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Recent progress in metabolic
reprogramming in gestational
diabetes mellitus: a review
Ya-ping Xie1, Shu Lin2,3, Bao-yuan Xie1* and Hui-fen Zhao1*

1Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou,
Fujian, China, 2Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of
Fujian Medical University, Quanzhou, Fujian, China, 3Group of Neuroendocrinology, Garvan
Institute of Medical Research, Sydney, NSW, Australia
Gestational diabetes mellitus is a prevalent metabolic disease that can impact

the normal course of pregnancy and delivery, leading to adverse outcomes

for both mother and child. Its pathogenesis is complex and involves various

factors, such as insulin resistance and b-cell dysfunction. Metabolic

reprogramming, which involves mitochondrial oxidative phosphorylation

and glycolysis, is crucial for maintaining human metabolic balance and is

involved in the pathogenesis and progression of gestational diabetes mellitus.

However, research on the link and metabolic pathways between metabolic

reprogramming and gestational diabetes mellitus is limited. Therefore, we

reviewed the relationship between metabolic reprogramming and

gestational diabetes mellitus to provide new therapeutic strategies for

maternal health during pregnancy and reduce the risk of developing

gestational diabetes mellitus.
KEYWORDS
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Highlights
• We aimed to provide new therapeutic strategies for maternal health during

pregnancy and reduce the risk of developing gestational diabetes

mellitus (GDM).

• We investigated the link and metabolic pathways between metabolic

reprogramming and GDM.

• Energy metabolism molecules, such as CMPF, miR-143, and SIRT1, may be

key regulators and potential therapeutic targets for metabolic reprogramming

in GDM; however, the exact mechanisms are unclear.

• Further basic and clinical studies are needed to facilitate the development of

new therapies for GDM.
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Introduction

Gestational diabetes mellitus (GDM) is a metabolic abnormality

that occurs when women are pregnant and is defined as the first

detection of abnormal glucose tolerance in pregnancy (1), accounting

for 86.4% of all hyperglycemia cases during pregnancy (2). GDM

prevalence is increasing globally due to increasing maternal obesity

and age (3). In the last two decades, GDM prevalence in developing

countries has increased by over 30% (4). According to the

International Diabetes Federation, approximately 14.0% of

pregnant women worldwide are affected by GDM (5). It increases

the incidence of serious pregnancy outcomes in mothers and infants,

such as premature birth, stillbirth, hypertension, and obesity (6, 7). It

affects approximately 20 million newborns each year (5).

Patients with GDM are 7 times more likely to develop type 2

diabetes mellitus (T2DM) after delivery compare to healthy women

(8), imposing a significant burden on society. However, the

pathogenesis and pathophysiological mechanisms of GDM are

complex and are not fully understood. Current evidence suggests

insulin resistance (IR), b cell dysfunction, and placental dysfunction
contribute to its development (9, 10). GDM pathogenesis is

associated with abnormal glucose metabolism due to metabolic

reprogramming; however, the exact mechanism is unclear (11–13).

Metabolic reprogramming was first observed by Warburg in the

1920s, who discovered that tumor cells could synthesize ATP through

glycolysis even under good oxygen conditions, known as the “Warburg

effect” (14). Recent technological advancements have enhanced our

understanding of metabolic reprogramming. A balanced metabolic

system is essential for the structural stability of glucose and normal

physiological function. Metabolic processes can adapt to changes in the

environment; thus, they can be reprogrammed to support energy

requirements in biosynthesis, leading to disease development such as

cancer, diabetes, polycystic kidney disease, and vascular inflammatory

diseases (15–18). Metabolic reprogramming is also important in GDM

development (11–13).

We explored the relationship between GDM and metabolic

reprogramming to provide new therapeutic strategies for prenatal

care of pregnant women to reduce the risk of developing GDM.
Metabolic pathways of
metabolic reprogramming

Metabolic reprogramming has recently become a popular

research area. Metabolic reprogramming refers to the ability of

cells to alter their metabolism in order to support the increased

energy (19). The main metabolic pathways of metabolic

reprogramming are mitochondrial oxidative phosphorylation

(OXPHOS) and glycolysis. Metabolic reprogramming leads to the

development of many diseases through these processes.
Mitochondrial OXPHOS

Mitochondrial OXPHOS is a process that occurs in

mitochondria, which are important organelles in eukaryotic cells.
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Mitochondria are involved in many cellular processes, including

energy metabolism, oxidative stress regulation, fatty acid oxidation,

calcium homeostasis, and the balance between cell survival and

death. Given the importance of these processes in the cell,

mitochondrial dysfunction may be associated with any disease.

Mitochondrial dysfunction results from impaired cellular

respiration or defects in mitochondrial quality control, mainly

reflected in the OXPHOS machinery (20) . Metabolic

reprogramming is involved in many diseases, including cancer,

diabetes, and rare genetic diseases, mainly through mitochondrial

OXPHOS (15, 21, 22). Mitochondrial OXPHOS comprises ATP

synthase and the electron transport chain. It regulates the metabolic

system by generating membrane potential to drive ATP synthesis

and maintain redox homeostasis (20). Mitochondrial ATP synthase,

or complex V or F1-FO-ATPase, is the final complex in the

OXPHOS cascade reaction. The OXPHOS cascade reaction

reduces oxygen by transferring electrons from biological

oxidation to the respiratory chain complex and generates an

electrochemical proton gradient across the inner membrane.

which is used by synthases to generate ATP from inorganic

phosphate and ADP (23, 24). The main energy carrier molecule

in living organisms is ATP, most of which is produced by

mitochondrial ATP synthase via OXPHOS. Mitochondrial

OXPHOS can produce ATP at a rate up to 18 times that of

aerobic glycolysis (20). OXPHOS dysfunction increases the

production of mitochondrial reactive oxygen species clusters,

causes oxidative damage and various pathological and aging

processes (25).
Glycolysis

Glucose is the primary carbon and energy source for cells. It

provides energy as ATP for metabolites of various biosynthetic

pathways (26). Under anoxic conditions, glucose undergoes a series

of enzymatic reactions to produce pyruvate, which is then reduced

to lactate in a process called anaerobic glycolysis. The extracellular

enzyme lactate dehydrogenase (LDH) converts pyruvate to lactate

without oxidative phosphorylation. The increase in glycolytic

activity ultimately counteracts the effects of hypoxia by generating

sufficient ATP from this anaerobic pathway (27). In states where

mitochondrial dysfunction occurs in the organism, cells mostly turn

to anaerobic glycolysis by increasing the expression of the Lactate

Dehydrogenase-Agene(LDHA) (28). Cancer cells exhibit increased

glycolysis and glucose uptake rates, generating much ATP and

glycolytic intermediates diverted to biosynthetic pathways instead

of producing pyruvate (26, 29).
GDM

GDM is mainly caused by metabolic abnormalities during

pregnancy, such as IR, b-cell dysfunction, and placental

dysfunction (9, 10). Blood glucose can be improved through

exercise, diet, drugs, and self-monitoring of blood sugar (Figure 1).
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Pathophysiology and pathogenesis

IR

Maternal obesity, cardiovascular disease, and GDM may be

related to IR, which is the reduced efficiency of insulin to promote

glucose uptake and utilization. The accumulation of excess lipids or

other metabolites can lead to IR, thus, activating inflammatory

signaling and endoplasmic reticulum stress (30, 31). Patients with

GDM had a 54% reduction in glucose uptake compared to normal

pregnancy (32). IR usually results from insulin signaling failure,

leading to inadequate GLUT4 membrane transport at the molecular

level. And insulin receptor abundance is unaffected; however,

decreased levels of insulin receptor tyrosine and increased levels

of serine/threonine phosphorylation may inhibit the insulin

pathway (33).

Insulin signaling failure reduces cellular glucose uptake, leading to

GDM in pregnant women (34). In addition, changes in

phosphorylation and/or expression of regulatory factors downstream

of the insulin signaling pathway, mainly phosphatidylinositol 3-kinase,

GLUT4, and insulin receptor substrate, are the main causes of GDM

(32) (Figure 2).
b cell dysfunction

The primary function of b cells is to store and secrete insulin to

address glucose load. When b cells fail to detect blood sugar levels

adequately or release sufficient insulin is defined as b-cell
Frontiers in Endocrinology 03
dysfunction (32). Most of the susceptibility genes associated with

GDM may be related to beta cell function, such as glucokinase

(Gck) and potassium voltage-gated channel (KQT-like 1, Kcnq1)

(34–36). IR exacerbates b cell dysfunction; insulin-stimulated

glucose uptake is reduced, leading to the situation of

hyperglycemia. This increases the burden on b-cells, forcing them

to produce more insulin. Glycotoxicity is the direct effect of glucose

on beta cell failure. And, if b cell dysfunction occurs, hyperglycemia,

a vicious cycle of IR and more severe b cell dysfunction can be

triggered. The number of b-cells is an important regulator of

glucose homeostasis (32).
Placental adipokines and cytokines

As an endocrine organ during pregnancy, the placenta

accelerates the inflammatory response by secreting adipokines

and cytokines such as adiponectin, leptin, and visfatin, which

leads to IR (3, 37) (Table 1). Adiponectin, an adipose-derived

hormone with anti-inflammatory and insulin-sensitizing effects,

may be involved in glucose metabolism during pregnancy (48,

49). It responds to insulin release, helps lower blood glucose

levels, and alleviates IR. The mechanism by which adiponectin

affects tissues is not fully understood; however, adiponectin binds to

its receptor and activates the protein kinase cascade pathway,

leading to increased fatty acid oxidation and gluconeogenesis

inhibition. In GDM, adiponectin levels are substantially reduced,

resulting in IR and hyperglycemia (38). More researchs are needed

to explore the role for early prediction of adiponectin levels at 25–28
FIGURE 1

Pathogenesis and treatment of GDM Illustration: The pathogenesis of GDM mainly includes IR, b cell dysfunction, and placental dysfunction. As an
endocrine organ, the placenta accelerates inflammatory reactions by secreting adiponectin, leptin, visfatin, progesterone, cortisol, PPAR-g, HPL,
prolactin, SHBG, TNF-a, IL-6 and estrogen, which in turn leads to GDM.The treatment of GDM currently mainly includes drug therapy and non-drug
therapy. The drug treatment includes insulin injections and oral medications such as metformin and glyburide. Non-drug treatment mainly includes
exercise, diet and self-monitoring of blood sugar.
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weeks of pregnancy as a useful biomarker for GDM onset (50, 51).

Additionally, adiponectin exerts anti-atherosclerotic and anti-

inflammatory effects through the placental barrier and maintains

immune interactions between mother and infant blood (51–53).

Pregnant women with obesity and GDM have higher leptin

concentrations (54). Leptin is an adipocyte-derived hormone

controlled by the hypothalamus and is vital in the metabolic

feedback regulation of food intake. Abnormal leptin expression can

lead to weight gain, irregular food intake, and chronic obesity. This

causes the pancreas to secrete more insulin into the bloodstream, a

phenomenon known as hyperinsulinemia (51). Higher leptin

concentrations can upregulate inflammatory cytokines such as

tumor necrosis factor-a and interleukin-6, increasing blood levels

and impairing insulin sensitivity, promoting GDM development (41,

55). However, the mechanisms involved remain unclear.

Sex hormone-binding globulin (SHBG) is key in GDM

pathogenesis. Disturbances in glucose metabolism cause IR in

GDM. Lower SHBG levels in early pregnancy are associated with

higher insulin levels, IR, and an increased risk of GDM in mid-

pregnancy. Therefore, SHBG can be used to identify high-risk

pregnancies in early pregnancy (45, 56). Additionally, SHBG

expression negatively correlates with GLUT1 and positively

correlates with GLUT3 and GLUT4, suggesting SHBG ’s

involvement in glucose metabolism by regulating multiple

GLUTs, binding to sex hormones or other pathways, thereby

eliminating IR in GDM (57). Therefore, SHBG transfection into

insulin-resistant cells may be a new approach for GDM treatment.

Visfatin, also known as nicotinamide phosphoribosyltransferase,

is an adipocyte cytokine primarily produced by visceral adipose

tissue. However, during pregnancy, placental tissue expresses and

secretes visfatin (41).Visfatin exerts insulin-like effects via insulin

receptor-1 and is associated with IR, inflammation, and obesity. It is
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involved in the pathogenesis of metabolic disorders such as obesity

and GDM (40, 58). Serum visfatin levels are elevated and positively

correlated with glycated hemoglobin in patients with GDMwith high

bodymass index but decrease after insulin therapy (40). Furthermore,

visfatin-mediated biosynthesis of NAD+ in adipocytes is an

important physiological regulator of the metabolic function of the

whole body (59).

The expression of substances such as estrogen, progesterone,

human placental prolactin, prolactin, and cortisol may change as

pregnancy progresses, affecting the peripheral insulin sensitivity of

pregnant women (60). This unstable metabolic state increases blood

glucose and free fatty acid levels, further contributing to GDM

development. However, no consensus exists on whether these

hormones contribute to GDM, as some systematic reviews have

discovered no association between placental prolactin and prolactin

and an increased GDM risk (43, 61). Therefore, further large-scale

studies are needed. In GDM, fatty acid binding protein expression is

significantly increased in adipocytes due to defective insulin-like

growth factor receptor 1 function and phosphorylation of insulin

receptors; PPAP-g expression is decreased, and a chronic

inflammatory response occurs (51, 62). PPAR-g is critical in

regulating lipid homeostasis and glucose metabolism in GDM

(63). In addition, PPAR-g ligands upregulate adiponectin

expression (41), although the exact mechanism is unknown.
Current treatment methods
and prognosis

GDM can be detected, diagnosed, and treated. Excessive weight

gain during pregnancy, pre-pregnancy overweight and obesity,

sedentary lifestyle, and maternal age are risk factors for
FIGURE 2

IR mechanism Illustrated: IR is one of the main pathogenesis of GDM.IR is often the result of unsuccessful insulin signaling pathways. Insulin
resistance is often the result of unsuccessful insulin signaling pathways. Failure of insulin signaling reduces cellular glucose uptake, leading to GDM
in pregnant women. The principle is mainly that insulin activates IRS-1 by binding to the insulin receptor, IRS-1 activates phosphoinositide 3-kinase
(PI3K), which further phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5- triphosphate (PIP3). Finally, PIP3
activates Akt2, which facilitates the translocation of GLUT4, allowing glucose uptake into the cell.
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developing GDM (64, 65). GDM management comprises self-

monitoring of blood glucose, lifestyle interventions, and

medication. Appropriate diabetes management can prevent

adverse outcomes and reduce the incidence of adverse maternal

and infant outcomes during pregnancy (66). Non-pharmacological

interventions are preferred for GDM. Therefore, lifestyle changes

are essential for GDM management. The American Diabetes

Association (ADA) states that nutritional therapy for GDM can

provide enough nutrition to promote health of mothers and their

babies, achieve normoglycemia and freedom from ketosis (67). All

women with GDM should receive dietary advice from a clinical

nutritionist as the basis for non-pharmacological interventions for

GDM (68). Dietary recommendations for GDM include sufficient

macronutrients and micronutrients to support fetal growth while

limiting dietary carbohydrate intake (68). Diet is important in GDM

prevention in pregnant women (64). In addition, implementing a

carbohydrate-restricted diet or nutritional counseling and other

dietary interventions can effectively improve hyperglycemia in

people with GDM and delay insulin use during pregnancy (68–

70). Exercise interventions, including aerobic and resistance

exercise, have also received increasing attention (71). Aerobic or

resistance exercise positively affects blood glucose levels, adverse

pregnancy outcomes and insulin use in patients with GDM (72–74).
Frontiers in Endocrinology
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More multi-center, large-sample, high-quality RCTs should be

conducted to clarify the optimal type, frequency, and duration of

exercise and other factors to determine prevention strategies

for GDM.

The ADA and the American College of Obstetricians and

Gynecologists (ACOG) recommend target glucose levels of <5.3

mmol/l fasting, <7.8 mmol/l 1 hour postprandial, and <6.7 mmol/l

2 hours postprandial (67, 75). For patients with GDM in whom non-

pharmacological interventions cannot achieve glycemic control,

pharmacological treatment may be initiated if plasma glucose levels

exceed target levels by 30%. Insulin is the preferred and only FDA-

approved drug (66). Oral medications may sometimes be preferable to

insulin injections because they are cheaper, easier to administer, and

more acceptable to the patient. Currently, the ACOG recommends

oral medications for women who refuse insulin therapy or for whom

insulin use is not feasible or safe, with metformin being the preferred

oral hypoglycemic agent (76). However, glyburide is an effective

treatment for achieving glycemic targets in women with GDM.

Clinical experience can minimize the risk of maternal hypoglycemia

(77). Glyburide has been widely used in the USA for women with

GDM (78). In most guidelines, insulin remains the drug of choice for

GDM treatment because the safety and efficacy of other drugs have

not been established (67, 79, 80) (Figure 1).
TABLE 1 Placental adipokines and cytokines.

Factor Author Research object Main conclusion References

Adiponectin
Akhtar
Y et al

Pregnant women from
the 24th week to the
40th week of pregnancy

Serum adiponectin concentrations were significantly lower in pregnant women with GDM
and adiponectin was inversely correlated with FBG and HbA1c in GDM, suggesting that
hypoadiponectinemia is associated with elevated blood glucose during pregnancy.

(38)

Leptin
Roca-
rodrıǵuez
et al

Pregnant women
GDM participants had significantly higher levels of leptin than controls, therefore, high
levels of leptin can be used as a predictive marker for GDM.

(39)

Visfatin
Radzicka-
mularczyk
et al

Pregnant women
In GDM patients with higher BMI, serum visfatin was elevated, positively correlated with
HbA1c, and decreased after insulin treatment.

(40)

Estrogen
Tanaka
T et al

C57BL/6 female mice
ERa-mediated estrogen signaling in T cells regulates T cell immunity and contributes to
glucose homeostasis during pregnancy.

(10)

PPAP-g
ZhangY
et al

Bewo cells
The PPAR-g signaling pathway may be involved in the regulation of visfatin by IL-6 in
BeWo cells, thereby affecting the pathogenesis of GDM.

(41)

Progesterone
Alyas
S et al

Pregnant women
with gdm

Significantly elevated progesterone in pregnant women can lead to insulin resistance and
eventually GDM.

(42)

HPL
RassieK
et al

Women who are
pregnant or within 12
months of giving birth

HPL may be valuable as a GDM biomarker, but this meta shows no relationship between
HPL and GDM disease status.

(43)

Prolactin
Overgaard
M et al

Pregnant women Low prolactin levels in pregnancy are associated with higher risk of HbA1c and GDM. (44)

SHBG Li M et al Pregnant women
Lower SHBG levels in first trimester were prospectively associated with second trimester
insulin resistance and GDM risk. SHBG can be used as a marker to identify high-risk
pregnancy in early pregnancy.

(45)

TNF-a、
IL-6

Elham
H et al

Pregnant women
with GDM

Higher circulating levels of IL-6 and TNF-a are associated with increased risk of GDM and
can be used as potential biomarkers for the assessment of GDM.

(46)

Cortisol Sun T et al
24th week
pregnant woman

Serum cortisol levels are associated with fasting glucose, triglycerides, and insulin resistance
in GDM patients.

(47)
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Gestational diabetes and
metabolic reprogramming

The relationship between GDM and metabolic reprogramming

is poorly understood; however, according to the existing evidence,

the metabolic pathways of metabolic reprogramming in GDM may

lie mainly in mitochondrial dysfunction, glycolysis, and

energy metabolism.
Gestational diabetes and
metabolic reprogramming

Mitochondrial dysfunction

An interaction exists between high blood glucose concentrations

and mitochondrial dysfunction in patients with GDM. Spiral cells

isolated from patients with GDM tend to have elevated reactive

oxygen species (ROS) levels and vascular dysfunction (11, 13).

Glucose is believed to be a source of free radicals, and hyperglycemia

promotes lipid peroxidation in low-density lipoprotein through a

superoxide-dependent pathway, which is attributed to increased

oxidative stress levels in GDM. When hyperglycemia causes free

radical production, it disrupts antioxidant defenses. Superoxide

dismutase levels are reduced in patients with GDM. Furthermore,

hyperglycemia during pregnancy has a detrimental effect on

mitochondrial function. Mitochondrial regulatory genes ND2, TFAM,

PGC1DNA and NDUFB9 are significantly reduced in patients with

GDM (11). Therefore, mitochondrial dysfunction promotes ROS,

which may lead to oxidative stress if cellular defense mechanisms are

compromised. High levels of oxidative stress, mitochondrial

dysfunction, and disrupted antioxidant defense mechanisms occur

simultaneously, leading to metabolic damage and cellular changes

that lead to GDM development (11).
Glycolysis and energy metabolism

GDM severely disrupts the metabolism of glucose and fatty acids,

suggesting a disturbance in energy metabolism in women with GDM.

Compared with normal pregnant women, patients with GDM have

significantly lower levels of valine, leucine, lactate, isoleucine, and

glycerol-3-phosphate, indicating glycolysis. Glycerol 3-phosphate is

synthesized by reducing dihydroxyacetone phosphate with glycerol

3-phosphate dehydrogenase, and its decrease in plasma levels indicates

that its production is inhibited. Anaerobic products also indicate

glycolysis inhibition in patients with GDM. Impaired absorption and

utilization of glucose, resulting in cellular functional reprogramming,

and diabetes onset could cause inadequate glucose metabolism in

GDM. Triethanolamine is substantially increased in patients with

GDM compared with normal pregnant women. Triethanolamine is

an important intermediate in glycolysis and acetaldehyde precursor.

The substantial increase in triethanolamine may be due to impeded

bioconversion of triethanolamine to acetaldehyde, exacerbating energy

metabolism disturbance in GDM (12). 2-ketobutyric acid is involved in
Frontiers in Endocrinology 06
IR and disrupts glucose homeostasis (81). Plasma 2-hydroxybutyric

acid, which produced by 2-ketobutyric acid, concentrations are higher

in patients with GDM in late pregnancy than in controls, suggesting

that it may be an independent early predictor of glucose abnormalities

in humans (82). 3-Hydroxybutyric acid is substantially reduced in

patients with GDM, suggesting a disturbance in Krebs’ circulating

energy metabolism. Under conditions of insufficient energy, 3-

hydroxybutyric acid levels decrease due to its use as a metabolic

energy source (83). In addition, pregnant women with obesity are

more likely to develop GDM (84). The mechanism is not fully

understood; however, this may be due to a high-fat diet (HFD) in

patients with obesity leading to hepatic lipogenesis, fat accumulation,

lipid oxidation, gluconeogenesis, and glycolysis inhibition. Hepatic

glycolytic enzymes PFK-1 and GCK expression is reduced, and

PEPCK and G6Pase expression is increased in male mice on HFD.

HFD reprograms fuel preference from glucose to fatty acidmetabolism,

leading to IR (85, 86). This may also be the case in patients with GDM.

Glycolysis inhibition and enhanced fatty acid oxidation by HFD may

be directly involved in GDM pathogenesis.

Higher glucose levels in the liver cause the separation of lipids

from the mitochondrial oxidative pathway, activating serine kinases

and inactivating molecules involved in insulin signaling. In fat-

overloaded muscles, fatty acid oxidation increases, but downstream

Kreb’s energy cycling is blocked, accumulating unprocessed lipid

droplets in the mitochondria. This ultimately leads to IR or

impaired insulin signaling, resulting in GDM (11).

In patients with type 2 diabetes, insulin resistance is induced by

changes in OXPHOS levels, reduced NADH oxidoreductase and

citrate synthase activity (87). In contrast, data on changes in

metabolic reprogramming in patients with GDM are still limited.

For women with OXPHOS mutations, the probability of developing

GDM is higher (88). It has recently been shown that GDM and

hyperglycemia inhibit placental mitochondrial function and

glycolysis and alter lipid processing compared to controls.

Specifically, GDM had a 39% reduction in ATP content, a 44%

reduction in oxidative phosphorylation, and 55%-60% inhibition of

CTB glycolysis (89). Although obese pregnant women may disrupt

glucose metabolism by inhibiting hepatic glycolysis and fat oxidation,

leading to the development of metabolic reprogramming. However,

there are still specific data on obese pregnant women or normal

weight pregnant women in this regard andmore studies are needed to

further elucidate this (Figure 3).
The factors involved in metabolic
reprogramming in GDM

Many factors regulate GDMmetabolic programming. However,

most studies have been limited to comparing the level of factors in

patients with GDM and normal patients, and less research has been

conducted on the underlying mechanisms. Therefore, GDM

mechanisms remain unclear (Table 2).

Neuregulin 4
Neuregulin 4 (NRG4) is a batokine. It may be important in

regulating metabolic homeostasis, insulin sensitivity, and energy
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maintenance. NRG4 maintains the dynamic balance of glucose and

lipids through ERB3 and ERB4 receptors in the liver. It also

upregulates GLUT3 and GLUT1 transporters in skeletal muscle to

increase glucose uptake and maintain glucose homeostasis (8, 97).

However, the exact mechanism of action of NRG4 in GDM is
Frontiers in Endocrinology 07
unknown. Patients with GDM have considerably lower NGR4

levels. In contrast, other metabolic factors, particularly the

Homeostatic Model Assessment of Insulin and Insulin Resistance,

are substantially associated with NGR4. Therefore, NGR4 may be a

biomarker for GDM (8). However, larger researchs are needed to
TABLE 2 The factors involved in metabolic reprogramming in GDM.

Factor Author Research object Main conclusion References

NGR 4 Attique H et al
Pregnant women in the 24th to
28th week of pregnancy

NGR4 levels were significantly lower in GDM subjects and may be a potential
biomarker of GDM.

(8)

Angptl 8 HuangY et al
Pregnant women in the 12th to
16th week of pregnancy

The level of Angptl8 in early pregnancy is associated with the risk of GDM in
pregnancy, which may be used to predict the onset of GDM.

(90)

Smad 4 Li L et al The htr-8/svneo cells
Deficiency of Smad4 significantly increased GDM insulin sensitivity and
attenuated inflammation in insulin-resistant cell models.

(91)

SIRT 1 Ulubasoglu H et al
Pregnant women in the 24th to
28th week of pregnancy

Low SIRT1 levels in the second trimester are associated with GDM. It may be
a diagnostic marker for GDM.

(92)

WWOX/
HIF1

BarylaI et al

Pregnant women in the 24th to
28th week of pregnancy and 3
months postpartum and 1
year postpartum

The decreased WWOX expression in GDM, especially the decreased WWOX/
HIF1A ratio, suggests that WWOX regulates HIF1a activity in normal tissues,
gene expression of proteins involved in glycolysis, and may lead to changes in
glucose metabolism in GDM.

(93)

HK 2 Song T R et al Pregnant woman
Upregulation of HK2 can lead to glucose metabolism disturbance in
GDM patients.

(94)

Mir-143
Muralimanoharan
S et al

Newly delivered mother
Downregulation of miR-143 mediates a metabolic shift from OXPHOS to
aerobic glycolysis in GDM placenta.

(95)

CMPF Yi J et al
Pregnant women in the 24th to
28th week of pregnancy

Elevated serum CMPF levels are not conducive to the occurrence of
hyperglycemia and pancreatic b-cell failure in GDM patients, which may affect
the occurrence and development of GDM.

(96)
FIGURE 3

Metabolic pathways of GDM and metabolic reprogramming Illustration: The metabolic pathways of metabolic reprogramming in GDM mainly
include mitochondrial dysfunction and the occurrence of glycolysis. Increased levels of oxidative stress in GDM lead to spikes in blood sugar, which
further lead to mitochondrial dysfunction. Mitochondrial dysfunction promotes the accumulation of ROS, leading to impaired cellular defense
mechanisms, resulting in decreased levels of OXPHOS and ultimately metabolic reprogramming. In addition, obese pregnant women may
experience reprogramming of GDM metabolism due to suppressed fat oxidation and decreased levels of glycolysis.
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explore these results and further determine the potential of NRG4

as a biomarker for GDM.

Angiopoietin-like protein 8
Angiopoietin-like protein 8 (Angptl 8) is a newly identified

protein factor whose secretion is closely related to lipid

metabolism, insulin sensitivity, and glucose metabolism (90).

Angptl8 can influence plasma lipoprotein levels by regulating IR

and glucose homeostasis (98). JNK signaling pathway inhibition by

ANGPTL8 knockdown can enhance insulin sensitivity in trophoblast

cells. Thus, ANGPTL8 may be involved in GDM development and

provide new insights into its clinical diagnosis and treatment (99).

ANGPTL8 levels in early pregnancy are associated with GDM risk

(90), which may be used to predict GDM onset and minimize

hyperglycemia risk in pregnant women and their offspring.
Smad4
Smad4 is a member of the SMAD family of intracellular

proteins involved in transducing signals from the transforming

growth factor beta (TGF-b) signaling pathway (100, 101). Glucose

uptake is widely recognized as the primary source of energy for

cellular survival (102). Effective insulin secretion and function are

essential for maintaining glucose homeostasis (103). In IR models,

Smad4 deficiency impairs insulin sensitivity and suppresses

inflammatory responses, whereas Smad4 overexpression has the

opposite effect on these changes. TGF-b signals are transmitted to

intracellular SMAD proteins, including R-SMADs and Co-SMAD.

R-SMAD is phosphorylated at its C-terminal serine residue to form

the R-SMAD/Co-SMAD heterodimer. The heteromeric complex is

then transported to the nucleus, where it activates or inhibits the

transcription of TGF-b responsive genes (91, 104). The main

pathological and physiological basis of GDM is manifested as

placental IR. Smad4 deficiency substantially increases insulin

sensitivity and alleviates the inflammatory response in insulin-

resistant cell models. Furthermore, a positive effect of Smad4 on

cell viability has been observed (91). The role of Smad4 in regulating

IR and inflammatory responses in GDM may confirm its role in

metabolic reprogramming and provide new insights into

GDM pathogenesis.

Sirtuin 1
Sirtuin 1 (SIRT1) is involved in mitochondrial function, energy

metabolism, and insulin regulation (105). The T allele of rs3811463

increases SIRT1 protein levels; replacing the T allele with the C allele

considerably increases SIRT1 levels. The let-7/Lin28 pathway, which

regulates insulin sensitivity by regulating SIRT1 expression (106), is

key in regulating glucose and insulin metabolism. Sirt-1 expression is

downregulated in patients with GDM (107), and the mechanism of

metabolic reprogramming is mainly through oxidative stress,

mitochondrial dysfunction, changes in mitochondrial membrane

potential, and antioxidant response (108).

Hypoxia-inducible factor 1
Hypoxia-inducible factor 1 (HIF1) is encoded by the HIF1a

gene and regulates energy metabolism and cellular glucose in
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pathological processes. Hypoxia is an imbalance in oxygen

homeostasis and is essential for metabolism and survival (109).

HIF1a protein is crucial in hypoxia. It controls the activity of

several target genes involved in metabolism and glucose transport

(109). HIF1a upregulation facilitates normal early placental

development and embryonic growth as the fetus develops under

hypoxic conditions (93, 110). However, in late pregnancy,

activation of this protein may lead to poor pregnancy outcomes

(111). HIF1a expression is associated with VEGF activation and is

linked to placental formation and obesity (112), which may

contribute to high HIF1a expression in GDM. WW-domain-

containing oxidoreductase (WWOX) regulates glucose

metabolism by inhibiting HIF1a in cells and animal models,

which affects aerobic glycolysis (93). Skeletal muscle-specific

WWOX deficiency disrupts mitochondrial glucose oxidation and

stimulates lactate production, disrupting systemic glucose dynamic

homeostasis. WWOX deficiency increases HIF1a expression and its

target genes, including those that encode important glycolytic

enzymes (113). In GDM, WWOX expression is lower than in

normal pregnant women and regulates HIF1a activity in tissues.

Excessive HIF1a activation leads to the production of glycolysis-

related proteins, resulting in pathological changes in glucose

metabolism in GDM. Therefore, the regulatory effect of WWOX

on HIF1a suggests that the upregulation of glycolytic energy

metabolism is important in the metabolic homeostasis of GDM

(93). However, data on the effects of gestational diabetes on the

WWOX/HIF1 a signaling pathway are limited, and the role of the

HIF1a pathway in GDM remains unclear.

Hexokinase-2
Hexokinase-2 (HK2) is an enzyme responsible for catalyzing

the initial step of most glucose metabolic pathways that involve the

conversion of glucose to glucose-6-phosphate by phosphorylation.

HK2 is crucial in regulating glycolysis and is overexpressed in

different types of cancer, which can alter intracellular glucose

homeostasis (114, 115). Reduced glucose-6-phosphate levels in

the muscle of patients with IR suggest that abnormal HK2

expression may contribute to IR and diabetes onset. However, the

mechanism underlying the correlation between HK2 dysregulation

and GDM is unclear. Aerobic glycolysis via HK2 in the placenta of

patients with GDM may lead to HK2 expression upregulation due

to reduced mitochondrial respiration, resulting in metabolic

disorders in patients with GDM. Placental cells rely on glycolysis

to facilitate their rapid growth. Primary human trophoblast cells

exhibit a higher aerobic glycolysis rate than mature somatic cells.

HK1 expression remains stable in the placenta; however, temporary

suppression of HK2 may impede glycolytic flow, resulting in

feedback inhibition of glucose intake (94). This may explain the

reduced glucose uptake observed in HK2-deficient trophoblast cells,

although further confirmation is required.

MiR-143
MiR-143 has been studied. Extracellular vesicles in the adipose

tissue of women with GDM affect glucose metabolism in the

placenta. This effect is achieved by increasing the expression of

genes related to glycolytic and gluconeogenic pathways (116).
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Thus, extracellular vesicles can participate in maternal metabolism

by regulating adipose tissue activity (117). MiRNA is a small non-

coding RNA. It can regulate gene expression by translation

inhibition or mRNA degradation (118). MiRNA can regulate cell

proliferation, tumorigenesis, and other functions and is involved in

cellular physiological or pathological processes, including glucose

metabolism (119). Human miR-143 on chromosome 5 inhibits the

glycolytic enzyme HK2 and upregulates aerobic glycolysis in cancer

cells (95). In GDM, miR-143 downregulation is crucial in glucose

metabolism and mitochondrial function, mediating the metabolic

transition from OXPHOS to aerobic glycolysis in GDM placentas.

In addition, mitochondrial protein expression is reduced in the

skeletal muscle of patients with GDM. Therefore, the increased

glucose utilization and consumption in GDM placentas may reflect

increased expression or activity of limiting enzymes in the glycolytic

pathway. Mitochondrial dysfunction and upregulation of glycolytic

expression in GDM placentas, including a substantial increase in

glycolytic enzyme expression (HK2), phosphofructokinase, and

LDH, has been discovered. MiR-143 overexpression partially

rescues mitochondrial function, reorganizes mitochondrial

respiration, increases the expression of mitochondrial complex

proteins, and reduces the expression of glycolytic enzymes by

40% (95). Therefore, miR-143 regulation may be partially

responsible for placental mitochondrial dysfunction in GDM.

Additionally, miR-143-3p inhibits the Tak1/NF-kB pathway,

thereby preventing pancreatic b-cell dysfunction (120).

3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid

3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is

a metabolite of furan fatty acids and is important in glucolipid

metabolism. Considerable increases have been observed in women

with GDM, postpartum women, patients with impaired glucose

tolerance, and patients with T2DM (121, 122). However, the

specific role of CMPF in GDM development is unclear. CMPF

directly affects pancreatic cells, leading to mitochondrial

dysfunction, reduced oxidative stress and glucose-induced ATP

accumulation. This may lead to the dysregulation of key

transcription factors and a substantial decrease in insulin synthesis

levels, resulting in metabolic reprogramming and pancreatic cell

dysfunction (121, 123). However, blocking CMPF transport

through OAT3 or using antioxidant therapy may prevent CMPF-

induced b-cell dysfunction (121). Therefore, CMPF’s role in b-cell
dysfunction in GDM/T2DM could be a therapeutic target, and drugs

targeting CMPF may improve maternal outcomes and prevent future

complications. CMPF may be a biomarker for hyperglycemia and b-
cell dysfunction in GDM.
Conclusions

Metabolic reprogramming in GDM is complex and involves a

multifactorial and multistep pathway that can be controlled through

mitochondrial OXPHOS and glycolysis. Energy metabolism

molecules, such as CMPF, miR-143, and SIRT1, may be key
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regulators and potential therapeutic targets for metabolic

reprogramming in GDM; however, the exact mechanisms are

unclear. Owing to the lack of targeted metabolic reprogramming

drugs for GDM prevention and treatment, research on GDM can

help identify metabolic factors associated with its development and

prognosis, which is important to explain the underlying metabolic

pathways and improve the diagnosis, treatment, and GDM

prognosis. Research can also help to identify novel biomarkers or

therapeutic targets. Thus, further basic and clinical studies are

needed to facilitate the development of new therapies for GDM.
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