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Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein

expressed on immune, endothelial, and epithelial cells. Its ectodomain can be

proteolytically cleaved to release a circulating soluble form called sICAM-1.

Clinical studies demonstrate sICAM-1 is upregulated in various diseases and

associated with disease severity. Research has identified sICAM-1 as a

regulator of the blood-testis barrier (BTB) and spermatogenesis.

Overexpression of sICAM-1 weakened the BTB in vitro and in vivo,

downregulated junction proteins including N-cadherin, g-catenin, and

connexin 43, and caused germ cell loss. This contrasts with barrier-

strengthening effects of membrane-bound ICAM-1. sICAM-1 may act as a

molecular switch enabling germ cells to open BTB and Sertoli-germ cell

adhesion for transport across the seminiferous epithelium. While the

mechanism remains unclear, reduced SRC family kinase (SFK) signaling was

observed following sICAM-1 overexpression. SRC promotes BTB protein

endocytosis and degradation, influences cytoskeletal dynamics, and affects

cell polarity. As sICAM-1 overexpression phenocopies SRC inhibition, SRC

may operate downstream of sICAM-1 in regulating BTB dynamics and

spermatogenesis. Investigating sICAM-1’s structure-function regions and

downstream targets will elucidate the molecular mechanisms of junction

disruption. This knowledge could enable strategies targeting sICAM-1/SRC to

modulate BTB permeability and treat male infertility or diseases involving

endothelial/epithelial barrier dysfunction.
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1 Introduction

Male infertility is a major global health challenge according to a

recent World Health Organization (WHO) report analyzing

infertility prevalence worldwide from 1990 to 2021. The report

found that around 17.5% of adults, approximately 1 in 6 people,

experience infertility, with comparable rates across high-, middle-,

and low-income countries. Male infertility negatively impacts the

physical, psychological, and social well-being of men of

reproductive age worldwide. A separate study estimated that over

56 million men suffered from infertility up to 2019, representing a

76.9% increase from 1990 (1). In addition to impacts on

reproductive capacity, male infertility also causes substantial

psychosocial distress and introduces treatment costs (2, 3).

Multiple factors can contribute to male infertility, including

abnormalities in sperm function and quality, as well as failure to

produce sperm. However, the precise molecular mechanisms

remain poorly understood, making diagnosis and treatment

challenging. Improved semen parameters after treatment do not

guarantee identifying the underlying causes (4–8). Studies show

close links between male fertility and overall health. Infertility

increases risks of illnesses unrelated to reproduction, such as
Frontiers in Endocrinology 02
cancer, diabetes, and cardiovascular disease. Infertile men also

face higher hospitalization and mortality rates when seriously ill

(9–11). This correlation suggests a coordinated regulatory system

involving male reproduction and other body systems. Shared

effector molecules and regulatory proteins may underlie different

disease processes.

One such molecule is intercellular adhesion molecule-1 (ICAM-

1), which exists in both membrane-bound and circulating soluble

forms (sICAM-1). In rodent testes, germ cells appear to secrete

sICAM-1 to alter Sertoli cell adhesion as they move across the

seminiferous epithelium during spermatogenesis. Overexpression

of sICAM-1 in rat testes severely impairs the blood-testis barrier

(BTB) function and germ cell adhesion (12–14). Clinical evidence

has associated elevated sICAM-1 levels with diverse pathological

states, including male infertility (Table 1). This positions sICAM-1

as a putative shared effector that links reproductive and systemic

damage. However, the mechanism behind sICAM-1’s action

remains unclear. A comprehensive investigation into sICAM-1’s

impacts on testis function and on Sertoli and germ cell adhesion is

needed. Deeper insights into sICAM-1’s role and mechanisms could

provide therapeutic targets for infertility while elucidating systemic

disease mechanisms. This could significantly advance infertility
TABLE 1 sICAM-1/ICAM-1 expression in body fluids across different pathological conditionsa.

Diseases Body fluid(s)
sICAM-

1
ICAM-

1
Pathway(s) Inhibitor

Ref
(s)

Autoimmune diseases

Celiac disease Serum ↑ (15)

Graves’ ophthalmopathy Serum ↑ Carbimazole
(16–
18)

Idiopathic
pulmonary fibrosis

Serum ↑ ↑ (19)

Psoriasis Serum, plasma ↑ IL-18↑
(20–
23)

Rheumatoid arthritis
Serum, plasma,
synovial fluid

↑ TNF-a↑ TNFi
(24–
26)

Scleroderma Serum ↑ (27)

Spontaneous urticaria Serum ↑ (28)

Systemic
lupus erythematosus

Plasma ↑ ↑
(29,
30)

Ulcerative colitis Serum ↑ Prednisolone (31)

Vitiligo Skin tissue fluid ↑ ↓ IL-6↑, IL-17↑, TNF-a↑
(32,
33)

Cancers

Colorectal cancer Serum ↑ TNF-a↑
(34–
37)

Gastric cancer Serum ↑ ↑
(38–
40)

Invasive bladder cancer Urine, serum ↑ ↑ (41)

Lung cancer Serum ↑ ↑ TNF-a↑
(42–
45)

Mammary cancer Serum ↑
(46,
47)

(Continued)
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prevention and treatment, as well as therapies targeting common

regulatory pathways for systemic diseases.
2 Background of sICAM-1

2.1 Origins and variants

ICAM-1, also known as Cluster of Differentiation 54 (CD54), is

a single-chain transmembrane glycoprotein that consists of an

extracellular region with five immunoglobulin (Ig)-like domains,

a transmembrane segment, and a short cytoplasmic tail. ICAM-1 is

expressed at relatively low levels by immune cells, endothelial cells,

epithelial cells, and other normal tissues. However, multiple

inflammatory stimuli, including cytokines such as tumor necrosis

factor (TNF)-a, interleukin (IL)-1, and interferon (IFN)-g, as well
as lipopolysaccharide (LPS), can increase ICAM-1 expression

through transcription (67–70).

Under inflammatory or cellular stress conditions, the

ectodomain of ICAM-1 can be proteolytically cleaved and shed

from the cell surface. This releases the soluble form, sICAM-1, into

extracellular fluids. Pro-inflammatory cytokines enhance this
Frontiers in Endocrinology 03
shedding, leading to increased sICAM-1 levels. Circulating in

body fluids like blood, sICAM-1 is a truncated form of ICAM-1

that consists solely of the five Ig-like extracellular domains D1-D5,

without the transmembrane and cytoplasmic regions (Figure 1A).

Being heavily glycosylated, the molecular weights of ICAM-1 and

sICAM-1 can vary between 75-115 kDa and 50-90 kDa respectively

(13, 70–72).

The origin and generation of sICAM-1 is not fully understood.

It is thought to primarily occur through the proteolytic cleavage of

ICAM-1’s ectodomain by proteases. Proteases like serine proteases,

matrix metalloproteinases (MMPs), and members of the “a

disintegrin and metalloproteinase” (ADAM) family may cleave at

different sites on ICAM-1. Both the ICAM-1 cleavage by different

proteases and the differences in glycosylation could produce

variants of sICAM-1 with subtle structural differences. Alternative

mRNA splicing can also generate other variants of sICAM-1. Six

other splice variants of ICAM-1 have been reported, varying in their

combination and number of Ig domains (Figure 1B) (73). These

variants are more susceptible to proteolytic cleavage and may

contribute additional sICAM-1. Some studies suggest mRNAs

that encode sICAM-1 directly may exist (13, 74). Each of these

mechanisms could give rise to sICAM-1 variants that differ in
TABLE 1 Continued

Diseases Body fluid(s)
sICAM-

1
ICAM-

1
Pathway(s) Inhibitor

Ref
(s)

Cardiovascular
diseases

Coronary heart disease Blood ↑
IL-6↑,

sTNFR1↑, sTNFR2↑
(48)

Dilated cardiomyopathy Serum ↑ (49)

Hypertension Plasma ↑ (50)

Liver
Diseases

Alcoholic liver cirrhosis Serum ↑ ↑ TNF-a↑ (51)

Cholestasis Serum ↑ (52)

Chronic hepatitis Serum ↑ IFN-a (53)

Primary biliary cirrhosis Serum ↑ ↑ (54)

Primary
sclerosing cholangitis

Serum ↑ ↑ (54)

Schistosomiasis japonica Serum ↑ (55)

Nervous
system diseases

Alzheimer’s disease Cerebrospinal fluid ↑ IL-8 ↑
(56,
57)

Aseptic meningitis Cerebrospinal fluid ↓ IL-8 ↑ (58)

Bipolar disorder Blood ↑ ↑ (59)

Schizophrenia Plasma ↑ chlorpromazine (59)

Multiple sclerosis Serum, cerebrospinal fluid ↑ ↑
(60–
63)

Other diseases

Endometriosis Peritoneal fluid ↑ (64)

Thoracic inflammation Pleural fluid ↑ (65)

Male infertility Seminal plasma ↑ IL-6↑ (66)
fronti
aThis table provides an illustrative, non-exhaustive summary of sICAM-1/ICAM-1 levels in various pathological states. Carbimazole, TNFi, prednisolone, IFN-a and chlorpromazine have been
shown to decrease sICAM-1 levels and are therefore considered inhibitors. Abbreviations used in this table include: IL (Interleukin), TNF (Tumor Necrosis Factor), sTNFR1 (Soluble Tumor
Necrosis Factor Receptor-1), sTNFR2 (Soluble Tumor Necrosis Factor Receptor-2), IFN-a (Interferon-a), and TNFi (Tumor Necrosis Factor Inhibitor). Up-regulation is indicated by an upward
arrow (↑) and downregulation is indicated by a downward arrow (↓).
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structure and function. Studies using isoform-deficient mice found

they have sharply contrasting disease phenotypes. The ability of

ICAM-1 variants to bind ligands like lymphocyte function-

associated antigen-1 (LFA-1) in vitro also varies depending on

present Ig domains. Expression of isoforms differs between cell

types and may change with inflammation (73). However, it remains

unclear if these isoforms could differentially regulate ligand

interactions, dimerization, intracellular signaling and disease

outcomes through their structural variations expressed on

different cell types. It is still unknown if any hypothetical

fragments have unique roles. Nevertheless, the only soluble form

found in body fluids contains domains D1-D5, appearing most

physiologically relevant (13, 70, 74). Further work is needed to

characterize and compare sICAM-1 variants from splicing versus

protease cleavage to understand their properties and potential

functions. This may provide insight into the complex origins of

sICAM-1.
2.2 General functions and
disease associations

sICAM-1 plays complex roles in regulating inflammation and

immunity. It is proposed that sICAM-1 retains the characteristics of

membrane-bound ICAM-1 and can compete with ICAM-1 for

binding to the integrin receptor LFA-1. As a competitive

inhibitor, sICAM-1 can influence leukocyte adhesion and

migration by inhibiting ICAM-1-mediated interactions between

leukocytes and endothelial cells. This potentially weakens the

body’s immunity (70, 74, 75). The concentration of sICAM-1

affects cytokine release, immune cell adhesion, angiogenesis and

tissue repair in different ways. At low concentrations, sICAM-1 can
Frontiers in Endocrinology 04
promote cytokine release and immune cell activation. In contrast,

high levels of sICAM-1 may limit leukocyte adhesion while

promoting angiogenesis and tissue repair (70). Specific genetic

variations in the ICAM-1 gene can also affect sICAM-1 levels

(69). Additionally, sICAM-1 acts as a signaling molecule. The

intensity of signaling induced by sICAM-1 is regulated by the

completeness of N-glycosylation and sialylation. Sialylation does

not affect ICAM-1 binding to LFA-1 in astrocytes. However, it is

critical for the signaling function of sICAM-1 in inducing

production of the inflammatory chemokine MIP-2/CXCL2

(macrophage inflammatory protein 2/C-X-C motif chemokine

ligand 2). Fully sialylated sICAM-1 induces a more rapid, robust,

and prolonged MIP-2 response compared to nonsialylated or high

mannose glycoforms. Sialylation may regulate receptor interactions

and signaling kinetics of sICAM-1 (76).

sICAM-1 has been detected in various human body fluids

including serum, cerebrospinal fluid, bile, amniotic fluid, and

urine (71, 72, 74, 77–80). Elevated sICAM-1 levels correlate with

disease severity and prognosis in numerous diseases like cancer,

cardiovascular disease, autoimmune disorders, nervous system

disease, inflammation, and viral infections (70, 72, 80–86). For

instance, recent studies have found that higher levels of sICAM-1 in

the serum of COVID-19 patients are positively associated with

disease severity and can even predict the risk of mortality (81, 82).

In chronic pain patients, serum sICAM-1 levels have been found to

significantly correlate with pain intensity. However, in acute

experimental pain models with healthy volunteers, sICAM-1

levels did not directly correlate with perceived pain levels.

Instead, sICAM-1 underwent short-term changes after acute

nociceptive stimuli (87). Additionally, an increase in sICAM-1

levels in seminal plasma may be associated with immune

infertility in men (66).
BA

FIGURE 1

Schematic diagram of ICAM-1 isoforms. (A) Full-length ICAM-1 is a transmembrane protein containing 5 immunoglobulin(Ig)-like extracellular
domains (D1-D5), a transmembrane domain, and a short cytoplasmic domain. Soluble ICAM-1 (sICAM-1) lacks the transmembrane and cytoplasmic
domains. (B) In addition to the full-length isoform, alternative splicing generates transmembrane ICAM-1 isoforms with truncated extracellular
regions containing 2, 3, or 4 Ig-like domains. While these alternatively spliced isoforms have been reported, most functional research pertains to full-
length ICAM-1. The isoforms likely differ in tissue distribution, expression levels, and functions. Some may only appear under certain conditions, such
as pathological conditions.
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Unlike ICAM-1 whose cellular expression is difficult to

clinically assess, sICAM-1 in body fluid is easily measurable and

is often used as a common marker for inflammatory diseases (71,

74, 77–79). However, the mechanism behind its action is still

unclear. Efforts to therapeutically modulate sICAM-1 levels have

shown limited efficacy in treating diseases so far. Currently, most

research focuses on exploring relationships between sICAM-1 levels

in fluids and disease onset, progression, and prognosis (75, 82, 84,

88) (Table 1). Alternatively, studies have generally viewed ICAM-1

and sICAM-1 as ubiquitous adhesion molecules expressed on

epithelial or endothelial cell surfaces in response to environmental

stimuli. It is believed that high levels of sICAM-1 may stem from

corresponding vascular endothelial dysfunction (70, 72). For

example, research has demonstrated that high sICAM-1 levels in

cerebrospinal fluid are associated with increased phosphorylation of

the microtubule-associated protein tau, which is implicated in

blood-brain barrier (BBB) dysfunction, and with elevated levels of

total tau protein. However, few studies have examined the links

between sICAM-1 and endothelial barrier permeability. Limited

existing findings suggest that sICAM-1 can influence the transport

of immune cells across the BBB and their communication with

surrounding cells (72, 89–92).

The precise impact of sICAM-1 on germ cell transport across

the BTB and throughout the seminiferous epithelium remains

unclear. It also remains unknown whether sICAM-1 acts as a key

signaling molecule for communication between germ cells and

surrounding Sertoli cells. At present, these mechanisms remain

mysterious, as only one study to date has linked sICAM-1 to

spermatogenesis and BTB permeability (12). In the upcoming

section of this review, cell adhesion and junction dynamics in the

testis will first be introduced. Hypothetical molecular mechanisms

for the role of sICAM-1 during spermatogenesis will then be

proposed. Exploring potential explanations could help further the

understanding of how sICAM-1 may regulate both the BTB and

germ cell adhesion. Ultimately, this may provide useful insights to

advance future research on sICAM-1’s function. While questions

remain, continued investigation of sICAM-1’s involvement holds

promise to elucidate the intricate process of spermatogenesis.
3 Cell adhesion and junction dynamics
in the testis

3.1 Cell junctions facilitate cell adhesion

Cell migration and morphogenesis, which are central to

developmental processes, require dynamic changes in cell

adhesion properties. Fundamentally, cell adhesion refers to

interactions between cells (cell-cell adhesion) and between cells

and the extracellular matrix (ECM, cell-ECM adhesion). These

interactions play a pivotal role in maintaining tissue integrity,

homeostasis, and function. Cell adhesion is primarily facilitated

through specialized structures known as cell junctions, which

include tight junctions (TJ), adherens junctions (AJ),
Frontiers in Endocrinology 05
desmosomes, and gap junctions (GJ). These junctions work in

concert to provide structural stability, coordinate cellular

behavior, and maintain tissue architecture. Nonetheless, each

junction type serves unique and indispensable roles in connecting

cells, facilitating intercellular signaling, and providing cell adhesion.

TJ, composed of integral membrane proteins such as occludin and

claudins, interact with the actin cytoskeleton through adapter

proteins like ZO-1, thereby forming a permeability barrier

through tight sealing between cells. This restricts the passage of

molecules and plays an integral part during the development and

remodeling of epithelial tissue. AJ, with core components like

cadherins/catenins and nectins/afadin complexes, typically form

first between cells during epithelial development, providing

mechanical attachment. This is followed by formation of TJ at the

apical region to AJ, sealing the paracellular space. At desmosomes,

the adhesion proteins desmoglein and desmocollin provide linkage

to intermediate filaments within cells. GJ, formed by clustering of

connexins, create intercellular channels that directly transfer

molecules between cells (93–97).
3.2 Specialized junctions in the testis

In the adult mammalian testis, spermatogenesis exemplifies the

vital role of cell adhesion and junction dynamics. This highly

coordinated and cyclical process involves the continual division

and differentiation of germ cells, which are tightly bound to the

surrounding Sertoli cells within seminiferous tubules. Cell-cell

adhesion is mediated by TJ, ectoplasmic specializations (ES), GJ,

and desmosomes, all relying on Sertoli cells (98). ES are unique

testis-specific actin-based AJ structure located at basal sites between

adjacent Sertoli cells. Characterized by their hexagonal actin arrays

sandwiched between the Sertoli cell plasma membrane and

endoplasmic reticulum, basal ES comprise part of the BTB. They

coexist and intermix with the other three junction types (TJ, GJ, and

desmosomes) to form the intricate, multifaceted BTB structure (99–

102), as depicted in Figure 2 showing the different junction types

labeled with colors.

ES are also found at apical sites between Sertoli cells and

spermatids, termed apical ES. Once formed, apical ES serve as the

sole anchoring junction at these sites until spermiation. Different

Sertoli-germ cell junction types predominate during specific

maturation stages, enabling diverse germ cell activities (98–105).

In rodent models, early germ cells including spermatogonial stem

cells, spermatogonia, spermatocytes, and pre-step 8 spermatids,

primarily connect to Sertoli cells through GJ and desmosomes.

However, as germ cells mature into step 8 and beyond spermatids,

apical ES takes precedence (99–101, 103, 104). This junctional shift

underscores the complexity and specificity of cell-cell interactions

within the dynamic environment of the testis. At apical ES sites,

hexagonal actin filament bundles are restricted to the Sertoli cell

side. Apical ES anchor spermatids and guide their orientation and

bidirectional movement in the epithelium, potentially via linkage to

microtubule motors like kinesins and dyneins (106–110).
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https://doi.org/10.3389/fendo.2023.1281812
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xiao et al. 10.3389/fendo.2023.1281812
3.3 BTB dynamics

The BTB is a defining feature of the testis, fundamentally

consisting of specialized cell junction structures that create a

selectively permeable barrier within the seminiferous epithelium. It

separates the epithelium into adluminal (apical) and basal

compartments (Figure 2) and constitutes one of the tightest tissue

barriers in the body. The BTB prevents substances in the blood like

drugs and antibodies from accessing the adluminal compartment,

providing an immunological and physical shield to developing germ

cells. However, the BTBmust be dynamic—continuous reorganization

of intricate junctional complexes enables spermatocyte transit from

the basal to adluminal compartment, a critical step in sperm

development. This meticulous BTB remodeling facilitates extensive

germ cell transport while maintaining barrier integrity (102).

The BTB’s constant restructuring without compromising its

immunological barrier function is made possible by coordinated

interplay between its cell junction components. As shown in
Frontiers in Endocrinology 06
Figure 2, movement of preleptotene spermatocytes across the

BTB involves localized assembly of “new” junctions below

transiting spermatocytes, followed by disassembly of “old”

junctions above them. Accordingly, junctional proteins undergo

endocytosis, then intracellular transport including protein

degradation, recycling back to the cell surface, and transcytosis

across cells (102, 105, 111–113). This intricately orchestrated BTB

dynamics enables the extensive germ cell development needed for

the remarkable sperm production capacity of the mammalian testes.
4 Detection and roles of sICAM-1 in
the rat testis

4.1 Expression of sICAM-1

A previous study has shown that both Sertoli cells and germ cells

express membrane-bound ICAM-1 in the rat testis, as examined
FIGURE 2

Proposed model of sICAM-1 and SRC signaling in regulating blood-testis barrier (BTB) dynamics and spermatogenesis. In the rat seminiferous tubule
(left), the seminiferous epithelium is composed of Sertoli cells (SC) and germ cells at different developmental stages. The BTB, formed between
adjacent Sertoli cells (SC 1 and SC 2), divides the epithelium into basal and adluminal compartments. Less mature germ cells (such as spermatogonia
and preleptotene spermatocytes, marked with a black asterisk) reside in the basal compartment, while more advanced germ cells (such as primary
and secondary spermatocytes, as well as round spermatids, marked with a white asterisk) reside in the adluminal compartment. The BTB comprises
four distinct cell junction types, color-coded in the diagram: basal ectoplasmic specializations (ES), tight junctions (TJ), gap junctions (GJ), and
desmosomes. Sertoli cells also form apical ES with step 8 and beyond spermatids, acting as the primary anchoring junction until spermiation. Pre-
step 8 germ cells are linked to Sertoli cells through GJ and desmosomes. Src functions as a pivotal regulator of both the BTB and Sertoli-germ cell
adhesion. At stage VIII of the seminiferous epithelial cycle (right), the BTB restructures to enable transit of preleptotene spermatocytes. This includes
the formation of a “new” BTB beneath spermatocytes and the disintegration of the “old” BTB above the spermatocytes, enabling spermatocyte
passage into the adluminal compartment without compromising the BTB. Concurrently, the apical ES is broken down to release mature sperm,
specifically the step 19 spermatid. During these events, SRC facilitates BTB remodeling and regulates the dynamics of Sertoli-germ cell junctions,
particularly apical ES disintegration. Through protein endocytosis and degradation pathways, SRC promotes transport of spermatocytes across the
BTB and release of mature spermatozoa from the seminiferous epithelium. Previous studies show membrane-bound ICAM-1 promotes BTB
assembly, whereas its soluble form sICAM-1 expressed by germ cells impairs the BTB to facilitate spermatocyte transit. Overexpression of sICAM-1
also disrupts GJ and desmosomes between Sertoli and germ cells, causing loss of immature germ cells. SRC may act downstream of sICAM-1 to
regulate BTB restructuring and Sertoli-germ cell adhesion during spermatogenesis.
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using commercial antibodies against the cytoplasmic region of

ICAM-1 (12). During stage VIII of the seminiferous epithelial

cycle, ICAM-1 expression at the BTB significantly increases when

examined by immunofluorescence microscopy, coinciding with BTB

restructuring and the transit of preleptotene spermatocytes across it

as they differentiate into leptotene and zygotene spermatocytes. This

suggests ICAM-1 involvement in spermatocyte transport across the

BTB. However, these antibodies cannot recognize sICAM-1. Using a

custom polyclonal antibody targeting the extracellular D2-D3

domain of ICAM-1, the authors detected sICAM-1 in rat testes.

The identified sICAM-1 comprised all five Ig-like domains and had a

molecular weight of around 70 kDa. This is lower than the full-length

ICAM-1 in rat testes with a molecular weight of approximately 97

kDa. The antibody also detected additional protein fragments with

lower molecular weights, indicating potential alternative forms of

sICAM-1 may be present (12). By immunoblotting analysis, sICAM-

1 was found to be highly expressed in germ cells (12). This suggests

germ cells may secrete sICAM-1 to regulate Sertoli cell adhesion and

facilitate their own crossing of the BTB and transport in the

epithelium (12–14).
4.2 Contrasting roles of sICAM-1
and ICAM-1

The authors further discovered that overexpression of sICAM-1,

via a plasmid containing only the extracellular domains D1-D5,

exerted an opposing effect on BTB permeability compared to

overexpression of the full-length membrane-bound ICAM-1 (12).

While overexpression of full-length ICAM-1 strengthens the BTB,

overexpression of sICAM-1 severely impairs BTB function and causes

loss of adhesion between spermatocytes and round spermatids with

supportive Sertoli cells within the seminiferous epithelium (12–14).

Specifically, overexpression studies in a Sertoli cell culture

model, which mimics the BTB in vitro, found ICAM-1 and

sICAM-1 have antagonistic effects on Sertoli cell barrier function

(12). ICAM-1 strengthened the barrier, mimicking “new” BTB

assembly, whereas sICAM-1 weakened it, corresponding to “old”

BTB disassembly during restructuring (Figure 2). Moreover,

overexpressed sICAM-1 downregulated expression of BTB

proteins including N-cadherin (an ES protein), g-catenin (the

only known protein present at both ES and desmosomes, also

called plakoglobin (114–116)), and connexin 43 (a GJ protein).

These differential effects were verified in vivo, where sICAM-1

overexpression in rat testes disrupted the BTB, downregulated N-

cadherin and connexin 43, and caused loss of spermatocytes and

round spermatids (step 1-7 spermatids). Compared to membrane-

bound ICAM-1, sICAM-1 may act as a molecular switch and

promoter of germ cell transit across the BTB. By interfering with

Sertoli-germ cell junctions and BTB protein expression, sICAM-1

may facilitate transport of germ cells during differentiation.

In summary, sICAM-1 dually assists germ cell movement by

disrupting adhesion at ES, desmosomes and GJ, and downregulating

proteins like N-cadherin, g-catenin and connexin 43 (Figure 2). This

contrasts with membrane ICAM-1 which reinforces adhesion.

sICAM-1 thus fine-tunes BTB dynamics to support spermatogenesis.
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5 The mechanisms of sICAM-1
regulation of cell junctions

5.1 sICAM-1 downregulates SRC
signaling pathways

The mechanisms by which sICAM-1 downregulates the

expression of BTB and cell adhesion proteins, or “opens” cell

junctions in the testis remain unclear. Overexpression studies in

cultured primary Sertoli cells provide insights. sICAM-1

overexpression also reduced levels of signaling molecules

important in SRC signaling, including SRC, PYK2, p-SRC-Y530

and p-PYK2-Y402 (12). This implies SRC pathways likely mediate

intracellular sICAM-1 effects. Phosphorylation at tyrosine 530

(Y530) of SRC renders the kinase in an inactive confirmation

(117). Thus, reduced p-SRC-Y530, in the context of decreased

total SRC, indicates lower inactive and overall SRC levels,

suggesting either a general decline in SRC activity, or a shift in

the normal balance between active and inactive SRC conformations.

As a known SRC substrate, PYK2 autophosphorylation at tyrosine

402 (Y402) recruits SRC to further regulate PYK2 activity (118).

Diminished SRC and p-PYK2-Y402 levels indicate potential

downregulation of PYK2 signaling involved in cell adhesion,

migration, and possibly calcium-induced signaling events (119,

120). However, more research on PYK2 in the testis is needed.

Collectively, this data shows sICAM-1 overexpression decreases

SRC-related signaling pathways. This supports SRC pathways as

probable intracellular mediators of sICAM-1.
5.2 Role of SRC in regulating BTB dynamics

SRC family kinases (SFKs), a family of non-receptor tyrosine

kinases, play crucial roles in various cellular processes through

signal transduction. Key members involved in the testis include SRC

and YES. SFKs are known to regulate cell adhesion by modulating

adhesion complexes and cytoskeletal rearrangement. They also

participate in junction remodeling by phosphorylating junction

proteins. Additionally, SFKs regulate endocytosis through

phosphorylating endocytic vesicle proteins (121–124).

Previous studies have shown SFKs, particularly SRC, are critical

modulators of BTB dynamics and spermatogenesis. SRC alters the

phosphorylation state of BTB and apical ES proteins. This triggers

endocytosis and intracellular transport of the junctional

components, controlling opening/closing of the BTB and

dissociation of spermatozoa from Sertoli cells via disruption of

the apical ES (98, 102, 105). Specifically, during stage VIII of the

seminiferous epithelial cycle in rodent testes, BTB restructuring

coincides with sperm release through apical ES disruption

(Figure 2). SRC promotes BTB disintegration and apical ES

disruption by inducing protein endocytosis and degradation,

mediating both “old” BTB disassembly during spermatocyte

transit and loss of mature sperm association with Sertoli cells

during spermiation. SRC also facilitates adhesion between

immature germ cells and Sertoli cells. In summary, SRC signaling

plays multifaceted regulatory roles on BTB and Sertoli-germ cell
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interactions throughout spermatogenesis (124–129). While its

precise interaction with sICAM-1 requires further clarification,

they may coordinately influence critical junction events.
5.3 Similar phenotypes suggest SRC
mediates sICAM-1 effects

Previous research shows that SRC contributes to the

organization and remodeling of F-actin structures in Sertoli cells

(124, 128). Excess sICAM-1 undermines SRC signaling in rat testes,

severely impacting the structure and alignment of actin filaments

(F-actin) (12), corresponding to SRC knockdown phenotypes (128).

In other words, overexpressing sICAM-1 or inhibiting SRC produce

similar results on Sertoli cell F-actin cytoskeleton.

Additionally, SRC is known to regulate intracellular protein

transport, facilitating junction dynamics and aiding “old” BTB

disassembly during spermatocyte transit (124–128). It binds and

interacts with specific BTB protein complexes, such as N-cadherin/

b-/g-catenin, desmoglein-2/g-catenin, and connexin 43/

plakophilin-2 (102, 124, 130). SRC phosphorylation of N-

cadherin, b-catenin, or g-catenin leads to catenin dissociation

from N-cadherin at the BTB sites, resulting in cadherin/catenin

complex degradation, breakdown of basal ES at the BTB, and

consequently increasing BTB permeability (13, 102, 130–132).

These SRC-induced effects closely resemble effects of

overexpressing sICAM-1, which downregulates BTB proteins like

the N-cadherin/g-catenin complex, impair ing overal l

BTB integrity.

Excess sICAM-1 in rat testes also led to a disordered

arrangement of post-step 8 spermatids within the seminiferous

tubules. The sperm heads, rather than maintaining a neat alignment

towards the basement membrane, exhibited a loss in polarity. The

SRC-PYK2 pathway is associated with cell polarity and is likely

involved in germ cell transport in the seminiferous epithelium (126,

133, 134). As sICAM-1 overexpression reduced the protein levels of

SRC and PYK2, it may impede the SRC-PYK2 signaling in Sertoli

cells, potentially impairing germ cell polarity and their movement

within the seminiferous epithelium. Evidence also shows that

intraperitoneal injection of the SRC inhibitor PP1 into rats

induces sloughing of spermatocytes and round spermatids from

the seminiferous epithelium (130). This phenotype of germ cell loss

mimics the effects of excessive sICAM-1 in the testis. Together,

sICAM-1 overexpression reduces SRC-related signaling while

phenocopying global SRC inhibition outcomes, such as

disoriented spermatids and their premature leaving. Thus, when

secreted by germ cells, sICAM-1 appears to target SRC in Sertoli

cells, affecting Sertoli-germ cell adhesion.
5.4 Summary and future directions

In conclusion, the evidence presented here demonstrates that

sICAM-1 and SRC both contribute to junction disassembly and F-

actin cytoskeleton remodeling. sICAM-1 overexpression diminishes

activity of the tyrosine phosphorylation pathways driven by SRC
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and its related kinases. This impairs GJ and/or desmosomes, leading

to BTB dysfunction and premature germ cell release. This pattern

mirrors the effects seen when overall SRC activity is suppressed.

Regarding F-actin cytoskeleton, the consequences of sICAM-1

overexpression parallel those of an SRC deficiency. Evidence also

indicates sICAM-1 overexpression reduces levels of SRC and PYK2,

possibly inhibiting downstream signaling in Sertoli cells, which

could impair germ cell polarity and transport by disrupting SRC-

PYK2. SRC thus mediates sICAM-1 impacts on BTB integrity,

Sertoli-germ cell adhesion, and underlying cytoskeleton. When

germ cells secrete sICAM-1 at the Sertoli-Sertoli or Sertoli-germ

cell interface, SRC in Sertoli cells responds, so as to facilitate germ

cell transport via cytoskeletal modulation and/or junction

restructuring (Figure 3).

Future directions could explore these proposed mechanisms

further. Research has indicated that the four predominant

cytoskeletal structures in the testis—namely, microfilaments (F-

actin), microtubules (MT, composed of tubulin polymers),

intermediate filaments (e.g., vimentin filaments), and septins—

interact with and influence each other (135–137). Additional

investigations may delve into the impacts of sICAM-1

overexpression on these various cytoskeletal structures, as well as

the subsequent changes in the Sertoli cell cytoskeleton after

modulating SRC expression or activity. Approaches that alter SRC

might offer a way to counteract the adverse outcomes instigated by

sICAM-1 overproduction, such as BTB compromise, premature

germ cell loss, and defects in spermatid polarity.

Further studies could also investigate transcription factors and

broader gene expression changes resulting from sICAM-1-mediated

effects on SRC signaling. The testis has specialized transcription

complexes that coordinate the spermatogenic differentiation

program (138). SRC can phosphorylate and/or activate various

transcription factors like forkhead box class O proteins (FOXO),

signal transducer and activator of transcription (STAT) proteins,

and nuclear factor-kB (NF-kB) (122, 139–141). Low sICAM-1

levels may also trigger NF-kB and ERK activation, releasing

inflammatory cytokines (70). However, limited information exists

on specific testicular transcription factors regulated by SRC or the

sICAM-1/SRC pathway. It would be interesting to decipher how

main transcriptional factors are regulated in response to changes in

phosphorylation status of the SRC kinase signaling pathway, and

also understand the potential effect of signaling mediated by

sICAM-1 on the transcriptional networks that are activated or

downregulated in response to changes in sICAM-1/ICAM-1

ratios during spermatogenesis. Profiling genome-wide expression

changes at defined spermatogenic stages after sICAM-1 exposure

could reveal roles of particular transcription factors and gene

networks altered by SRC-mediated signals. Integrating

transcriptomic and proteomic data will enable constructing

detailed signaling cascades from surface sICAM-1/ICAM-1 ratios

and adhesive interactions to nuclear transcriptional responses

governing spermatogenesis and cytoskeletal remodeling.

In summary, sICAM-1 and SRC are pivotal regulators of BTB

function and spermatogenesis. Overproduction of sICAM-1

mirrors the effects of suppressing SRC, implying that SRC may be

positioned downstream of sICAM-1, governing the Sertoli cell
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cytoskeleton, BTB stability, and the adhesion of germ cells. A more

in-depth understanding of the sICAM-1/SRC signaling

mechanisms promises to yield valuable insights for manipulating

BTB permeability and addressing male infertility.
6 Understanding sICAM-1 interactions
and knowledge gaps

6.1 sICAM-1 interactions and
binding partners

ICAM-1 and its soluble form sICAM-1 must interact with

various partners to mediate their functions. One of the best

characterized binding partners is LFA-1, a member of the b2-
integrin family. As the classical interacting protein of ICAM-1,

studies show that sICAM-1 can competitively bind to LFA-1

similarly to ICAM-1 (142, 143). However, the precise role of this
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interaction in the testis remains unclear. While LFA-1 has been

detected in mouse testicular germ cells, it does not appear to directly

bind ICAM-1 in this tissue (144). This suggests there may be

alternative, testis-specific binding partners for both ICAM-1 and

sICAM-1 that influence the i r funct ion loca l ly . Co-

immunoprecipitation experiments shows ICAM-1 physically

associates with actin cytoskeletal filaments as well as several

important tight junction proteins in the rat testis, including

occludin and N-cadherin (12). These proteins represent plausible

interacting partners for ICAM-1 and sICAM-1 at testicular

junctional sites. However, it remains unknown whether the

associations are direct or indirect. Further studies are still needed

to conclusively identify the ligand(s) that ICAM-1 and sICAM-1

bind to on adjacent Sertoli and germ cells.

Questions also remain regarding the precise mechanisms and

functional outcomes of these putative interactions in the testicular

environment. Do ICAM-1 and sICAM-1 directly engage occludin,

N-cadherin or other proteins at junctions? Elucidating their binding
FIGURE 3

Schematic model depicting the mechanism of sICAM-1 and SRC interplay during Sertoli-Sertoli (SC 1 and SC 2) and Sertoli-germ (SC 1 and GC) cell
adhesion. In mammalian testes, germ cell adhesion and the dynamic reorganization of the blood-testis barrier (BTB) primarily rely on protein
endocytosis and intracellular transport of internalized proteins, including protein degradation, recycling, and transcytosis. SRC is known to regulate
adhesion between immature germ cells and Sertoli cells, as well as the release of mature sperm from the seminiferous epithelium, playing a role in
cell junction dissociation and restructuring. Previous studies have shown that SRC promotes endocytosis and degradation of BTB proteins in Sertoli
cells, disassembling the “old” BTB. Overexpression of sICAM-1 in primary Sertoli cells and rat testes damages the BTB, GJ, and desmosomes, leading
to increased BTB permeability, loss of immature germ cells, and decreased expression levels of SRC, p-SRC-Y530, and SRC substrate PYK2/p-PYK2-
Y402. This affects the F-actin cytoskeleton, consistent with the phenotype of SRC deficiency or inhibition. As sICAM-1 is a germ cell-secreted
extracellular signal, SRC likely acts downstream as the intracellular mediator of sICAM-1 effects on Sertoli cells, propagating sICAM-1 disruption of
the BTB and Sertoli-germ cell adhesion. This model illustrates that at Sertoli-Sertoli (BTB) and Sertoli-germ cell junctions, sICAM-1 signals through
cell adhesion proteins to recruit SRC, triggering cytoskeletal reorganization and adhesion protein endocytosis and degradation to regulate the BTB
and spermatogenesis.
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modes of action could provide crucial insights into how these

molecules regulate testicular permeability and germ cell transport.
6.2 Functional regions of sICAM-1

Beyond its binding partners, understanding the specific domains

that facilitate interactions is important for elucidating ICAM-1 and

sICAM-1 function. Examining their signaling mechanisms further

illuminates the roles of these molecules in the testis.

Structural analyses indicate the D1 domain of ICAM-1

predominantly mediates its binding to transmembrane partners

like LFA-1. Additionally, the D3 or D3-D4 regions interact with

other b2-integrin family members such as Mac-1 and p150,95 (74).

As sICAM-1 likely binds extracellular targets on adjacent Sertoli

cells, one hypothesis is that sICAM-1 engages N-cadherin

extracellularly and recruits SRC signaling through N-cadherin’s

cytoplasmic tail, thereby initiating SRC signaling intracellularly.

Analyzing individual or combined sICAM-1 fragments could help

identify key motifs enabling these interactions. Understanding the

specific domains involved in partner binding and signaling

initiation provides insights into the mechanisms by which ICAM-

1 and sICAM-1 exert their functions in the testis.
6.3 Differences between membrane-bound
ICAM-1 and tailless sICAM-1 signaling

The cytoplasmic tail of ICAM-1 plays a pivotal regulatory role

in intracellular signaling, influencing various cellular processes (70).

Deletion of this tail impairs ICAM-1 function, reducing adhesion

and stress fiber formation. The RKIKK motif within the tail plays a

critical part in regulating ICAM-1 dynamics on the cell surface,

inducing actin cytoskeleton rearrangement and stress fiber

formation through interactions with actin binding proteins (145).

Additionally, the tail establishes important interactions with the

actin cytoskeleton. It is essential for efficient RhoA activation and

also interacts with myosin-II and Rac1, contributing to downstream

effects on actin cytoskeleton remodeling and cell adhesion (70, 146,

147). Moreover, it is crucial for the ICAM-1 cleavage process,

particularly through tyrosine residues Y474 and Y485 within its

cytoplasmic region (148). The tail’s association with proteins like a-
actinin, ezrin, and moesin is also pivotal for ICAM-1 localization

and functions related to adhesion and migration (149, 150).

In contrast to membrane-bound ICAM-1, as the tailless form,

sICAM-1 lacks the ability to directly impact key intracellular

signaling entities. For example, sICAM-1 cannot influence SRC or

components of the actin cytoskeleton in the same way as ICAM-1.

The precise mechanisms of sICAM-1 signaling remain uncertain. It

is unclear whether signaling solely involves sICAM-1 functioning as

a cleaved and released molecule, or if signaling may still occur

through residual interactions between the tail and intracellular

proteins after cleavage. Alternatively, sICAM-1 could signal

independently upon binding extracellular receptors. Elucidating

these uncertainties surrounding sICAM-1 signaling pathways

requires further investigation.
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6.4 Target molecules of sICAM-1

While sICAM-1 shares similarities with ICAM-1, emerging

evidence indicates it functions as a distinct signaling molecule in

the testis (12–14). Both Sertoli and germ cells express ICAM-1, but

germ cells predominantly express sICAM-1 and not ICAM-1. Since

sICAM-1 overexpression alone triggers downstream signaling, it

likely transmits signals generated by germ cells to Sertoli cells. One

hypothesis is that sICAM-1 functions to open the BTB, enabling

spermatocyte transit across. It may also help interrupt and

reassemble Sertoli-germ cell adhesion to facilitate transport of

developing germ cells through the epithelium. Elevated sICAM-1

associates with decreased SRC signaling and lower levels of specific

adhesion proteins such as N-cadherin, connexin 43, and g-catenin.
Thus, sICAM-1 could prompt degradation of BTB/adhesion

proteins like N-cadherin via SRC pathways, compromising

junction integrity. N-cadherin and other membrane proteins may

be direct targets on Sertoli cells that enter SRC-mediated

degradation pathways upon receiving extracellular sICAM-1

signals from germ cells (Figure 3). Identifying sICAM-1’s exact

molecular targets and deciphering its role in regulating barrier

permeability and germ cell movement are fundamental goals for

advancing our understanding.
6.5 Linking sICAM-1 to testicular pathology
and dysfunction

While studies establish associations between sICAM-1 and

barrier integrity proteins, several questions remain regarding its

links to pathological conditions in the testis. The inverse

relationship between sICAM-1 levels and proteins involved in cell

contacts points to its potential involvement in adhesion

dysregulation. However, causality has yet to be proven. Exposure

to toxicants is known to disrupt the BTB and cause germ cell loss.

Given sICAM-1’s role in barrier function, it may mediate some

aspects of toxicant susceptibility in the testis. Some studies have

shown that air pollutants such as diesel exhaust particles and

particulate matter up-regulate sICAM-1 and/or ICAM-1

expression in both humans and animals (151–153). Additionally,

drug treatments like statins mostly decreased sICAM-1 and/or

ICAM-1 levels in patients (154, 155). However, direct evidence in

the testis is still lacking. The precise circumstances influencing

sICAM-1 level changes in the testis remain unknown, as does the

identification of treatments that could reduce its levels.

To move from correlation to elucidating disease mechanisms,

more in-depth investigation of sICAM-1 signaling pathways is

needed. Answering questions about how it specifically modifies

junction formation and barrier properties, as well as its effects in

toxicant exposure models, could help link sICAM-1 functions to

pathological barrier breakdown in the testis. Addressing key gaps

through techniques like overexpression, knockdown and

toxicological models will help determine sICAM-1’s precise role in

testis dysfunction. Its intricate regulation of cell adhesions indicates

its potential as a target for diagnosing and treating male

reproductive conditions.
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7 Future avenues and opportunities
for sICAM-1 study

The study of sICAM-1, an endogenous regulatory molecule

with unique biological activity, presents promising opportunities to

advance our understanding of processes beyond its established role

in BTB restructuring and spermatogenesis. One exciting area of

future research is the BBB. Like the BTB, the BBB’s vital protective

function also prevents drug delivery to the brain. sICAM-1’s ability

to modulate barrier function makes it a candidate for strategies to

enable efficient drug delivery across the BBB, potentially enabling

new treatments for neurological disorders. Pairing sICAM-1

fragments with specific drugs could be explored, developing

targeted brain delivery approaches. Additionally, sICAM-1’s

association with inflammatory diseases like rheumatoid arthritis

suggests the possibility of elucidating molecular mechanisms to

inform targeted therapies. Its influence on tumor progression and

metastasis also indicates significance for cancer research, perhaps

leading to innovative therapeutic approaches for patients. Deeper

investigation into sICAM-1’s role across tissue systems may provide

pivotal insights. For cases of unexplained male infertility or

testicular inflammation, exploring BTB damage and the

expression of sICAM-1, SRC, and related signals could illuminate

underlying causes. In summary, sICAM-1’s diverse implications

across biology and medicine offer promising opportunities to

advance both scientific understanding and therapeutic innovation.
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