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Behavior and physiology in
female Cricetulus barabensis
are associated with the
expression of circadian genes
Hanyi Zhu †, Ming Wu *†, Junjie Mou, Xueqi Yang, Qian Xu,
Yongjian Zhang, Hao Zhang, Xinran Wang, Huiliang Xue,
Jinhui Xu, Lei Chen and Laixiang Xu

College of Life Sciences, Qufu Normal University, Qufu, China
The circadian clock regulates the behavior, physiology, and metabolism of

mammals, and these characteristics, such as sleep-wake cycles, exercise

capacity, and hormone levels, exhibit circadian rhythms. Light signaling is the

main stimulator of the mammalian circadian system. The photoperiod

regulates the reproductive cycle of seasonal breeding animals, and the

circadian clock plays a pivotal role in this process. However, the role of the

clock in coordinating animal behavior and physiology in response to

photoperiodic changes needs further investigation. The present study

investigated the changes and correlation of behavioral activities,

physiological indicators, and gene expression in female striped hamsters

(Cricetulus barabensis) within 24 h under a 12L:12D photoperiod. We found

that the daily rhythms of sleep-wake and open field were significant in

hamsters. The expression of clock genes, melatonin receptor genes, and

genes involved in general metabolism oscillated significantly in central and

peripheral tissues (brain, hypothalamus, liver, ovary, and thymus) and was

significantly associated with behavior and physiology. Our results revealed

that the neuroendocrine system regulated the rhythmicity of behavior and

physiology, and central and peripheral clock genes (Bmal1, Clock, Per1, Per2,

Cry1, and Cry2), melatonin receptor genes (MT1, MT2, and GPR50), and

metabolizing genes (SIRT1, FGF21, and PPARa) played important roles. Our

results suggest that central and peripheral circadian clocks, melatonin

receptors, and genes involved in general metabolism may play key roles in

maintaining circadian behavior and metabolic homeostasis in striped

hamsters. Our results may have important implication for rodent pest control.
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Introduction

Circadian rhythm refers to the 24 h oscillation pattern of

biological processes (1). A core oscillator that exhibits daily

rhythm regulates behavior (e.g., sleep-wake) (2), physiology (e.g.,

metabolism and hormones) (3–5), and the expression of genes (e.g.,

clock genes) (6) in mammals. The core oscillator endogenously

maintains the daily rhythms of the animal by receiving input

signals, including photoperiods, and changing to output signals

(7). The core oscillator is primarily located in the suprachiasmatic

nucleus (SCN) of mammals and consists of a transcriptional/

translational feedback loop formed by a set of clock genes

(Bmal1, Clock, Pers, and Crys) (8). BMAL1 and CLOCK proteins

form a dimer complex that binds to E-box promoter regions

(CACGTG) of Pers (Per1, Per2, and Per3) and Crys (Cry1 and

Cry2), which play positive regulatory roles in the core loop (9–11).

Conversely, PER and CRY proteins are phosphorylated by casein

kinase 1e (12) and transferred from the cytoplasm to the nucleus to

inhibit the pro-transcriptional activity of the CLOCK/BMAL1

protein dimer complex and act as a negative regulator in the core

loop. This interlocked transcriptional/translational feedback loop is

approximately 24 h and thereby reduces the pro-transcriptional

effect of the entire circadian clock system to a low level (13).

In addition, mRNA products of clock genes are also found in

peripheral organs, including the liver, ovary, and thymus (7, 14, 15).

It was generally believed that the synchronization of clock genes in

peripheral tissues to light signals (light-dark cycle) was primarily

generated by the SCN (16). However, recent studies have shown

that, in addition to light signals, such as rhythmically feeding

schedule, can directly reset peripheral clocks (17, 18). In addition,

the molecular mechanisms of clock genes located in central and

peripheral tissues were generally similar (19, 20), but differences

between tissues were noted. While the autonomy of peripheral

clocks has not been fully elucidated, there are several evidence

found that the peak phase of clock genes differed in peripheral

tissues, and the molecular response of circadian clocks appeared to

be tissue-dependent (15); Bmal1 mRNA expression was increased

in peripheral tissues in clock mutant mice, and while the rhythm

was lost in the SCN (21); The amplitudes of renal clock gene

amplitudes were strongest and testicular clock genes were weakest

as compared to other peripheral organs in hamsters (7); High-

throughput transcriptomics and metabolomics analyses to

demonstrate that the liver retained an intrinsic clock function and

some autonomy in Bmal1-null (whole-body knockout) mice, even

in the absence of rhythmic oscillation in other tissues (22).

Moreover, SCN-ablation experiments revealed that the SCN was
Abbreviations: SCN, suprachiasmatic nucleus; Per1/2, Period circadian regulator 1/

2/3; Cry1/2, Cryptochrome circadian regulator 1/2; MT, melatonin;MT1/2, melatonin

receptor 1/2; GPR50, G protein-coupled receptor 50; PPARa, peroxisome proliferator-

activated receptor alpha; SIRT1, Sirtuin 1; FGF21, fibroblast growth factor 21; EEG,

electroencephalography; EMG, electromyography; OF, open field; EPM, elevated plus

maze; RMR, resting metabolic rate; ELISA, enzyme-linked immunosorbent assay;

qRT-PCR, quantitative real-time PCR; BMR, basal metabolic rate; 5-HT,

5-hydroxytryptamine.
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positioned at the top of the hierarchy in mammals and controlled

the peripheral clocks by influencing the concentration of multiple

neurohumoral factors (23, 24). In addition, the autonomy of

peripheral tissues has not been fully elucidated.

Melatonin (MT) is a neurohormone secreted by the pineal

gland at night, and it has long been recognized as the main

endocrine output signal of the endogenous circadian clock system

(25), which synchronizes peripheral tissues with the circadian clock.

MT has a high affinity for two melatonin receptors (MT1 and MT2)

in mammals. The orphan receptor (G protein-coupled receptor 50,

GPR50) may also regulate MT signaling. Although this receptor

does not bind MT, it forms a heterodimer with MT1 to inhibit its

activity (26). There is also an interaction between energy

metabolism and the circadian clock (27, 28), and genes involved

in metabolism are rhythmically expressed (29, 30). Sirtuin 1

(SIRT1) is an NAD+-dependent histone deacetylase that is

involved in the caloric restriction response in mammals (31).

SIRT1 was recently identified as a novel regulator of circadian

genes (32, 33) by directly acting on peroxisome proliferator-

activated receptor alpha (PPARa) to activate the expression of

genes involved in lipolysis (34). PPARa regulates the expression of

fibroblast growth factor 21 (FGF21) and affects its daily rhythm

(35). Although core mammalian clock genes have been clearly

defined, the mechanisms of central and peripheral clock genes in

maintaining metabolic homeostasis and energy balance are not

clear (36).

The sleep-wake cycle is the most common circadian rhythm in

animals (37), and it is caused by a variety of brain structures and

neurotransmitter systems that exhibit strict rhythmicity. The

circadian rhythm of the sleep-wake cycle is closely linked to the

pacemaker, and this coordinated neural activity drives alternating

patterns of behavior, including rest, activity, body posture, and

changes in response to stimuli (38). The SCN has been shown to be

the primary pacemaker in regulating the sleep-wake cycle. However,

the specific roles of circadian clocks in multiple brain regions and

peripheral organs in controlling sleep remains unclear (39).

Most seasonal breeding animals living in temperate or boreal

regions adjust their physiology, behavior, and morphology in

response to changes in the environment and synchronize with the

seasons (i.e., photoperiod) (40). Circadian clocks are involved in the

photoperiod regulation of seasonal breeding in animals (41).

Studying the role of circadian clocks in seasonal breeding may

elucidate on the mechanisms of clocks regulation of seasonal

physiological and behavioral changes.

The specific patterns of circadian rhythms that exist in animals

is closely related to its ecological niche (42). The striped hamsters

are widely distributed in grasslands and farmlands and are the prey

of a variety of predators (such as Athene noctua) (43). These

hamsters have a wide distribution, high reproductive capacity (a

litter of four to nine offspring) (44), and typical daily rhythm

characteristics. These animals participate in many ecological

processes and are important species in maintaining grassland

ecosystems and biodiversity. They feed primarily on crop seeds

(e.g., soybeans, mung beans, and wheat), grass seeds, and beetles.

The composition of their diet changes depending on the region and

environment. Inappropriate daily activity cycles increase the risk of
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predation by predators. Xu et al. found that, a gene regulating

reproduction, Kiss-1 (which encodes Kisspeptin-1), was expressed

in several tissues (the hypothalamus, ovary, and testis) of hamsters

in tissue- and sex-dependent manner, and showed different

expression trends with seasonal changes (45). A novel

hypothalamic-pituitary RFamide-related peptide (RFRP),

identified in quail in 2000, is a homolog of the avian

gonadotropin-inhibitory hormone (GnIH) and inhibits

gonadotropin release by acting directly on the pituitary (46). In

striped hamsters, RFRP-3 has the highest expression in the

hypothalamus of breeding males and the lowest expression in the

hypothalamus of breeding females, which suggests that the

regulation of reproduction by RFRP-3 depends on sex and

developmental state (47). Aggressive behaviors, resting metabolic

rate (RMR), and plasma concentrations of estradiol in female

hamsters are different across the estrous cycles. Aggressive

behavior of the hamsters in estrus decreased, and the estradiol in

plasma and RMR levels increased when facing a male hamster (48).

The present study, obtained a spatiotemporal map of genes,

metabolism, and behavior by analyzing the 24 h rhythmicity of six

circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, and Cry2),

three melatonin receptor genes (MT1,MT2, and GPR50), and three

genes involved in general metabolism (SIRT1, FGF21, and PPARa)
in the central (brain and hypothalamus) and peripheral tissues

(liver, ovary, and thymus), three physiological indices (serum

melatonin levels, blood sugar levels, and resting metabolic rate),

and three behavioral indices (sleep-wake, open field, and elevated

plus maze) of the striped hamster. It is worth noting that elevated

plus maze is a behavioral test to detect the aversion of rodents to

open and elevated areas and the response to novel environment

(49). This behavioral test was used to assess the activity of hamsters

and their responses to new environments at different time points in

this study. We established the relationships of genes, metabolism,

and behavior in time and space, and revealed the mechanisms of

coordination and communication between these factors. By

exploring the biological correlation of circadian rhythm of striped

hamster, it is helpful to find its active time, providing theoretical

basis for field trapping to control rodent infestation in farmland,

and clarifying its possible role in the ecological niche.
Materials and methods

Experimental animals

The striped hamsters were captured in March of the year using

the same manner as our previous study (47). Hamsters were

brought to the laboratory of Qufu Normal University, housed

individually in plastic cages (32 cm × 21 cm ×16 cm) and

maintained under a light/dark cycle of 12 hours (12L:12D)

(illumination time, 08:00-20:00; light intensity, 300 lx) at a

temperature of 22 ± 2°C with free access to water and food.

Thirty-six female hamsters (20-30 g, 6 months of age) were

selected for this experiment and acclimated under a photoperiod

of 12L:12D for 8 weeks. The Ethics Committee of Qufu Normal

University approved all procedures and surgeries.
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Estrous cycle staging identification

Vaginal cells were collected using aseptic vaginal lavage (50).

Briefly, the opening of the vaginal canal was washed with sterile

water, and sterile water was used at the opening of the vagina canal

to aspirate the vaginal cells by gentle pipetting several times.

Vaginal cells were spread on sterile glass slides, fixed for 10-15 s,

and air-dried.

Slides with vaginal cells were stained with 0.1% crystal violet

(Aladdin, China) stain for 1 min, then transferred in ddH2O to

clean slides for 1 min and this process was repeated. Excess ddH2O

was aspirated from the edge of the slide using filter paper, and the

cells were covered with a coverslip. Approximately 15 mL of glycerol
was placed on top of the slides and coverslips and allowed to dry at

room temperature. The types of vaginal cells were observed under a

light microscope (Supplementary Figure S1). During proestrus, cell

type is almost exclusively round and well-structured nucleated

epithelial cells (Supplementary Figure S1D). During estrus,

cornified epithelial cells mainly appear in clusters in the smear,

and nucleated epithelial cells are occasionally seen (Supplementary

Figure S1E). During metestrus, cell types are mainly leucocytes and

cornified epithelial cells (Supplementary Figure S1F). During

diestrus, leukocytes accounts for the majority of the smear, with

occasional nucleated epithelial cells and cornified epithelial cells

(Supplementary Figure S1G). To eliminate the disturbance of the

estrous cycle in female hamsters, we performed all experiments

when hamsters were in diestrus.
Behavioral tests

Animals were acclimated to the environment at 12L:12D for 8

weeks, and the sleep-wake behavior test was performed. After the

animals rested for three days, the open field behavior was measured

every 4 hours throughout the day. After the animals rested for three

additional days, elevated plus maze behavior was measured at 4 h

intervals throughout the day. To avoid continuous behavioral tests

that may interfere with the accuracy of animal behaviors, such as

adaptation, we performed subsequent behavioral tests after

detecting the same behavior of all animals. The first animal tested

was randomized in all behavioral tests. All hamsters were unequally

exposed to behavioral assays at ZT0, and the time point of the first

exposure was randomized.

Sleep-wake cycle
Sleep-wake cycle was measured for 1 day after the hamster was

moved into new chambers and adapted to it for 1 h. The circadian

behavioral characteristics of hamsters were recorded for 24 h using

the IR Actimeter (Panlab, Harvard Apparatus, Spain). Hamsters

were considered sleeping when they were motionless for at least 40 s

(51, 52). The sleep duration was counted every 30 min, for a total of

48 counts.

Open field
At six zeitgeber time points [ZT; ZT0 (08:00), ZT4, ZT8, ZT12,

ZT16, and ZT20] on the same day, hamsters were placed into the IR
frontiersin.org
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Actimeter for 1 min to acclimate, and then their behavioral

indicators were observed and recorded for 10 min. The field (50

cm × 50 cm) was divided into an inner zone (30 cm × 30 cm) and an

outer zone using the ACTITRACK program (Panlab, Harvard

Apparatus, Spain). After the test, the open field was wiped with

75% alcohol to avoid the influence of residual urine and feces on the

hamsters for the next experiment. The room where behaviors were

tested at night was illuminated with red LED lights (637 nm).

Elevated plus maze
The elevated plus maze experimental apparatus consisted of two

open arms and two closed arms. At the six time points of ZT0, ZT4,

ZT8, ZT12, ZT16, and ZT20, the behavioral indices of hamsters in

the elevated plus maze were tested within 5 min. The room where

behaviors were tested at night was illuminated with red LED

lights (637 nm).
Measurement of resting metabolic rate

The resting metabolic rate was measured using an open-flow

respirometry system (Q-Box RP2LP, Qubit, Canada). The system

had two analyzers, a CO2 infrared gas analyzer (IRGA; 0-10%) and

an O2 infrared analyzer (IRGA; 0-100%), which measured CO2 and

O2 in the breathing chamber, respectively. At ZT0, ZT4, ZT8, ZT12,

ZT16, and ZT20, the stable oxygen consumption was read after the

hamsters were placed in the apparatus for 1 h, and the results of at

least three measurements were averaged.
Sample collection

After acclimation, hamsters (n = 36) with similar body weights

were divided into 6 groups (n = 6 per group), and sacrificed via CO2

asphyxiation at ZT0, ZT4, ZT8, ZT12, ZT16, and ZT20. Blood

samples were immediately collected from the heart within 2 min,

and blood glucose levels were assessed using a blood glucose

monitor (Yuwell 580, Jiangsu, China). The remaining blood

samples were incubated at 4°C for 30 min, followed by

centrifugation at 3000 rpm for 15 min at 4°C. The supernatant

was carefully absorbed, and the serum was stored at -80°C for

further analyses. The hypothalamus, brain (i.e., cerebral cortex),

liver, ovary, and thymus were removed and immediately flash-

frozen in liquid nitrogen and stored at -80°C for further analysis.
Measurement of serum MT concentration

An enzyme-linked immunosorbent assay (ELISA) from

Labsystems Multiskan MS 352 (Shanghai Hengyuan Biological

Technology Cat# HS022-Hr, RRID: AB_2924940) was used to

measure serum MT concentration (44). The detection range of

the MT kit was 15-600 pg/mL, the minimum detected

concentration was 3.75 pg/mL, and the intra- and inter-assay
Frontiers in Endocrinology 04
variations of the MT kit were 5.4% and 7.2%, respectively. Each

serum sample was run in duplicates.

Blank wells, standard wells and serum sample (all samples of

day and night) wells were arranged in a 96-well plate. Fifty

microliters of standard sample and 50 mL of serum sample were

added to the standard wells and serum sample wells, respectively.

The plate was covered with sealing tape and incubated at 37°C for

30 min. The washing solution was added 5 times manually and

incubated for 30 s. Fifty microliters of conjugate reagent

(horseradish-peroxidase) was added to the plate except for blank

wells, and incubated at 37°C for 30 min. After washing 5 times, 50

mL of chromogenic substrate solutions A and B were added, and the

plate was incubated at 37°C in the dark for 10 min. The reaction was

stopped by the addition of stop solution, and the plate was read

within 15 min on a microplate reader (BioTek Instruments, USA) at

a wavelength of 450 nm.
RNA extraction and quantitative real-
time PCR

Total RNA from the brain (whole brain excluding

hypothalamus), hypothalamus, liver, ovary, and thymus of

hamsters was extracted using an RNAiso Plus kit (TaKaRa, Otsu,

Japan). The relative quantity and integrity of total RNA were

determined by 1% agarose gel electrophoresis (U = 120 V; 10

min). The absorbance of total RNA at 260/280 nm was measured

using a Nanodrop 2000 spectrophotometer (Nanodrop

Technologies, Wilmington, DE, USA) to measure the purity and

concentration of RNA. Total RNA was reversed transcribed into

single-strand cDNA using the Prime Script RT kit (TaKaRa,

Otsu, Japan).

Primer pairs were purchased from Sangon (Shanghai, China)

and are shown in Supplementary Table S1. Since b-actin was stably

expressed in multiple organs (the hypothalamus, preoptic area,

hippocampus, liver, ovary, and thymus) and was suitable to study

the oscillation pattern of circadian rhythm of target genes, so we

used b-actin as the reference gene (53–57). TB® Premix Ex Taq™

(Tli RNaseH Plus) (TaKaRa, Otsu, Japan) was used for qRT-PCR.

The total volume of the mixed reactants was 10 mL, which included

0.2 mL each of forward and reverse primers, 1 mL cDNA templates, 5

mL TB Premix Ex Taq, and 3.6 mL ddH2O. The following thermal

reaction conditions were used for qRT-PCR: pre-denaturation at

95°C for 3 min, followed by 40 cycles of 95°C for 10 s and 56-65°C

for 15 s. A melting curve was generated from 65°C to 95°C. Each

sample was run in triplicate, and the results were averaged. The

mRNA levels of the target genes were calculated using the 2−DDCT

method (58).
Statistical analyses

All data analyses were performed in Cosinor. Online (https://

cosinor.online/app/cosinor.php), R (version 4.1.1), and SPSS 20.0
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software. All data were used to verify the homogeneity of variance

and normality using Levene tests and Shapiro-Wilk tests,

respectively. One-way ANOVA was used to examine the

variations in behavior, physiology, and expression levels of genes

between the six time points. Box-Cox transformation was used to

improve the normality and homogeneity of variance of non-

normally distributed data (58). Daily rhythms of behavior,

physiology, and gene expression were assessed using the cosinor

method (59). Behavior, physiology, and gene expression were

considered to exhibit rhythmicity when they had P-value < 0.3 by

cosinor analysis and P < 0.05 by ANOVA (6, 60, 61). The

correlation of gene expression between behavior and physiology

was assessed using the Spearman correlation test (r). Figures were

drawn in MATLAB (Math Works, Natick, MA, USA), GRAPH

PRISM 7.0, Origin Pro 2017 (3D spatiotemporal path

reconstructions), and RStudio. Data are presented as means ± SEM.
Results

Rhythmicity of circadian behaviors

Sleep-wake cycle
To test the sleep-wake rhythm of striped hamsters under a daily

light-dark cycle, we used IR to detect their sleep characteristics.

According to ANOVA and cosinor analyses, the sleep-wake cycle of

any single hamster (P-value < 0.001, Figure 1A, Supplementary Table

S2) or the average of all hamsters (both P < 0.001 and P-value < 0.001,

Figure 1B, Supplementary Table S2) exhibited significant 24 h periodic

oscillations (Supplementary Table S2). ANOVA analysis indicated that

the average sleep duration of hamsters in the night phase was

significantly lower than during the daytime, and the activity intensity

was significantly increased.

Open field and elevated plus maze
To examine the behavioral rhythm of hamsters within 24 h, we

further performed open field (OF) and elevated plus maze (EPM)
Frontiers in Endocrinology 05
tests. We randomly selected a hamster to plot the movement paths

at ZT0, ZT4, ZT8, ZT12, ZT16, and ZT20 in the OF (Supplementary

Figure S2), and the results showed that activity was lowest at ZT8

and highest at ZT0. Analyses of OF indicators using ANOVA and

cosinor showed significant daily rhythm in eight indicators (all P <

0.05 and P-value < 0.3, Figures 2A–E, G–I, Supplementary Table S2)

except the resting time of hamsters in the inner zone (P > 0.05,

Figure 2F, Supplementary Table S2). The distance of activity in the

outer zone (DAOZ), the distance of activity in the inner zones

(DAIZ), total ambulatory distance (TAD), the resting time in the

inner zone (RTIZ), the number of hind legs standing (NHLS), and

the number of feces (NF) reached lowest points during the daytime

and the highest points at night. However, the rest time in the outer

zone (RTOZ), total rest time (TRT), and the rest time as a

percentage of the total duration [RT (%)] reached their lowest

points at night and their highest points during the daytime. Among

the six indicators measured in the EPM test (Figures 2J–O,

Supplementary Table S2), there was significant rhythmicity only

in the number of entries into the open arms (both P < 0.05 and P-

value < 0.3, Figure 2M, Supplementary Table S2), and the peak

occurred at night.
Rhythmicity of circadian physiologies

To investigate the characteristics of circadian rhythms in

hamsters, we measured serum melatonin (MT) levels, blood sugar

levels, and resting metabolic rate (RMR) during the day. ANOVA

and cosinor analyses indicated that MT levels in serum (Figure 2P,

Supplementary Table S2), blood sugar levels (Figure 2Q,

Supplementary Table S2), and RMR (Figure 2R, Supplementary

Table S2) did not have strict daily rhythms. However, cosinor

analysis showed significant cosinor rhythmicity in serum MT levels

and RMR, with both peaks occurring at night. ANOVA analysis

revealed significant time-point differences in blood sugar levels, with

peaks occurring at the alternation between day and night.
A B

FIGURE 1

Sleep-wake rhythm (immobility-defined sleep) in hamsters during the daily light-dark cycle. (A, B) A single (randomly selected) and average
immobility-defined sleep detected using IR Actimeter in hamsters. The red curve represents the cosinor fit curve. White and black represent the light
and dark, respectively. In sleep, per 30-min interval is shown. An asterisk (*) indicates that the behavior has a daily rhythm (both P < 0.05 and P-value
< 0.3). Data are means ± SEM.
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Expression patterns of circadian genes

To identify the daily rhythmic expression of clock genes in the

central and peripheral tissues of striped hamsters, we used qRT-

PCR to detect the relative expression levels of six clock genes
Frontiers in Endocrinology 06
(Bmal1, Clock, Per1, Per2, Cry1, and Cry2) in five tissues (brain,

hypothalamus, liver, ovary, and thymus). Statistical analyses,

including cosinor and ANOVA, suggested that the expression of

the six clock genes in the five tissues exhibited daily rhythms, except

Bmal1 in the brain, Cry1 in the thymus, and Clock in the
A B

D E F

G IH

J K L

M N

C

O

P Q R

FIGURE 2

Rhythmicity of circadian behaviors and physiologies in hamsters during the daily light-dark cycle. (A–I) The activity rhythms of hamsters in the open
field (OF) with an interval of 4 h during the day. (J–O) The activity rhythms of hamsters in the elevated plus maze (EPM) with an interval of 4 h during
the day. (P) Melatonin (MT) levels in serum with an interval of 4 h during the day. (Q) Sugar levels in blood with an interval of 4 h during the day.
(R) Resting metabolic rate (RMR) with an interval of 4 h during the day. The red curve represents the cosinor fit curve. White and black represent the
light and dark, respectively. An asterisk (*) indicates that the behavior has a daily rhythm (both P < 0.05 and P-value < 0.3). Data are means ± SEM.
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hypothalamus, liver, ovary and thymus (Figure 3, Supplementary

Table S3, both P < 0.05 and P-value < 0.3). The expression patterns

of Bmal1 in the hypothalamus, liver, and ovary were similar but

contrasted the patterns in the thymus, with peaks occurring at the

interphase of day and night, respectively. Clock gene expression

patterns were roughly similar in the hypothalamus and ovary and

roughly similar in the brain, liver, and thymus. The peaks of Clock,
Frontiers in Endocrinology 07
Per1, Per2, Cry1, and Cry2mRNA in the five tissues appeared at the

interphase of day and night. Organ differences were found for six

clock genes. Phase differences were most familiar, which meant that

the nadir and peak of gene expression in one organ appeared a few

hours later or earlier than the other peaks, such as Bmal1 in the

hypothalamus and thymus, Clock, Per1, and Per2 in the

hypothalamus and liver, and Cry1 in the brain and liver.
FIGURE 3

Rhythmicity of circadian genes in hamsters during the daily light-dark cycle. The red curve represents the cosinor fit curve. White and black represent
the light and dark, respectively. An asterisk (*) indicates that the gene has a daily rhythm (both P < 0.05 and P-value < 0.3). Data are means ± SEM.
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Expression patterns of genes influenced by
circadian genes

Expression patterns of melatonin receptor genes
To validate whether melatonin receptor genes had daily

rhythms in five organs, we used qRT-PCR to detect the

expression patterns of three melatonin receptor genes (MT1,

MT2, and GPR50). ANOVA and cosinor analyses showed that

MT1,MT2, and GPR50 in the brain,MT1 in the hypothalamus, and

GPR50 in the thymus displayed daily rhythmic expression (Figure 4,

Supplementary Table S3, both P < 0.05 and P-value < 0.3). The

rhythmic melatonin receptor genes in the brain and thymus showed

an acrophase at the interphase of day and night, except

hypothalamic MT1 exhibited an acrophase during the dark

period. The expression patterns of melatonin receptor genes were

similar in the brain and thymus, and the genes in the brain and

thymus peaked in phase approximately 8 h earlier the genes in

the liver.

Gene expression patterns involved in
general metabolism

To verify whether genes involved in metabolism displayed daily

rhythms, we used qRT-PCR to test the expression patterns of

SIRT1, FGF21, and PPARa in five organs. The daily expression

profiles of the genes involved in metabolism showed that SIRT1 in
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the brain, liver, and thymus, FGF21 in the brain and liver, and

PPARa in the thymus exhibited significant daily rhythms, with peak

expression occurring at the interphase of day and night or at night.

The peak phase of genes in the liver and thymus were delayed 1-4 h

compared to the peaks in the brain (Figure 5, Supplementary Table

S3, both P < 0.05 and P-value < 0.3).
Correlation of gene expression between
behavior and physiology

To confirm whether clock genes, melatonin receptor genes, and

genes involved in metabolism in central and peripheral tissues

regulated the daily rhythm of behavior and physiology, we

investigated the association of genes with behavior and

physiology using Spearman correlation analysis (Figure 6). In the

brain, Clock, Cry2, and PPARa mRNA were negatively correlated

with the sleep-wake cycle; Per1, Per2, Cry2,MT1,MT2, and PPARa
mRNA were correlated with OF; Per1, Cry2, MT1, MT2, GPR50,

and SIRT1 were correlated with EPM; Cry2 and PPARa mRNA

were positively correlated with RMR, and MT2 mRNA was

negatively correlated with RMR. In the hypothalamus, PPARa
was negatively correlated with the sleep-wake cycle; the

expression of four genes (Bmal1, MT1, SIRT1, and PPARa) were
correlated with OF; three genes (Bmal1, Per2, and Cry2) mRNA
FIGURE 4

Rhythmicity of melatonin receptor genes in hamsters during the daily light-dark cycle. The red curve represents the cosinor fit curve. White and
black represent the light and dark, respectively. An asterisk (*) indicates that the gene has a daily rhythm (both P < 0.05 and P-value < 0.3). Data are
means ± SEM.
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were correlated with EPM; GPR50 mRNA was positively correlated

with serum MT levels; three genes expression levels (Bmal1, SIRT1,

and PPARa) were positively correlated with RMR. In the liver, the

expression of Per1 was negatively correlated with the sleep-wake

cycle, but positively correlated with serumMT levels; Cry1 andMT1

mRNA were correlated with OF; Clock mRNA was negatively

correlated with RMR. In the ovary, Cry1 mRNA was negatively

correlated with the sleep-wake cycle; the expression of Bmal1, Per2,

and PPARa were correlated with EPM; Per2 mRNA was negatively

with RMR. In the thymus, PPARamRNA was negatively correlated

with the sleep-wake cycle; Cry2, MT1, MT2, GPR50, and PPARa
mRNA were corrected with OF; MT2 mRNA was negatively

corrected with EPM; PPARa mRNA was positively correlated

with RMR (all P < 0.01). However, there was no correlation

between blood sugar and genes in the five organs (all P > 0.05).
Discussion

This study is the first investigation of the rhythmicity of

behavioral, physiological, central and peripheral tissue genes

(clock genes, melatonin receptor genes, and genes involved in

metabolism) in striped hamsters. The present study found that

hamsters had significant circadian rhythms, most genes were

expressed rhythmically in tissues, and these genes significantly
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correlated with behavior and physiology. These results suggest

that central and peripheral clock may regulate the daily

rhythmicity of behavior, physiology, and metabolism in

striped hamsters.
Circadian behaviors

Several methods are used to monitor sleep-wake in small

rodents, primarily traumatic electroencephalography (EEG) and

electromyography (EMG) (62, 63). However, the surgical procedure

of electrode implantation is harmful to animal health, time-

consuming and laborious, and not conducive to the large-scale

screening of animal sleep patterns (64–66). The present study

successfully traced the sleep-wake cycle of unconstrained small

rodents using an infrared open field combined with computer

analysis. We examined the sleep-wake behavior of striped

hamsters and found that their daytime activity was significantly

less than their nighttime activity. Peak activity occurred at the

alternation of day and night and showed an activity cycle of nearly

24 h, which is consistent with previous results in mice tested using

EEG (52). This result demonstrated that our new method was

scientific and reliable and confirmed that the striped hamster has

the characteristics of nocturnal animals.We used the open field and

elevated plus maze to measure the circadian activity rhythms of
FIGURE 5

Rhythmicity of genes involved in the general metabolism of hamsters during the daily light-dark cycle. The red curve represents the cosinor fit curve.
White and black represent light and dark, respectively. An asterisk (*) indicates that the gene has a daily rhythm (both P < 0.05 and P-value < 0.3).
Data are means ± SEM.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1281617
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2023.1281617
hamsters from their level of movement and preference for closed

environments, respectively. Our results demonstrated that striped

hamsters had an increased defecation number and decreased resting

time at night, and the most active time occurred at ZT20 (4:00). The
Frontiers in Endocrinology 10
striped hamsters in the wild are most active at 20:00-22:00 and 4:00-

6:00 in different seasons (67, 68). Our laboratory research showed

that the most frequent activity occurred 4 h before the light turned

on, which was roughly the same as the peak activity period in the
FIGURE 6

Heatmap showing Spearman correlation of gene expression between behavior and physiology. OF, open field; EPM, elevated plus maze; SW, sleep-
wake; DAOZ, distance of activity in the outer zone; TAD, total ambulatory distance; DAIZ, distance of activity in the inner zones; RTOZ, resting time
in the outer zone; TRT, total resting time; RTIZ, resting time in the inner zone; RT (%), resting time as a percentage of the total duration; NHLS,
number of hind legs standing; NF, number of feces; TSOA, the time spend in open arms; TSCA, the time spend in closed arms; TSOA/TSCA, the ratio
of spend time in open arms to spend time in closed arms; NEOA, the number of entries into open arms; NECA, the number of entries into closed
arms; NEOA/NECA, the ratio of entries into open arms to entries into closed arms; MT, melatonin; BS, blood sugar; RMR, resting metabolic rate.
**P < 0.01, ***P < 0.001.
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wild environment. This result indicated that indoor domestication

may not change its rhythmic behavior, and clock genes primarily

regulated hamster behavior.

Photoperiod, temperature, rainfall, and grazing are distributed

in the wild environment, which is quite different from the indoor

environment. Although the study shows that the balance between

entrainment and masking processes appears to generate a temporal

niche gradient (69), we argue that it remains significant to

distinguish whether hamsters are diurnal or nocturnal. The

striped hamster is the dominant species living on farmlands and

grasslands. It has a strong reproductive ability and is extremely

destructive to these areas. The activity pattern of the circadian

rhythm of striped hamsters was detected to identify the peak of their

activity and capture them to achieve rodent extermination and

provide a theoretical basis for controlling rodent damage.
Circadian physiologies

Metabolic activity is maintained by the energy produced and

stored in metabolism, such as the resting metabolic rate (RMR)

(70). The present study found that RMR decreased during sleep and

increased during activity in hamsters in indoor environments,

primarily due to the need to expend more energy to maintain

body temperature at night. Bao et al. (2022) measured the basal

metabolic rate (BMR) of striped hamsters in the wild and found that

these animals did not adapt well to the arid desert environment

(71). The striped hamster in the wild is characterized by high body

temperature and high BMR (2.20 ± 0.09 mL O2 g−1 h−1 in the

thermoneutral region), which is related to its distribution in high

latitudes. High oxygen consumption makes it better adapted to the

cold field environment and matches its nocturnal characteristics

(72). Melatonin is a neuroendocrine hormone that affects the

growth, and reproduction of mammals (73, 74). During the night

(especially between 11:00 p.m. and 5:00 a.m.), blood melatonin

levels increase 3-10 times and the secretion of melatonin peaks (75).

Mice lacking melatonin receptors (such as MT1) had slightly higher

daytime activity than mice without melatonin receptors deficiency

(76, 77), which suggests that melatonin may influence activity

rhythms by acting on receptors. Melatonin plays an important

role in regulating the expression of clock genes, which synchronize

central and peripheral oscillators (78, 79). The peak secretion of

melatonin was primarily concentrated at night, which indicated that

melatonin played a pivotal role in initiating circadian rhythm and

responding to changes in photoperiod. These results are consistent

with a previous study (80). Blood sugar levels showed no daily

rhythm, which indicated that it was primarily influenced by the

timing of food intake (81).
Expression patterns of rhythmic genes

Clock genes
Clock genes in the SCN interact with each other to regulate

circadian rhythm (8). Most of the clock genes in the hypothalamus

had rhythmic characteristics in the present study, which
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demonstrated that the central regulatory system played a crucial

role in regulating daily rhythm and indicated the stability of

endogenous clock gene regulation in the SCN (82). By comparing

the expression patterns of clock genes in the hypothalamus and

peripheral tissues, we found that the phase delay with the peripheral

clock was likely due to the pacemaker in the SCN synchronizing

clock genes in the peripheral tissues with the master oscillator and

external time (83). We also found that circadian rhythms in rodents

were tissue-specific, which is consistent with previous studies (7,

15). Notably, Clock mRNA showed weaker rhythmicity in the

hypothalamus, liver, ovary, and thymus, but this phenomenon

was not the first pattern to be discovered. For example, the

expression of Clock was rhythmless in Syrian hamsters under

long photoperiod (84) and did not oscillate in Spalax (85).

However, these genes without obvious rhythm would not

necessarily affect endogenous activity regulation because of the

complementary function of positive arms (Bmal1 and Clock) and

negative arms (Pers and Crys) (59).

Melatonin receptor genes
Melatonin is regulated by the endogenous clock, and it is an

important neuroendocrine output of the clock (74). However,

melatonin feeds back on the SCN by resetting the circadian clock

to regulate its function (86, 87). Our data showed that circadian

expression patterns of melatonin receptor genes were similar in the

same tissue, which further indicated the tissue specificity of rodents.

However, MT1 mRNA oscillations were observed only in the

hypothalamus, which suggested that the role of melatonin in the

SCN was primarily attributable to the MT1 receptor with a smaller

role for MT2, which is consistent with previous findings that the

MT2 receptor was not necessary for the melatonin response to

circadian changes (88). The expression ofMT1,MT2, and GPR50 in

the brain increased at dusk, which suggests that melatonin receptors

synthesis undergoes periodic changes in the circadian cycle (89).

The expression of GPR50 was markedly rhythmical in multiple

organs (the brain and thymus), which suggested that GPR50 played

a conservative role in neuroendocrine regulation and a potential

role in coordinating physiological responses of the central nervous

system and surrounding tissues.

Genes involved in general metabolism
The expression patterns of most genes involved in metabolism

in mammals are subject to diurnal variations controlled by the

circadian clock (90). Genes involved in metabolism were more

rhythmic in the brain, liver and thymus in the present study. The

rhythmic expression and activation of metabolic pathways are

primarily related to the coordination of clock genes (Bmal1, Pers,

and Crys) in the liver and adipose tissue (91). The peak expression

of SIRT1 and FGF21 in the liver appeared at night with a significant

rhythm, which suggested that clock genes might regulate energy

metabolism by regulating SIRT1 and FGF21mRNA in the liver (30).

Tissue-specific clocks work differently in the liver than other organs.

For example, loss of Bmal1 in the liver of mouse led to an imbalance

in the rhythm of key metabolic genes (92). Therefore, the circadian

clock favors glucose stability during feeding and fasting by

influencing metabolic processes (36). Notably, SIRT1 generates a
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negative feedback loop by modulating CLOCK/BMAL1 activity,

which modulates the circadian clock by interacting with BMAL1,

CLOCK, and PER2 (32, 33, 93). The rhythmic expression of PPARa
in the liver is transcriptionally regulated by clock genes, which

activates Bmal1 expression in the liver (94). Notably, the poor

rhythm of PPARa in the liver in the present study might be due to

species differences.
Correlation of genes with behavior
and physiology

The SCN is the primary circadian pacemaker, and it sends

projections to important sleep regulatory nuclei (e.g., ventrolateral

preoptic nucleus). Rats and mice showed disturbed sleep time after

SCN injury (95), and sleep state affected the activity of SCN

neurons. Prolonged wakefulness affected the expression of clock

genes in the cerebral cortex and upregulated Per1 and Per2 mRNA

among mouse strains (96). Clock, Per1, Cry1 and Cry2 were

significantly negatively correlated with sleep time in central and

peripheral tissues, which suggested that clock genes played a crucial

role in regulating sleep-wake and sleep homeostasis control (2).

There was a significant negative correlation between PPARamRNA

in the brain, hypothalamus, and thymus and sleep duration, which

may be because PPARa activation promotes increased wakefulness

while reducing sleep (97). In fact, PPARa can directly regulate the

expression of Bmal1 in the liver and interact with the circadian

clock (98). For example, an altered Bmal1 rhythmic oscillation

pattern was found in the liver of PPARa-null mice, while the

PPARa circadian expression was abolished in the liver of Bmal1

knockout mice (98). The association of both circadian clock and

PPARa with sleep-wake in the present study may further support

the interaction between them and their plasticity in regulating sleep.

In addition, sleep-wake rhythms depend on gonadal function, and

gonadal hormones influence sleep-wake in gonadectomized mice

(99). Ovarian Cry1 was significantly negatively correlated with

sleep-wake, suggesting that the ovary may be an important organ

for sleep regulation. There was no correlation between thymic clock

genes and sleep-wake, but it did not mean that the thymus was not

involved in the regulation of sleep.

Deficiency of the circadian proteins Clock, Cry1, and Cry2 alters

exploratory behavior in mice (100). In this study, we found that

clock genes in the central and peripheral tissues significantly

positively correlated with the hamster’s movement distance in the

open field, and positively correlated with the number of entries into

the open arms in the elevated plus maze. These results suggest that it

may be under the regulation of clock genes, and the exploration of

the animal behavior and habit of novelty showed normal

movement. The melatonin receptors MT1, MT2, and GPR50 in

the brain, hypothalamus, and thymus were related with exploration

behavior in hamsters. In fact, MT1 receptor knockout mice showed

anxiety behavior with circadian variation, and MT1 regulates

circadian rhythm by participating in melatonin to acutely inhibit

SCN discharge rate (101). Most importantly, serotonin (5-

hydroxytryptamine; 5-HT) neurotransmission is altered upon

inactivation of MT1 (102). 5-HT controls sleep-wake and anxiety
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behaviors (103), and the absence of MT1 makes it associated with

circadian imbalance and multiple behaviors (102). Therefore, we

hypothesized that melatonin may alter 5-HT neurotransmission by

acting on receptors, which in turn regulate the behavior of hamsters.

SIRT1 is a key regulator of metabolic processes and longevity

(104). It causes the expression of several core clock genes, such as

Cry1, Bmal1, and Per2 (105), and serves as an important factor in

the regulation of hepatic circadian rhythms (33, 106). Its activity is

upregulated by melatonin through the membrane receptor pathway

(107). SIRT1 knockout mice showed increased anxiety behavior and

decreased activity (108). This study found that the daily rhythm of

SIRT1 was significantly related to open field behavior in multiple

tissues, suggesting that melatonin may regulate circadian clock by

affecting SIRT1 mRNA, thereby affecting the daily rhythm patterns

of anxiety behavior and exploratory behavior. In addition, the

expression of Bmal1 and SIRT1 in the hypothalamus were

significantly positively correlated with RMR. The central circadian

clock regulates SIRT1 activity via the rhythmic biosynthesis of NAD

+ to regulate the metabolic level of the organism. Therefore, we

hypothesized that Bmal1 may affect resting metabolic rate of

hamsters by regulating SIRT1. In summary, SIRT1 may interact

with the clock genes and melatonin, and genes involved in

metabolism may play a key role in the stabilization of circadian

rhythm in hamsters.
Comparison of Cricetulus barabensis with
other rodents

In this study, Cricetulus barabensis had circadian behavior

rhythm in the 12L:12D light-dark cycle, and there were stable

circadian changes in the central and peripheral core clocks. This

phenomenon had also been found in other rodents. For example,

under the 12L:12D photoperiod, the expression levels of multiple

clock genes in six peripheral tissues (liver, kidney, spleen, testis,

thymus, and blood) were different in mice, and the circadian

rhythm was obvious in some tissues (15). The expression patterns

of the six circadian clock genes in five tissues (testis, kidney, liver,

spleen, and heart) of the three hamsters were rhythmic and varied

among species (7). Microtus arvalis had hyperactivity and feeding

rhythms, and circadian genes were expressed in the central (SCN)

and metabolic organs (liver) (109). Brandt’s voles and Mandarin

voles showed a behavioral pattern of low daytime activity and high

nocturnal activity under constant darkness and 12L:12D day-night

cycle, similar to the activity pattern of striped hamsters (59).
Limitation of this study

There were several limitations in this study. First, this

experiment was always maintained in a 12L:12D environment,

and did not examine animal behavior and gene expression

profiles in continuous darkness, so endogenous profiles of any

rhythmic fluctuations could not be assessed. To thoroughly

understand the circadian rhythm of striped hamsters, more

studies in the field and indoor environment are needed (110).
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Different dark cycle treatments should be further used to examine the

differences between hamsters in the rhythm disorder state and normal

rhythm state at the level of individuals and cells, and clarify the

regulatory mechanism of circadian rhythm changes. Second, the

present findings established correlations between gene expression and

behavioral and physiological parameters. However, these analyses

remain descriptive, and the causal roles of these factors in behavior

are not demonstrated. Future research should be devoted to exploring

the role of genes in regulating hamster behavior, movement, and

metabolic rate through gene knockout or gene silencing, and looking

for causal effects between them. Third, since the sample size of each

group in this study was small (n = 6), in order to increase the number of

tested hamsters and reduce errors caused by individual differences, open

field and elevated plus maze were examined in all hamsters. However,

this means that re-exposure to the testing arena resulted in reduced

activity in the animals (111). To minimize behavioral changes induced

by repeated exposure, the timing of hamsters’ first exposure to the open

field and elevated plus maze was randomized. Future studies should

increase the sample size per group (e.g., more than 10 animals) and

examine each animal’s behavior only at a single time point to eliminate

adaptation in the testing field due to re-exposure.

Conclusions
The results of this study indicate that the expression patterns of

clock genes, melatonin receptor genes, and genes involved in

general metabolism are highly rhythmic in central and peripheral

tissues. Clock genes may directly regulate melatonin receptor genes

and genes involved in general metabolism. The central clock system

may link to the peripheral clock system to jointly maintain

circadian behavior and energy metabolism in small rodents. Our

results provide important evidence that the circadian clock,

melatonin, and metabolism may regulate host behavior and clues

for pest control.
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Arroyo I. Changes in progesterone receptor isoforms content in the rat brain during the
oestrous cycle and after oestradiol and progesterone treatments. J Neuroendocrinol
(2003) 15(10):984–90. doi: 10.1046/j.1365-2826.2003.01088.x

55. Wang X, Wang L, Yu Q, Xu Y, Zhang L, Zhao X, et al. Alterations in the
expression of Per1 and Per2 induced by Ab31-35 in the suprachiasmatic nucleus,
hippocampus, and heart of C57BL/6 mouse. Brain Res (2016) 1642:51–8. doi: 10.1016/
j.brainres.2016.03.026

56. Chattoraj A, Seth M, Maitra SK. Localization and dynamics of Mel1a melatonin
receptor in the ovary of carp Catla catla in relation to serum melatonin levels. Comp
Biochem Physiol A Mol Integr Physiol (2009) 152(3):327–33. doi: 10.1016/
j.cbpa.2008.11.010

57. Guillaumond F, Dardente H, Giguere V, Cermakian N. Differential control of
Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms
(2005) 20(5):391–403. doi: 10.1177/07487304052772

58. Zhu H, Li G, Liu J, Xu X, Zhang Z. Gut microbiota is associated with the effect of
photoperiod on seasonal breeding in male Brandt's voles (Lasiopodomys brandtii).
Microbiome (2022) 10(1):194. doi: 10.1186/s40168-022-01381-1

59. Sun H, Li C, Zhang Y, Jiang M, Dong Q, Wang Z. Light-resetting impact on
behavior and the central circadian clock in two vole species (genus: Lasiopodomys).
Comp Biochem Physiol Part B: Biochem Mol Biol (2020) 248-249:110478. doi: 10.1016/
j.cbpb.2020.110478

60. Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, et al. Impact of short-term fasting on
the rhythmic expression of the core circadian clock and clock-controlled genes in
skeletal muscle of crucian carp (Carassius auratus). Genes (Basel) (2018) 9(11):526.
doi: 10.3390/genes9110526

61. Lazado CC, Kumaratunga HP, Nagasawa K, Babiak I, Giannetto A, Fernandes
JM. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle. PloS
One (2014) 9(6):e99172. doi: 10.1371/journal.pone.0099172

62. Hernandez AB, Kirkness JP, Smith PL, Schneider H, Polotsky M, Richardson
RA, et al. Novel whole body plethysmography system for the continuous
characterization of sleep and breathing in a mouse. J Appl Physiol (2012) 112
(4):671–80. doi: 10.1152/japplphysiol.00818.2011

63. Fulda S, Romanowski CPN, Becker A, Wetter TC, Kimura M, Fenzl T. Rapid eye
movements during sleep in mice: High trait-like stability qualifies rapid eye movement
density for characterization of phenotypic variation in sleep patterns of rodents. BMC
Neurosci (2011) 12(1):110. doi: 10.1186/1471-2202-12-110

64. Yaghouby F, Donohue KD, O’Hara BF, Sunderam S. Noninvasive dissection of
mouse sleep using a piezoelectric motion sensor. J Neurosci Methods (2016) 259:90–
100. doi: 10.1016/j.jneumeth.2015.11.004

65. Bastianini S, Alvente S, Berteotti C, Lo Martire V, Silvani A, Swoap SJ, et al.
Accurate discrimination of the wake-sleep states of mice using non-invasive whole-
body plethysmography. Sci Rep (2017) 7(1):1–10. doi: 10.1038/srep41698

66. McKenna JT, Cordeira JW, Christie MA, Tartar JL, McCoy JG, Lee E, et al.
Assessing sleepiness in the rat: a multiple sleep latencies test compared to
polysomnographic measures of sleepiness. J Sleep Res (2008) 17(4):365–75.
doi: 10.1111/j.1365-2869.2008.00686.x

67. Zhang Z, Wang Z. Ecology and management of rodent pests in agriculture (in
Chinese). Beijing: China Ocean Press (1998).

68. Liao S, Liu W, Cao J, Zhao Z. Territory aggression and energy budget in food-
restricted striped hamsters. Physiol Behav (2022) 254:113897. doi: 10.1016/
j.physbeh.2022.113897

69. Refinetti R. Variability of diurnality in laboratory rodents. J Comp Physiol A
(2006) 192(7):701–14. doi: 10.1007/s00359-006-0093-x

70. Jha PK, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid
metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol (2015) 418:74–
88. doi: 10.1016/j.mce.2015.01.024

71. Bao W, Wang D, Wang Z. Metabolism in four rodent species from Ordos arid
environment in Inner Mongolia, China. Folia zoologica (2002) 51(suppl 1):3–7.

72. Song Z, Wang D. Metabolism and thermoregulation in the striped hamster.
Cricetulus barabensis J Therm Biol (2003) 28(6):509–14. doi: 10.1016/S0306-4565(03)
00051-2

73. Yang C, Ran Z, Liu G, Hou R, He C, Liu Q, et al. Melatonin administration
accelerates puberty onset in mice by promoting FSH synthesis. Molecules (2021) 26
(5):1474. doi: 10.3390/molecules26051474

74. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy
metabolism, and obesity: a review. J Pineal Res (2014) 56(4):371–81. doi: 10.1111/
jpi.12137
Frontiers in Endocrinology 15
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