); the prediction model of

diabetes onset in Mexican-descended Americans and non-Hispanic

Caucasians by Stern (18); and the prediction model of diabetes

onset risk in Japanese Americans by McNeely (19). There are two

main T2DM models in China. Wu et al. counted the risk factors for

diabetes onset in China over the past 20 years to establish the first

T2DM risk assessment model for the Chinese population. In 2009,

based on the Framingham cardiovascular prediction model, Chien

et al. (20)established a T2DM risk prediction model for the

Taiwanese population. The previous model only incorporated

demographic indicators and laboratory measures of risk factors.
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With the development of GWAS, later models were built to include

genetic factors as well, such as Meigs et al. (21) Framingham cohort

for adding 18 SNPs as predictors.

Therefore, we need an early prediction model with high

prediction value. Previous studies only showed a mild increase in

AUC when SNPs were added to the prediction model. Although

GWASs were performed in Han Chinese, many genes did not show

high GRR due to lowminor allele frequency (MAF) in Han Chinese.

We conducted a prospective cohort study in a Han Chinese cohort,

adding insulin resistance phenotypes and Chinese-specific SNPs to

the prediction model.
2 Methods

2.1 Study design and population

The research was a prospective cohort that involved 297

participators from “The Tianjin Medical University Chronic

Disease Cohort”. A total of 7,032 participants were recruited

between 2006 and 2010, we selected samples that did not have

diabetes in 2010 and had completed follow-up information up to

2015, then we coded and sorted these subjects by computer generated

random numbers, and the top 305 people were chosen for

genotyping. Follow-up was continued for further 4 years till 2019,

with 8 people lost in follow-up, and the final number included in the

analysis was 297. During the patient follow-up, 98 incident T2DM

cases were identified, with a T2DM 9-year prevalence of 32.9%.

This study received approval from the Ethics Committee of

Tianjin Medical University, and all participants signed informed

consent forms.
2.2 Anthropometric measurements and
biochemical indices

Anthropometric data, such as age, sex, weight, height, body mass

index (BMI), and systolic/diastolic blood pressure (BP), were

gathered. Laboratory examination: Blood samples were obtained via

venipuncture in the morning after a 12-hour overnight fast, and

measured by Hitachi automatic biochemical analysis. Fasting plasma

glucose (FPG), serum creatinine (SCr), serum uric acid (SUA), blood

urea nitrogen (BUN), C reactive protein (CRP), high-density

lipoprotein (HDL), triglycerides (TG), total cholesterol (TC), total
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bilirubin (TBIL), total protein (TP), alanine aminotransferase (ALT),

and fasting insulin (FINS) were measured at baseline. The

homeostasis model assessment of insulin resistance (HOMA-IR)

was computed employing the formula: (FPG (mmol/L) × FINS

(mU/L)/22.5), and the quantitative insulin sensitivity check index

(QUICKI) was computed employing the formula: 1/[log (FINS) (mU/
ml) + log (FPG) (mg/dl)].
2.3 Diagnostic criteria

We defined diabetes as a fasting glucose level of 7 mmol/L or

higher, or a two-hour glucose level of 11.1 mmol/L or higher and

defined impaired fasting glucose as fasting glucose level of 6.1 to 6.9

mmo1/L (22). In accordance with the Chinese Hypertension

Prevention Guide, hypertension was diagnosed based on a systolic

blood pressure (SBP) ≥ 140 mmHg and/or diastolic blood pressure

(DBP) ≥ 90 mmHg, or a history of hypertension (23). The diagnosis

criteria for hyperuricemia were gender-specific, with males having a

level of ≥ 420 μmol/L and females having a level of ≥ 360 μmol/L,

excluding all drugs affecting uric acid metabolism (24).
2.4 Genotyping and SNPs selection

Blood samples were collected from all subjects using the high salt

method to extract genomic DNA, which were subsequently genotyped

using the Infinium Asian Screening Array-24 v1.0 BeadChip. After

genotyping, systematic quality control analyses were carried out using

PLINK 1.90 software (25): (i) Quality control procedures for genotypes:

verifying the missingness rate of SNPs (>10%) and individuals with

high missing rates (>5%); checking for difference in sex between the

individuals recorded in the data and their sex based on X chromosome

heterozygosity/homozygosity rates (the values for males and females

should be >0.8 and<0.2, respectively); selecting autosomal SNPs with a

MAF<0.05 and significant deviation from Hardy-Weinberg

equilibrium (HWE) (P<1.0x10−4); identifying individuals who

deviated ±3SD from the samples’ heterozygosity rate mean; and

calculating the identicalness by descent (IBD) of all sample pairs,

setting a pi-hat threshold of 0.2. (ii) Quality control for phenotypes:

phenotypes included threshold traits (T2DM or not) and continuous

diabetes-related traits (FPG, Hb1AC, insulin, HOMA-IR, QUICKI).

The extreme values (values beyond the mean ±3SD) in the samples

were excluded during quantitative trait correlation analysis. Thus,

following the quality control procedures, 306659 SNPs and 273

samples were retained out of the initial 658849 SNPs and 297

samples for further association analyses.
2.5 Weighting approaches for constructing
the wGRS and wNGRS

We developed GRS with selected highly correlated SNPs by

genome-wide association analysis for T2DM-related phenotypes.

We excluded SNPs that showed linkage disequilibrium (LD) with

each other and analyzed the estimate by performing a logistic
Frontiers in Endocrinology 03
regression to determine the association between the number of

risk alleles and T2DM.The weighted genetic risk score (wGRS) was

calculated by multiplying the number of risk alleles (0, 1, or 2) for

each SNP by the natural logarithm of the OR for that allele and

summing across all SNPs, as described in formula (1). Similarly, the

weighted nongenetic risk score (wNGRS) was calculated using the

same principle as the wGRS. For each individual, the wNGRS was

calculated as the sum of risk factors weighted by the HR (b) value of
different nongenetic risk factors in Cox regression, as described in

formula (2). Assuming that genetic and nongenetic factors are

independent, we added the weighted genetic score to each risk

algorithm to obtain a combined nongenetic and genetic score. The

comprehensive risk scoring model is the sum of the GRS and NGRS

models, as described in formula (3).

  GRS =on
i=1biGi

Logit P(y = 1jG) = a + GRS

= a +on
i=1biGi (1)

bi is the weight of the ith SNP; Gi is the number of alleles at the

ith SNP and assigns values of 0, 1, 2.

 NGRS ¼om
i=1biSi

Logit P(y = 1jS) = a + NGRS

  ¼a +om
i=1biSi (2)

bi is the weight of the ith nongenetic risk factor. Si shows the

status of the ith nongenetic risk factor, if the individual has the risk

factor, the value is 1; if not, the value is 0.

Logit P(y = 1jG,  S) = a + GRS + NGRS

= a + on
i=1biGi +om

i=1biSi
� �

(3)
2.6 Power calculation

We performed power calculations using PASS 2021 (NCSS,

LLC. Kaysville, Utah. http://www.ncss.com/software/pass/

procedures/), using a two-sided test with a= 0.05. Of the 297

participants in our study, 98 were diagnosed with T2DM during

the research period. Taking into account the prevalence of T2DM of

12.4% in China reported by Wang et al.(p0 = 0.124) (26), our

sample size exhibited a power of 0.83 (e.g., OR=2.2 or less,

depending on the distribution of the risk factor).
2.7 Statistical analysis

The SPSS26.0 statistical software package was employed for data

analysis. Missing data imputation used the expectation-maximization

algorithm (27). Continuous variables were compared utilizing either an

independent samples t-test or a rank sum test, described by mean
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(standard deviation) or median (quartile) values, respectively.

Categorical variables were compared utilizing the chi-square test.

Independent risk factors were determined by Cox stepwise

regression, P<0.05, and all differences were considered statistically

significant. Additionally, genome-wide associations between diabetes-

associated phenotypes and variation were examined using PLINK 1.9,

and corresponding Manhattan and quantile-quantile plots were

generated using the “manhattan” and “qqman” libraries in R

(v.4.1.3) (28). The prediction model was constructed by logistic

regression analysis, and utilized the AUC values to evaluate the

predictive power of the model.
3 Results

3.1 Baseline clinical characteristics

The prospective research was conducted on 297 subjects (FPG< 7

mmol/L at baseline, age range 37–91) to establish a 9-year risk

prediction model for T2DM (Figure 1). A total of 98 incident cases

of T2DM, representing 32.9% of the study population, were identified.

In our study, the mean age was 65.61 ± 13.55 years, and 59 subjects

already had an impaired glucose test (fasting glucose 6.1-6.9mmol/L) at

baseline, accounting for 19.9%, which may explain the higher

prevalence of diabetes. Compared to the controls, the T2DM group

had significantly higher levels of BMI, FPG, IFG, SUA, BUN, ALT,

FINS and HOMA-IR. The T2DM group also had significantly lower

levels of HDL and QUICKI. Although age, DBP, SCr, CRP, TG, TC,

TBIL, and TP levels were higher in the T2DM group compared with

the non-T2DM group, the differences were not statistically significant.

Table 1 shows the baseline characteristics of the study population.
3.2 Nongenetic risk factors for T2DM

All variables (excluding collinear variables) with P<0.05 in the

univariate model were involved in the multivariate model by
Frontiers in Endocrinology 04
gradual backward regression, with variable values<0.05 retained

in the final model. Results from a Cox regression model revealed

that SUA, HDL, and HOMA-IR were independent risk factors for

T2DM. The regression coefficients of the factors retained in the final

model are presented in Table 2. Additionally, Kaplan-Meier survival

analyses revealed that higher quartile values of HOMA-IR, SUA,

and HDL (defined as their normal high values) significantly impact

T2DM onset in our study, as shown in (Figure 2).
3.3 Results from genome-wide
association studies

An analysis was performed on 306,659 autosomal SNPs that

passed quality control to determine their association with six traits.

Manhattan and QQ plots of the GWAS results are shown (Figure 3;

Supplementary Figure S1). The analysis showed that no SNP reached

the genome-wide significance threshold (P< 5× 10-8). Finally, we

selected 26 SNPs from the T2DM-related phenotypes (T2DM, FPG,

HbA1C, FINS, HOMA, QUICKI) based on P-values, SNP

repeatability and biological significance of known mutations.

Among them, rs10164462, rs_17_9691529, and rs76616810 were

associated with T2DM, FPG, and HbA1C. rs8142739 was

associated with insulin, HOMA-IR, and QUICKI. In addition,

rs_3_192523400 rs11931598, rs17087830 rs16925187, rs1427793,

rs_kgp4372010, and rs6066110 were all P< 1× 10-4 and associated

with at least two T2DM-related traits (Supplementary Table S1).

Some information of these SNPs, such as their genome locations, the

closest reported genes, MAF and OR values, are exhibited in Table 3.
3.4 Nongenetic risk score prediction
model for T2DM

The nongenetic prediction model for T2DM included normal high

values of HOMA-IR, SUA, and HDL. The model showed a C statistic of

0.678 (95% CI: 0.614–0.742), with a sensitivity of 0.52 and a specificity of

0.764. The OR value was 6.563 (95% CI: 2.767-15.568) (Table 4;

Figure 4). The prediction equation was logit P = -0.504 + (0.166 ×

S1 + 0.004 × S2+ (-0.842) × S3), while S1 = HOMA-IR normal high

value (0:< 2.94; 1:≥ 2.94), S2 = SUA normal high value (0: < 383 mmol/L;

1: ≥ 383 mmol/L), S3 =HDL normal high value (0: < 1.57 mmol/L;

1:≥ 1.57 mmol/L). On the basis of the above optimized nongenetic

risk factors, fasting blood glucose factors were added; S4 = FPG normal

high value (0: FPG ≤ 5mmol/L; 1: FPG > 5mmol/L), the AUCwas 0.764

(95% CI: 0.709-0.818), with corresponding sensitivity and specificity

values of 0.837 and 0.608, respectively. The OR value was 3.183 (95% CI:

2.225-4.552) (Table 4; Figure 4).
3.5 Genetic risk score prediction
model for T2DM

Genetic prediction models for predicting the onset of T2DM use a

weighted risk score approach, which can reveal the polygenic

contribution to T2DM risk of SNPs that show disease association
FIGURE 1

Flow chart of subjects in the prospective study.
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but falling short of the genome-wide significance threshold. The 26

SNPs associated with T2DMwere identified by GWAS. Using the lasso

penalty method, 13 SNPs were eventually included in the prediction

model (Supplementary Figure S2). The GRS model yielded an AUC of

0.892 (95% CI: 0.853-0.932), a sensitivity of 0.784, a specificity of 0.896,

and an OR of 2.796 (95% CI: 2.210-3.536) (Table 4; Figure 4). The

genetic risk prediction equation logit P = -6.597 + (0.618 ×

rs_1_12637399Gi + 1.497 × rs76616810Gi + 1.494 × rs10164462Gi +

0.869 × rs_kgp9798346Gi + 0.764 × rs11931598Gi + 0.47

×rs62375492Gi + 1.602 × rs79535454Gi + 0.844 × rs80314016Gi +
Frontiers in Endocrinology 05
1.03 × rs16925187Gi + 0.746 × rs1547287Gi + 0.83 × rs4755984Gi +

1.385 × rs1427793Gi + 0.962 × rs_17_9691529Gi).
3.6 Comprehensive prediction
model for T2DM

Upon evaluation and screening, the ultimate comprehensive

predictive model is obtained by adding the arithmetic sum of the

two models to the fasting glucose high value. It was logit P = -7.156 +
TABLE 2 T2DM multivariate Cox regression analyses.

Variables b SE c2 P HR 95% CI

SBP10 0.011 0.006 3.641 0.056 1.011 1.000-1.022

BMI 0.058 0.034 2.965 0.085 1.060 0.992-1.133

HDL -0.842 0.365 5.318 0.021 0.431 0.211-0.881

SUA 0.004 0.002 5.676 0.017 1.004 1.001-1.007

HOMA 0.166 0.064 6.669 0.010 1.181 1.041-1.339

NGRS 1.882 0.441 18.230 <0.001 6.563 2.767-15.568
f

TABLE 1 Baseline characteristics of participants with and without incident diabetes.

Total(n=297)
Without incident
diabetes (n=199)

With incident
diabetes (n=98) t/c2 P

Men (%) 222(74.4%) 141(70.9%) 81(82.7%) 4.843 0.028

Age(years) 65.61 ± 13.55 64.88 ± 13.58 67.08 ± 13.44 -1.321 0.188

BMI (kg/m2) 24.71 ± 3.28 24.06 ± 3.13 26.04 ± 3.20 -5.07 <0.001

SBP10(mmHg) 135.7 ± 19.33 133.25 ± 18.43 140.68 ± 20.23 -3.159 <0.001

DBP10(mmHg) 72.48 ± 11.63 71.9 ± 11.88 73.66 ± 11.07 -1.232 0.219

FPG (mmol/L) 5.42 ± 0.67 5.12 ± 0.43 6.05 ± 0.620 15.129 <0.001

IFG (%) 59(19.9%) 7(3.5%) 52(53.1%) 101.25 <0.001

SCr(mmmol/L) 82.00 ± 19.00 82.00 ± 20.00 83.00 ± 19.00 -0.749 0.454

SUA(mmmol/L) 327.8372.59 312.19 ± 65.41 359.58 ± 76.32 -5.551 <0.001

BUN (mmol/L) 5.10 ± 1.60 4.90 ± 1.60 5.45 ± 1.90 -2.373 0.018

CRP (mg/L) 0.90 ± 1.10 0.90 ± 1.20 1.90 ± 1.10 -0.092 0.927

HDL (mmol/L) 1.34 ± 0.37 1.41 ± 0.39 1.21 ± 0.27 4.608 <0.001

TG (mmol/L) 1.35 ± 0.94 1.32 ± 0.95 1.40 ± 1.13 -1.061 0.289

TC (mmol/L) 4.86 ± 0.95 4.86 ± 0.98 4.86 ± 0.92 0.033 0.974

TBIL(mmol/L) 15.50 ± 5.20 15.00 ± 5.50 15.75 ± 4.90 -1.083 0.279

TP(g/L) 73.77 ± 4.24 73.63 ± 4.38 74.06 ± 3.95 -0.827 0.409

ALT (IU/L) 22.00 ± 12.00 21.00 ± 10.00 24.5 ± 11.00 -3.345 0.001

FINS (mU/L) 7.93 ± 6.19 7.46 ± 5.30 9.38 ± 7.41 -3.268 0.001

HOMA-IR 1.88 ± 1.61 1.66 ± 1.28 2.39 ± 2.01 -5.273 <0.001

QUICKI 0.61 ± 0.13 0.64 ± 0.13 0.58 ± 0.10 -5.335 <0.001
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting plasma glucose; IFG: impaired fasting glucose; SCr, serum creatinine; SUA, serum uric acid; BUN,
blood urea nitrogen; CRP, C-reactive protein; HDL, high-density lipoprotein; TG, plasma levels of triglyceride; TC, total cholesterol; TBIL, total bilirubin; TP, total protein; ALT, alanine
aminotransferase; FINS, fasting insulin; HOMA-IR, homeostasis model assessment of insulin resistance; QUICKI, the quantitative insulin sensitivity check index.
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B C

D E F

A

FIGURE 3

Manhattan plots of the P values for 6 traits in the generalized linear model (GLM) analysis. The 6 traits are (A) T2DM, (B) FPG, (C) HbA1C, (D) insulin,
(E) HOMA-IR, and (F) QUICKI. The 22 chromosomes are shown in different colors. The solid line indicates the genome-wide significance level
[−log10 (1× 10−5)]. The dashed line indicates the suggested significance level [−log10 (1 × 10−4)].
B

C

A

FIGURE 2

Kaplan–Meier survival curve of T2DM cumulative incidence in 297 subjects of the prospective study. (A) normal high value of homeostasis model
assessment of insulin resistance (HOMA-IR); (B) normal high value of serum uric acid (SUA); (C) normal high value of high-density lipoprotein (HDL).
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(0.618 × rs_1_12637399Gi + 1.497 × rs76616810Gi + 1.494 ×

rs10164462Gi + 0.869 × rs_kgp9798346Gi + 0.764 × rs11931598Gi

+ 0.47 × rs62375492Gi + 1.602 × rs79535454Gi + 0.844 ×

rs80314016Gi + 1.03 × rs16925187Gi + 0.746 × rs1547287Gi +

0.83 × rs4755984Gi + 1.385 × rs1427793Gi + 0.962 ×

rs_17_9691529Gi + 0.166 × S1 + 0.004 × S2 + (-0.842) ×

S3 + 1.970 × S4). The comprehensive T2DM prediction model had

a higher predictive value compared to either the nongenetic or genetic

prediction models, with an AUC of 0.908 (95% CI: 0.872-0.944), an

OR of 2.473 (95% CI: 2.008-3.045), a sensitivity of 0.845, and a

specificity of 0.839 (Table 4; Figure 4). Additionally, the Hosmer-

Lemeshow test indicated good calibration ability of the T2DM

prediction model (c2= 11.191, P = 0.191).
3.7 Internal validation

Internal validation of different prediction models was carried out

by using bootstrap ten-fold cross validation method. In this study, the
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AUC values verified by genetic (a), non-genetic (b; c) and

comprehensive prediction (d; e) models were 0.872, 0.670, 0.734,

0.873, and 0.887, respectively, after 50 times of 10-fold cross-

validation of different prediction models. The results show that the

prediction model has good stability.
3.8 External validation

We used the Framingham Diabetes Risk Score to assess the risk

of developing T2DM in the Chinese Han population in this study.

The Framingham Diabetes Risk Score simple clinical model

includes 9 indicators, including age, sex, BMI, family history of

diabetes, SBP/DBP, HDL, TG, FPG, and waist circumference (17).

This research lacks information on family history of diabetes and

waist circumference. When the Framingham diabetes risk

prediction model was applied to our study population, the AUC

was 0.889 (95% CI: 0.847-0.931). However, the Framingham

diabetes risk score uses a cut-off of FPG >5.5 mmol/L, whereas if
TABLE 3 Single-SNP association analysis of T2DM.

Chr SNP Nearby gene Base-pair
position

Genotype EAF (Case/Control) OR (95%CI) b P

1 rs_1_12637399 DHRS3 12637399 C/A 0.260/0.161 1.856(1.211-2.843) 0.618 1.08×10-5

1 rs76616810 RSPO1 38126486 C/T 0.133/0.035 4.467(2.221-8.986) 1.497 4.66×10-6

2 rs10164462 XDH 31552034 A/C 0.153/0.043 4.453(2.32-8.547) 1.494 7.01×10-6

2 rs_kgp9798346 ERBB4 212453661 C/T 0.806/0.644 2.385(1.555-3.658) 0.869 3.49×10-5

4 rs11931598 TADA2B 7047102 C/T 0.500/0.339 2.146(1.458-3.159) 0.764 5.57×10-5

5 rs62375492 YIPF5 143358522 T/C 0.296/0.214 1.599(1.064-2.405) 0.470 3.51×10-5

7 rs79535454 GRB10 50718600 G/A 0.101/0.023 4.964(2.178-11.312) 1.602 1.37×10-5

9 rs80314016 DMRT1 832245 T/C 0.196/0.101 2.325(1.393-3.879) 0.844 3.69×10-6

9 rs16925187 KDM4C 7043455 G/C 0.148/0.056 2.800(1.561-5.023) 1.030 2.57×10-5

9 rs1547287 PTPRD 9354303 C/T 0.776/0.626 2.109(1.406-3.164) 0.746 9.91×10-6

11 rs4755984 SYT13 45441337 C/T 0.515/0.304 2.293(1.611-3.262) 0.830 4.13×10-6

12 rs1427793 NUAK1 106458238 G/A 0.102/0.03 3.996(1.863-8.569) 1.385 3.52×10-6

17 rs_17_9691529 DHRS7C 9691529 T/A 0.25/0.121 2.617(1.627-4.211) 0.963 5.44×10-7

GRS 2.796(2.210-3.536) 1.028
fron
Chr, chromosome; SNP, single nucleotide polymorphism; OR, odds ratio; EAF, effect allele frequency; GRS, genetic risk score; bold indicates effect allele.
TABLE 4 Logistic regression analysis and prediction power comparison of nongenetic (NGRS), genetic (GRS), and comprehensive models for T2DM.

model Logistic regression analysis ROC curve

OR (95% CI) P AUC (95% CI) P sensitivity specificity

GRSa 2.796(2.210-3.536) <0.001 0.892(0.853-0.932) <0.001 0.784 0.896

NGRSb 6.563(2.767-15.568) <0.001 0.678(0.614-0.742) <0.001 0.520 0.764

NGRS+FPGc 3.183(2.225-4.552) <0.001 0.764(0.709-0.818) <0.001 0.837 0.608

GRS+NGRSd 2.803(2.210-3.555) <0.001 0.898(0.860-0.936) <0.001 0.763 0.901

GRS+NGRS+FPGe 2.473(2.008-3.045) <0.001 0.908(0.872-0.944) <0.001 0.845 0.839
OR, odds ratio, CI, confidence interval, AUC, area under curve, NGRS, nongenetic risk score model, GRS, genetic risk score model.
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we use the same cut-off as our model (FPG >5mmol/L), the AUC

drops to 0.761 (95% CI: 0.707-0.815) (Supplementary Figure S3).
4 Discussion

Most of the existing studies in China have used only traditional

laboratory indicators to construct diabetes prediction models, and

few studies have used genetic risk factors as predictors. The

combined use of SNPs to predict the risk of T2DM has been

reported in other countries (29–31), and their genetic factors

alone predicted an AUC between 0.55 ~ 0.6, traditional risk

factors predicted an AUC of approximately 0.65 ~ 0.78, and the

combination of both predicted an AUC of approximately 0.68 ~ 0.8.

Therefore, there is a need to develop T2DM prediction models that

include genetic risk factors in China. The AUCs of our genetic,

nongenetic and combined risk prediction models were 0.892, 0.764

and 0.908, respectively. All three results were higher than those of

other studies, indicating better predictive validity. Compared to

other models, our model is unique in that it contains SNPs that are

not common in European populations, and the model has Han-

specific markers, which may be one of the reasons for the better

performance of our model. By adding our genotyping data, the

prediction model AUC was significantly improved (from 0.764

to 0.908).

This study included new phenotypic detections, such as FINS,

HOMA-IR, and QUICKI, with HOMA-IR being an independent

predictor of T2DM. In addition, some new genetic loci were

identified as follows: rs4755984 in the SYT13 gene, rs1547287 in

the PTPRD gene, rs76616810 in the RSPO1 gene, rs16925187 in

the KDM4C gene, rs_kgp9798346 in the ERBB4 gene, rs79535454

in the GRB10 gene, rs1427793 in the NUAK1 gene, rs62375492 in
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the YIPF5 gene, and rs10164462 in the XDH gene. We found that

the nearest genes to the above SNP loci were associated with

metabolism or diabetes. The SYT13 gene, located on chromosome

11, is a member of a large family of synaptic binding proteins.

Compared to healthy adults, SYT13 gene expression is

downregulated in T2DM patients, and downregulation of this

gene decreases islet secretory function and is negatively associated

with HbA1c levels in vivo (32). SNP rs154738, located in the

intron of PTPRD, had a less significant association with T2DM

(P = 9.91 × 10-6; OR = 2.109, 95% CI = 1.406-3.164). A previous

GWAS of T2DM in a Han Chinese population identified PTPRD

as a susceptibility gene for T2DM (33). Overexpression of PTPRD

in preadipocytes (3T3L1) inhibits adipogenesis, but this may lead

to the development of adipose ectopic accumulation and insulin

resistance, favoring the development of T2DM. Additionally, in

human subjects, a positive correlation was observed between

serum RSPO1 levels and fasting C-peptide levels, which is a

marker of insulin secretion. RSPO1 levels also presented a

positive correlation with both obesity and insulin resistance

(34). Also associated with obesity is KDM4C located at 9p24.1, a

member of the JMJD2 family that promotes preadipocyte

differentiation by repressing PPARg transcriptional activation

(35). Latorre (36) et al. found that ERBB4, located at 2q34, had

significantly increased expression in the organs of obese people.

Although these genes are not directly related to the development

of T2DM, approximately 90% of T2DM patients are overweight or

obese, and obesity caused by disorders of lipid metabolism is also

considered important risk factor for T2DM development. The

variants of GRB10, which is an inverse regulator of insulin

signaling, have been shown to have a significant association with

impaired b-cell function (37). In 2020, Franco (38) et al. identified

YIPF5 mutations as a major cause of monogenic diabetes. XDH

(XOR), the rate-limiting enzyme produced by SUA, is not only

highly expressed in hyperuricemia and gout but has also been

shown to have significantly higher XOR activity in diabetic

patients than in normal adults (39).

In addition, when including the glucose factor FPG>5 mmol/L, the

AUC value of our prediction model in this study was 0.764; the

Framingham diabetes risk prediction model had an AUC value of

0.761 for FPG>5 mmol/L and 0.889 for FPG>5.5 mmol/L. Although

FPG>5.5 mmol/L may be a better T2DM “predictor”, it cannot achieve

early prediction, and we should not use it in early prediction models.

The present study also has some limitations. First, all study

participants were monitored for at least 4 years, but it is unclear

whether they developed diabetes in the first 3 years due to missing

data for the period from 2011 to 2013. In addition, we did not

perform OGTT screening for those 297 subjects. Since OGTT

requires multiple blood draws and patients have a low degree of

cooperation at annual physical examinations, the diagnostic criteria

for T2DM in our article is based on fasting blood sugar ≥7.0 mmol/

L. The use of a single glucose measure as an outcome diagnostic

criterion may overestimate the prevalence of T2DM, which is one of

the limitations of most epidemiological studies. Third, genetic risk

factors were selected from a relatively small sample size, and some

potential bias exists in the study results. Lastly, to enhance the

applicability of our model to other populations, further external
FIGURE 4

ROC curves for T2DM prediction model. The genetic (GRS),
nongenetic (NGRS; NGRS+FPG), and comprehensive models (GRS
+NGRS; GRS+NGRS+FPG).
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validation in larger and younger cohorts is needed. We plan to

conduct such studies in the future to refine and validate our T2DM

prediction model.
5 Conclusions

Our study provides a comprehensive and accurate prediction

model for T2DM risk, highlighting the importance of considering

both traditional risk factors and genetic factors in disease

prediction. The identification of novel genetic loci associated with

T2DM risk also adds to our understanding of the underlying

biology of this disease, potentially opening up new avenues for

therapeutic intervention and disease prevention.
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