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Laron syndrome
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The growth hormone (GH)-insulin-like growth factor-1 (IGF1) signaling pathway

emerged in recent years as a key determinant of aging and longevity. Disruption

of this network in different animal species, including flies, nematodes andmouse,

was consistently associated with an extended lifespan. Epidemiological analyses

have shown that patients with Laron syndrome (LS), the best-characterized

disease under the umbrella of the congenital IGF1 deficiencies, seem to be

protected from cancer. While aging and cancer, as a rule, are considered

diametrically opposite processes, modern lines of evidence reinforce the

notion that aging and cancer might, as a matter of fact, be regarded as

divergent manifestations of identical biochemical and cellular underlying

processes. While the effect of individual mutations on lifespan and health span

is very difficult to assess, genome-wide screenings identified a number of

differentially represented aging- and longevity-associated genes in patients

with LS. The present review summarizes recent data that emerged from

comprehensive analyses of LS patients and portrays a number of previously

unrecognized targets for GH-IGF1 action. Our article sheds light on complex

aging and longevity processes, with a particular emphasis on the role of the GH-

IGF1 network in these mechanisms.
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Introduction to the GH-IGF1 system

Pituitary-derived growth hormone (GH) along with insulin-like growth factor-1

(IGF1) constitute an endocrine axis with critical roles in growth and development (1–3).

The original hypothesis of Salmon and Daughaday, formulated in the late 1950s, claimed

that the vast majority of the biological actions of GH are mediated by an hepatic peptide at

first termed somatomedin and, subsequently, IGF1 (4). IGF1 is evolutionarily and

structurally related to insulin. Prenatal IGF1 expression is GH-independent and

becomes GH-dependent around the time of birth. After delivery, liver IGF1 production

continues to be dependent on hypophysial GH secretion throughout all stages of life (5).
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Aging is linked to various endocrine deficits. In the specific

context of the somatotrophic axis, GH and IGF1 biosynthesis

progressively decrease as we age due to reduced activity of the

hypothalamic GH releasing hormone (GHRH)-GH neuroendocrine

system (6). Thus, while maximal GH and IGF1 levels are reached at

mid-puberty, concentrations around the eight decade of life become

drastically reduced (7). Indeed, both the amplitude of the GH

secretory pulses as well as the basal levels between pulses are

largely decreased (8). Reduction of endocrine GH levels is closely

followed by a parallel decline in circulating IGF1.

Evidence has accumulated in recent years demonstrating that

disturbance of the GH-IGF1 network correlates with prolonged

lifespan in a number of animal species, including flies (D.

melanogaster), nematodes (C. elegans) and mouse (M. musculus)

(9–11). Male mice harboring a disrupted GH receptor (GHR) gene

(‘Laron’ mice) survive 55% longer than wild-type animals whereas

female Laronmice have a 38% longer lifespan (12). The cellular and

biochemical mechanisms that are responsible for the association

between abrogation of the GH-IGF1 axis and prolonged lifespan are

complex. Briefly, these mechanisms are functionally linked to the

physiological role played by these hormones in nutrient sensing

(13). Of relevance, whereas the effect of individual mutations on

lifespan and health span in humans is usually difficult to assess,

genomic analyses identified several differentially-represented aging-

associated genes in Laron syndrome (LS) patients (14–16).

The present review article summarizes recent data concerning

the linkage between the GH-IGF1 axis and aging. Our review

highlights mechanistic aspects that emerge from genomic,

bioinformatic and biochemical analyses of LS patients. These

studies identified new, previously unrecognized targets for GH-

IGF1 action and shed light on complex aging and longevity

processes (17).
Laron syndrome

Growth retardation in children is linked to multiple factors and

conditions. Cases in which no specific genetic, molecular or

biochemical defect can be identified are regarded as idiopathic

(5). Congenital IGF1 deficiencies are typically associated with low

serum IGF1 but normal to high GH levels (18). IGF1 deficiencies

may result from:
Fron
(1) GHRH-receptor (GHRH-R) defect;

(2) GH gene deletion (isolated GH deficiency, IGHD);

(3) GH receptor (GHR) gene deficiency (Laron syndrome, LS);

and

(4) IGF1 gene deletion.
Further conditions resulting in congenital IGF1 deficiency are

deficiencies of post-GHR signaling (e.g., STAT5 defects), acid-labile

subunit (ALS) mutations and pregnancy-associated plasma protein

A2 (PPA2) mutations (19–24). Congenital IGF1 deficiencies

provide an exceptional chance to address key physiological and
tiers in Endocrinology 02
pathological aspects of the GH-IGF1 axis. Even though these

diseases are very rare, fundamental paradigms were derived from

the analyses of these conditions, colloquially termed ‘experiments of

nature’ (3, 5, 25, 26).

Laron syndrome is the best described type of IGF1 deficiency

under the spectrum of the GH-IGF1 pathologies (27). The main

traits of LS children are short stature (-4 to -10 SDS below median),

characteristic face, adiposity, elevated serum GH and low IGF1,

insensitivity to GH administration (28–30). The identification of a

mutated GHR gene as the etiological factor underlying LS was first

reported in 1989 (31, 32). In subsequent studies, a series of GHR

gene anomalies were identified (33). These defects included exon

deletions and nonsense, frame shift and missense mutations.

Regardless of the variations in the GHR defects detected, the

outcomes in terms of phenotype were highly similar. Finally,

broad analyses of the disease over more than fifty years have had

a huge impact on our understanding of normal and pathological

growth (16, 18, 34).
Laron syndrome and cancer
protection

While a link between high IGF1 levels and enhanced cancer risk has

been recognized more than twenty-five years ago, a potential protective

role of low IGF1 dosages has been more difficult to demonstrate (35–

38). This last concept has been supported by an epidemiological study

conducted on a cohort of congenital IGF1 deficient patients, which

revealed a marked reduction in cancer incidence in homozygous

patients compared to their heterozygous relatives (39). The analysis

included 230 LS patients, 116 patients with IGHD, 79 patients with

GHRH-R defects, and 113 patients with congenital multiple pituitary

hormone deficiency (cMPHD)]. In addition, the study included 752 of

their first-degree family members. Among the 230 LS patients, not a

single one developed cancer. Among the 116 IGHD patients, only one

had a tumor. On the other hand, among first-degree family members

(mostly heterozygotes) 30 instances of cancer were reported.

Notwithstanding the fact that the total number of patients was

modest, differences between patients and relatives were regarded as

highly significant in statistical terms. Furthermore, while the total

number of LS patients worldwide is unknown, it is estimated that the

percentage of LS patients included in this epidemiological survey was

30-40% of the entire worldwide LS population (27, 30, 40).

The epidemiologic proof that patients with LS do not develop

cancer is of foremost clinical relevance. This discovery is in

agreement with the notion that the somatotrophic axis is of

critical importance in the cell’s ‘decision’ whether to engage in

proliferation or apoptosis (41, 42). Early studies have identified

IGF1 as a progression factor that is required for cell cycle transition

(43). Moreover, the bioactivities of IGF1 in the chain of events

leading from a normal cell to a malignantly transformed one have

been, to a large extent, dissected in biochemical terms. The

neoplastic traits include: growth factor independence,

chromosomal abnormalities, loss of cell-cell contact inhibition,
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activation of oncogenes, accumulation of mutations, and others

(44). The identification of pathways associated with IGF1 action

(“IGF1 signatures”) will have a great impact on the optimization of

therapeutic tools directed against this growth factor system.

Furthermore, these analyses will impinge on the ability to predict

responsiveness to anti-IGF1R selective drugs (45–48).
Cancer protection and aging
pathways exhibit a major overlap

As alluded to above, over the past decades the GH-IGF1 axis

emerged as a critical determinant of aging and longevity. While

cancer and aging are generally believed to constitute largely

opposite processes, modern lines of evidence support the concept

that cancer and aging might be regarded as different outcomes of

the same fundamental processes. These processes include, among

others, genomic instability, accumulation of cellular damage, etc

(Table 1) (13).

While increased IGF1 levels as well as constitutive activation of

the IGF1R are important risk factors in cancer, reduced activities of

the GHR, IGF1R, insulin receptor and downstream mediators (e.g.,

AKT, mTOR, FOXO) have been associated with a prolonged

lifespan (49). Paradoxically, classical studies have shown an

association between GH/IGF1 deficiency and a number of age-

related features (50, 51). Some of these traits include thinning of the

skin, excess adiposity, reduced muscle mass, reduced physical

performance, etc (Table 2). The fact that features associated with

GH deficiency, as detailed above, constitute manifestations of an

aging archetype that is, intuitively, opposed to that classically

correlated with enhanced longevity suggest the existence of

complex underlying signaling networks. Divergent actions of GH

and IGF1 might provide, at least in part, a biologically-plausible

explanation to the diametrically opposite patterns of aging

regulation depicted above. Furthermore, it is clear that it is not

always feasible to infer from flies and nematode models into human

biology (52). Hence, extreme care should be exerted when

performing such extrapolations. The important role of the IGF1

axis in mitochondrial biology and oxidation processes and,

particularly, the impact of these processes on senescence is

described below.
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The GH-IGF1 axis and lifespan: studies
in humans

The potential impact of the age-associated decrease in GH and

IGF1 levels on lifespan and health span has been a matter of debate

(53–55). Examination of prospective correlations of serum IGF1

with mortality, vascular disease, dementia, osteoporosis, diabetes

and cancer, led to the identification of two general patterns (56).

First, younger persons with high IGF1 are, for the most part,

protected from disease. In contrast, older individuals with

elevated IGF1 are at risk for occurrence of disease or death.

Second, the correlation between IGF1 levels and disease risk is U-

shaped. Hence, both high and low IGF1 concentrations might be

harmful. Cancer, which is generally positively correlated with IGF1

levels, should be regarded as an exception to this U-shaped pattern.

As a corollary, IGF1 signaling could be detrimental in older adults.

Patients with LS who were not treated with IGF1 constitute a

unique prototype for evaluating the impact of genetically low IGF1

on lifespan and health span (30). We can state with a high degree of

confidence that lifelong IGF1 deficiency in untreated LS patients

does not appear to noticeably prolong their lifespan. On the

contrary, if their cardiovascular and metabolic problems are not

treated in time, their lifespan might be shortened. In conclusion and

despite the absence of definite epidemiological substantiation on

longevity in congenital IGF1 deficiencies, the pivotal role of the GH-

IGF1 network in the control of lifespan, as described above, has

been extensively documented in various animal models.
Genomic analysis of LS patients
identifies TXNIP as a novel IGF1 target
gene linked to senescence regulation

Recently conducted genomic analyses of LS patients reported

the identification of differentially expressed signaling pathways and

genes in immortalized lymphoblastoid cells. Patients were

compared to age-, gender- and ethnicity-matched controls (14,

15). Bioinformatics analyses allowed the clustering of differently

expressed genes on the basis of their biological roles (Figure 1).

Among other biological categories, fifteen percent of the identified

genes participated in metabolism. Given the central regulatory role
TABLE 1 Common biochemical and cellular processes underlying cancer
and aging.

Accumulation of cellular damage

Genomic instability

Epigenetic alterations

Deregulated nutrient sensing

Mitochondrial dysfunction

Stem cell exhaustion

Cellular senescence

Telomere attrition
TABLE 2 Resemblance between GH deficiency and aging.

Thinning of skin (wrinkling)

Excess of adipose tissue (obesity)

Decline in b-cell function

Enhanced insulin resistance (type 2 diabetes)

Reduced lean body mass (muscle reduction)

Reduced physical performance

Reduced mineral density (osteoporosis)

Elevated serum cholesterol
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of IGF1 and insulin in the metabolism of cancerous cells, it is logic

to assume that adjustments in the expression of metabolic genes

may be mechanistically relevant towards the acquisition of a

transformed phenotype (16).

The thioredoxin-interacting protein (TXNIP) was identified in

genomic analyses as one of the top upregulated genes in LS. TXNIP

(57) is an important player in several cellular processes, including

metabolism and apoptosis (58–60). For example, TXNIP inhibits

glucose uptake, with important consequences in terms of cell

metabolism (61). TXNIP stabilizes p16 and p27, two Cdk inhibitors,

with ensuing inhibition of cell division (62). Based on these activities,

TXNIP is classified as a member of the cell cycle inhibitory enzymes. In

agreement with this classification, downregulation of TXNIP is

regarded as a prerequisite for cell division. Hence, TXNIP operates

as a bona fide tumor suppressor (63–65).

Genomic analyses discovered a functional link between IGF1

and TXNIP (66, 67). Specifically, TXNIP was shown to be expressed

at high levels in LS cells. Given that TXNIP has a key role in cellular

redox regulation, and in view of the fact that IGF1 controls TXNIP

levels under various stress situations (e.g., high glucose, oxidative

stress), we postulated that the IGF1-TXNIP loop has a crucial role

in helping achieve an optimal balance in cellular homeostasis. Our

data demonstrated that TXNIP is of vital importance for the cell fate

choice, particularly when cells are confronted with different stress

signals (Figure 2).

The cell state known as cellular senescence has been shown in

recent years to be implicated in several physiological processes as

well as in a number of age-related disorders (68–70). Senescence is

usually tied to senescence-associated growth arrest, which is
Frontiers in Endocrinology 04
characterized by a senescence-associated secretory phenotype.

Our studies have provided evidence that extended IGF1 treatment

in vitro stimulates the acquisition of a premature senescence

phenotype. This phenotype is typified by a unique senescence

signature (67). Hence, IGF1 plays a dual role by stimulating

mitosis and survival following short-term treatment while

inducing premature senescence after long-term exposure (Figure 3).

Laron syndrome is associated with
dysregulation of MIR132-3P: impact
on aging genes

In addition to the transcriptional analyses depicted in the

previous section, genome-wide surveys were conducted to identify

microRNAs (miRs) that are differently expressed in LS. We

hypothesized that differently represented miRs might account for,

at least part of, the phenotypic traits of LS patients. MiRs are

endogenous short non-coding RNAs that control the expression of

complementary mRNAs (71–73). MiRs pair to specific protein-

coding mRNAs, with ensuing post-transcriptional silencing of

target genes. miRs are involved in multiple processes. These

processes include cell death and proliferation, patterning of the

nervous system and hematopoiesis. Finally, a number of miRs that

are involved in the modulation of members of the IGF signaling

pathway have been identified (74–76).

MiR-132-3p affects a number of biological functions (e.g.,

inflammation, angiogenesis, neuronal differentiation, etc) and

therefore is considered a key miR (77). Our analyses showed that
FIGURE 1

Genome-wide profiling of LS patients. Cluster analysis of differentially expressed genes in LS patients (n =4) compared to healthy controls (n = 3) of
the same gender, age, and ethnic origin was conducted. Functional analyses were performed to find co-expressed genes sharing the same
pathways. Analyses provide evidence for a number of shared pathways, including cell adhesion, G-protein signaling pathway, cell migration and
motility, immune response, Jak-STAT signaling, apoptosis, etc. About 15% of the differentially expressed genes were involved in metabolic pathways.
For the most part, genes involved in the control of cell cycle, motility, growth, and differentiation were downregulated in LS-derived lymphoblastoid
cell lines compared with controls.
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miR-132-3p is highly expressed in LS. Given that LS is associated

with low IGF1 levels, we postulated that miR-132-3p is negatively

regulated by IGF1. Bioinformatics analyses helped identify a series

of genes whose expression is modulated by miR-132-3p. Lastly, the

mechanistic aspects of the IGF1-miR-132-3p regulatory loop are yet

to be elucidated.

Using genome-wide analyses we identified SIRT1 as a target for

inhibitory miR-132-3p control. These results are in accord with

Hadar et al. (78), who reported a 4-fold lower expression of SIRT1

and a higher expression of miR-132 in Alzheimer’s disease patients.

SIRT1 is a member of the sirtuins family, a group of mammalian

class III histone deacetylases. Sirtuins were mainly investigated in

the context of health span and longevity. SIRT1 controls

mitochondrial, endocrine and hypothalamic functions (79–82). In
Frontiers in Endocrinology 05
addition, SIRT1 is involved in memory formation in the brain by

promoting axonal elongation and dendritic branching and by

modulating synaptic plasticity (83). Of particular relevance,

SIRT1 has been widely investigated in the context of longevity

and neuroprotection. Taken together, the identification of SIRT1 as

a downstream target for miR-132-3p provides the physical

foundation for the link between disruption of the GH-IGF1 axis

and prolonged lifespan (84).
Conclusions

The GH-IGF1 endocrine system has a critical role in

determining lifespan, longevity and aging processes. We
FIGURE 3

Schematic representation of short- versus long-term IGF1 treatment. Whereas short-term IGF1 stimulation is usually associated with cell proliferation and,
potentially, tumorigenesis, prolonged IGF1 stimulation leads to cellular senescence via interaction with mitochondrial protein TXNIP.
FIGURE 2

Interplay between IGF1 and TXNIP in regulation of cell survival and homeostasis. TXNIP was shown to be upregulated under normal physiological
stress conditions like starvation, oxidative and glucose stresses. Upregulated TXNIP initiates apoptosis by interacting with thioredoxin and
translocating to mitochondria (left panel). Cellular stress in the presence of IGF1 (right panel) might lead to marked downregulation of TXNIP levels
with ensuing deregulated cell growth, including cancer.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1291812
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Werner and Laron 10.3389/fendo.2023.1291812
postulated that life-long deficiency of IGF1 in LS might activate

cancer-protecting pathways at the organismal level, including

apoptotic and autophagic mechanisms. In parallel, diminished

IGF1 signaling might have a significant impact on nutrient

sensing and response to oxidative stress, leading to an extended

lifespan (at least in animal models). Our comprehensive analyses

have identified a number of new targets for IGF1 action whose over-

or under-representation in LS might be linked to cancer evasion

and, possibly, extended lifespan. The worldwide dispersion of the

small number of patients with genetic IGF1 deficiency hinders to

reach a definite conclusion.

The identification of miR-132-3p as a top upregulated miR in

LS is of major interest. We may envision a scenario in which low

IGF1 concentrations in patients lead to enhanced miR-132-3p

levels. In turn, this specific miR is directly responsible for SIRT1

inhibition and, most probably, additional gene expression. The

transcriptional and epigenetic mechanisms that control the

concerted expression of the IGF1-miR-132-3p-SIRT1 axis are yet

to be dissected.

Finally, by mining genomic and epigenomic data from LS

patients we might be able to generate new clinical information.

This information will eventually translate into new avenues of

research in the areas of aging, metabolism and oncology. We

believe that our results may shed light on genetic and epigenetic

events associated with increased lifespan in models of IGF1

deficiency. These studies might have a major translational impact

in medicine.
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et al. Novel insulin-like growth factor 1 gene mutation: broadening of the phenotype
and implications for insulin resistance. J Clin Endocrinol Metab (2023) 17:1355–69. doi:
10.1210/clinem/dgac738
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senescent cells in translational medicine. EMBO Mol Med (2019) 11:e10234. doi:
10.15252/emmm.201810234

69. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical
potential of senolytic drugs. J AmGeriatr Soc (2017) 65:2297–301. doi: 10.1111/jgs.14969

70. Karin O, Agrawal A, Porat Z, Krizhanovsky V, Alon U. Senescent cell turnover
slows with age providing an explanation for the Gompertz law. Nat Commun (2019)
10:5495. doi: 10.1038/s41467-019-13192-4

71. Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med
(2008) 40:197–208. doi: 10.1080/07853890701771823

72. Zalts H, Shomron N. The impact of microRNAs on endocrinology. Ped
Endocrinol Rev (2011) 8:354–62.

73. Hobert O. Gene regulation by transcription factors and microRNAs. Science
(2008) 319:1785–6. doi: 10.1126/science.1151651

74. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, et al. MicroRNA-7
targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell
carcinoma cells. Biochem J (2010) 432:199–205. doi: 10.1042/BJ20100859

75. McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, Birks DK, et al. A
novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by
EWS/Fli1-regulated microRNAs. Oncogene (2011) 30:4910–20. doi: 10.1038/
onc.2011.197

76. Dobre M, Herlea V, Vladut C, Ciocirlan M, Balaban VD, Constantinescu G, et al.
Dysregulation of miRNAs targeting the IGF-1R pathway in pancreatic ductal
adenocarcinoma. Cells (2021) 10:1856. doi: 10.3390/cells10081856
Frontiers in Endocrinology 08
77. Li D, Wang A, Liu X, Meisgen F, Grünler J, Botusan IR, et al. MicroRNA-132
enhances transition from inflammation to proliferation during wound healing. J Clin
Invest (2015) 125:3008–26. doi: 10.1172/JCI79052

78. Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J,
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