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Recent research has emphasized the interaction between the circadian clock

and lipid metabolism, particularly in relation to tumors. This review aims to

explore how the circadian clock regulates lipid metabolism and its impact on

carcinogenesis. Specifically, targeting key enzymes involved in fatty acid

synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a

potential strategy for cancer therapy. By disrupting these enzymes, it may

be possible to inhibit tumor growth by interfering with lipid metabolism.

Transcription factors, like SREBP play a significant role in regulating fatty acid

synthesis which is influenced by circadian clock genes such as BMAL1, REV-

ERB and DEC. This suggests a strong connection between fatty acid synthesis

and the circadian clock. Therefore, successful combination therapy should

target fatty acid synthesis in addition to considering the timing and duration

of drug use. Ultimately, personalized chronotherapy can enhance drug

efficacy in cancer treatment and achieve treatment goals
KEYWORDS

circadian clock, lipid metabolism, cancer, fatty acid synthetic, SREBP
1 Introduction

Cancer is a major global public health issue due to its high incidence and the metabolic

reprogramming, immune evasion, proliferative signaling, growth suppression avoidance,

cell death resistance, replication immortality, angiogenesis induction, invasion and

metastasis activation it entails (1). Tumor cells undergo lipid metabolic reprogramming
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1292011/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1292011/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1292011/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1292011/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1292011&domain=pdf&date_stamp=2023-12-22
mailto:003640@hnucm.edu.cn
https://doi.org/10.3389/fendo.2023.1292011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1292011
https://www.frontiersin.org/journals/endocrinology


Liu et al. 10.3389/fendo.2023.1292011
through de novo lipogenesis involving key transcription factors such as

sterol regulatory element binding protein (SREBP), ATP citrate lyase

(ACLY), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN)

and stearoyl-CoA desaturase 1 (SCD1). Unhealthy lifestyle habits like

shift work disrupt circadian rhythm which can contribute to the

development of diabetes and cancer. Shift work is classified as a

potential human carcinogen due to its disruption of circadian

rhythms that regulate crucial biological processes leading to

abnormal cell proliferation, gene mutation, and resistance to

apoptosis (1–3). Research has also demonstrated that circadian clock

genes and lipid metabolism play a role in cancer development by

regulating signaling pathways and metabolites.

In this article, we have provided a comprehensive analysis of lipid

metabolism and clock genes, with focus on SREBP as key factor. We

have summarized the impact of transcription factors involved in de

novo lipogenesis on lipid metabolism, as well as their mechanism of

intersection with circadian clock genes. Furthermore, we have

examined the interaction relationship between transcription factors

responsible for de novo fatty acid synthesis, clock genes and cancer.

Lastly, we have reviewed the advancements in utilizing circadian clock

and lipid metabolism in cancer treatment and discussed their potential

application in clinical therapies.
2 Circadian clock and
lipid metabolism

2.1 The molecular mechanism of circadian
clock genes

The Circadian clock is a regulatory system consisting of clock genes

and controlled genes, which regulate the rhythmic movement of

physiological and metabolic activities in organisms and synchronizes

it with the changes in the environment. This regulation is mainly

controlled by core transcription genes and their downstream regulated

genes, which control the metabolic rhythm by regulating protein

synthesis and degradation. The central clock system is located in the

suprachiasmatic nucleus (SCN) of the hypothalamus, while the

peripheral clock system is found in organs such as liver, spleen, lung,

kidney, colon, adipose tissue and muscle. Light signals are converted

into electrical signals by retinal ganglion cells and transmitted to the

SCN through optic nerve tract to form rhythmic periodic activities that

maintain organism homeostasis. Additionally, light signals can also be

transmitted to the peripheral clock via neural and humoral pathways to

synchronize them with external environment forming circadian

rhythms (4). However, factors like body temperature, diet, and

hormone levels also influence circadian oscillations (5–8). Before

exploring the relationship between the circadian clock and lipid

metabolism disorders as well as impact on cancer development, it’s

important to understand how molecular mechanisms produce

circadian oscillations within the circadian clock system (Figure 1).

The circadian oscillation is a self-regulating transcription-

translation feedback loop (TTFL) that occurs periodically through

the expression of circadian clock genes. Core clock genes, including

ARNTL/BMAL1 and CLOCK as activators, and PER1,2,3 and CRY1,2
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as repressors (9), are involved in this process. Transcription and

translation of clock genes require cis-regulatory elements such as E-

box, D-box, and RORE (ROR-elements). BMAL1 forms a heterodimer

with CLOCK or NPAS2 to bind to the E-box regulatory elements on

PER and CRY genes for transcription initiation (10–12). PER and CRY

proteins form heterodimers in the cytoplasmwhich interact with casein

kinase 1d (CK1d) and CK1ϵ kinases to undergo phosphorylation

before translocating into the nucleus (13). In the nucleus, they

combine with BMAL1-CLOCK heterodimers to form a quaternary

complex that inhibits CLOCK-BMAL1 activity. This leads to reduced

transcriptional activation of PER and CRY genes forming a negative

feedback loop (14, 15). As CLOCK-BMAL1 complex activity is

inhibited by this interaction, levels of PER and CRY proteins

decrease. Once bound to F-box regulatory elements, specific E3

ubiquitin ligase complexes ubiquitinate PER and CRY proteins,

leading to their degradation by the proteasome. This relieves

inhibition on CLOCK-BMAL1 complex allowing for initiation of

new rounds of transcription (15–17). The activity of BMAL1-

CLOCK heterodimer is influenced by both ROR and REV-ERB

proteins. BMAL1 and CLOCK activate REV-ERB by binding to its

promoter region. In response, REV-ERB accumulates and competes

with ROR for ROREs in the promoter region of BMAL1, inhibiting its

transcription (18). Meanwhile, RORs compete to activate BMAL1

transcription, forming a secondary feedback loop. Additionally, the

clock-controlled gene DEC (Deleted in Esophageal Cancer) forms an

autoregulatory feedback loop through encoding basic helix-loop-helix

(bHLH) transcription factors. DEC directly binds to the BMAL1

protein or CLOCK-BMAL1 complex and competes to suppress their

expression by inhibiting E-box promoters (19–24). Clock genes play a

crucial role in tumorigenesis by regulating oncogenes and tumor

suppressors. We have started exploring the key signaling pathways in

carcinogenesis based on the molecular mechanism of circadian

clock genes.
2.2 Molecular mechanisms of
lipid metabolism

Lipids maintain cell structure, provide energy, and regulate

cellular signaling. Lipid metabolism is regulated by various

signaling pathways and produces different intermediates.

Disturbances in lipid metabolism affect lipid levels, cell

membrane composition, and permeability, thereby impacting the

regulation of signaling pathways that contribute to cancer

progression. Lipids consist of triacylglycerols (TAG), which are

composed of fatty acids (FA) and glycerol, as well as adipoid. The

majority of fatty acids in the body come from exogenous sources

through food intake, while de novo FA synthesis contributes only a

small proportion (25). Tumor cells enhance the de novo FA

synthesis pathway to promote cancer cell biofilm formation and

increase membrane lipid saturation. This alteration affects essential

life processes such as cellular signaling and gene expression,

supporting rapid cell proliferation and promoting cancer

progression (26–28). Therefore, maintaining lipid homeostasis is

crucial for human health, making research on lipid metabolism
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disorders an important focus in oncology. Understanding its

molecular mechanism is necessary (Figure 2).

From previous studies, we know that Fatty acyl-CoA is transported

across the mitochondrial membrane by carnitine palmitoyl transferase

1 (CPT1) and enter mitochondria for fatty acid b-oxidation (FAO),

producing acetyl-CoA. Acetyl-CoA then enters the tricarboxylic acid

(TCA) cycle to generate adenosine triphosphate (ATP) for energy

production and combines with oxaloacetate to form citrate. Citrate is

transported into the cytoplasm by a solute carrier family 25 member

protein (SLC25-A), which is activated by SREBP1 (29). In the

cytoplasm, citrate is converted into acetyl-CoA and oxaloacetate by

ACLY. Under the action of ACLY, ACC and FASN, acetyl-CoA

generates fatty acids in a closed circuit that regulate fatty acid

metabolism in the body. The conversion of FA to monounsaturated

fatty acids (MUFA) occurs through SCD (30). Cancer cells increase

lipogenesis to promote their proliferation, and SREBP, a key

transcription factor in FA synthesis, plays a central role in this

process. It can affect the expression of ACLY, ACC, FASN and

SCD1 at multiple stages of lipid biosynthesis (31, 32). SREBP

consists of three subtypes: SREBP1a, SREBP1c and SREBP2 which

regulate the expression of different lipid synthesis-related genes (33).

SREBP1a and SREBP1c are encoded by the unigenes SREBF1 and

mainly control the expression of lipogenic genes, while SREBP2,

encoded by the unigenes SREBF2, primarily regulates cholesterol

biosynthesis genes (34). Here, we focus on SREBP1. Previous studies

have found that SREBP cleavage-activating protein (SCAP) binds to
Frontiers in Endocrinology 03
INSIGs protein in a sterol-dependent manner to form INSIGs/SCAP/

SREBP1 complex stored in the endoplasmic reticulum (ER). At low

sterol levels, SCAP dissociates from INSIG proteins and forms a

complex with SCAP-SREBP1 that binds to coat protein complex–II

(COP II) in the ER for translocation to the Golgi. In the Golgi, under

the action of site 1 protease (S1P) and Site 2 protease (S2P), proteolysis

occurs resulting in activation of nuclear translocation for increased FA

biosynthesis through activation of target genes (35). When sterol

content increases, changes occur in SCAP’s structure due to

activation of its sterol sensing domain. This prevents entry into ER

affecting vesicular transport from ER to Golgi and subsequently halts

transcriptional regulation of FA synthesis (33, 36).

Peroxisome proliferator-activated receptor alpha (PPARa) is

considered to be a crucial FA sensor (37). Its natural ligands include

various FAs such as linoleic acid, oxidized fatty acids, and

prostaglandin J2 (38, 39). PPARa mRNA is mainly expressed in

tissues that oxidize fatty acids, such as the liver, heart, brown

adipose tissue, kidney, and intestine (40). It regulates key

transcriptional pathways involved in mitochondria, peroxisome

and microsomal FAO as well as other lipolysis processes.

Additionally, it plays a role in cellular functions like proliferation

and metabolism. PPAR a mRNA is essential for maintaining

nutrient homeostasis and lipid metabolism (38), while also

regulating energy balance through activation of FA catabolism

and stimulating of gluconeogenesis (41). Activation of PPARa
increases the expression of acyl-CoA oxidase, CPT1, malonyl-
FIGURE 1

Molecular mechanisms of circadian clock. BMAL1 and CLOCK complex bind to the E-box and control gene promoters, including the genes for REV-
ERBs, CRY, PER, and DEC. PER and CRY bind to CK1d or CK1ϵ and translocate to the nucleus, where they inhibit their own transcription. DEC inhibits
E-box promoters by directly binding to BMAL1 protein or CLOCK-BMAL1 complex and competing to suppress their expression. REV-ERBs compete
for RORE in the promoter region of BMAL1 to inhibit its transcription. CLOCK-BMAL1 isoform can directly promote the circadian expression of
NAMPT through the E-box of its promoter, thereby improving the circadian level of NAD+ and increasing the activity of SIRT1. Increased SIRT1
activity inhibits CLOCK-BMAL1 complex expression, forming a feedback loop that controls the circadian expression of core clock genes.
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CoA decarboxylase to enhance FA and triglycerides oxidation.

Furthermore, PPARa activation down-regulates FASN and

SREBP1 expression to impact de novo fatty acid synthesis (38, 42,

43). By binding to the PPAR response element (PPRE) in the

promoter region, PPAR a up-regulates INSIG gene expression

while inhibiting nuclear transfer of transcription factor SREBP1c

to suppress FA production (44). Moreover, peroxisome

proliferator-activated receptor g coactivator b (PGC-1b), a

transcription cofactor interacting with SREBP1c, can induce lipid

synthesis-related gene transcription (45).

The activation of SREBP1c, a key transcription factor regulating

lipid metabolism, in cancer cells and its impact on FA synthesis make it

an important research focus for understanding tumorigenesis.
2.3 The relationship between circadian
clock and lipid metabolism mechanism

The hypothalamus regulates the circadian rhythms of diet and

energy metabolism, which in turn affect lipid metabolism through

the active expression of metabolic enzymes and transport systems

(46, 47). Lipids are primarily stored as TAG in the human body.

Core clock genes control adipose lipolysis by regulating TAG levels

(48). Deletion of both REV-ERBa and REV-ERBb has been found
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to cause severe defects in lipid metabolism, including significant

increased TAG levels in the liver and hepatic steatosis (49, 50).

Numerous studies have shown that disruption in circadian clock

function can lead to disorders in lipid metabolism (51). The

circadian clock plays a crucial role in maintaining lipid

homeostasis by rhythmically activating and regulating proteins

involved in lipid transport, synthesis, and degradation (Figure 3).

Circadian variation in FA synthesis is partly mediated by the

circadian clock’s effects on SREBP1c and its downstream targets

(52, 53). Sirtuin 1 (SIRT1) deacetylates SREBP1c, inhibiting its

activity and reducing occupancy on the promoter of lipogenesis

genes. Increasing SIRT1 expression can enhance deacetylation of

SREBP1c and suppress its expression, thereby inhibiting FA

synthesis (54). SIRT1 is a NAD+-dependent histone deacetylase

(HDAC) and a member of the HDAC family. Nicotinamide

phosphoribosyltransferase (NAMPT) is the key enzyme of in

NAD+ biosynthesis. The CLOCK-BMAL1 isoform directly

promotes circadian expression of NAMPT, increasing the level of

NAD+ and activating SIRT1. Increased SIRT1 activity inhibits

CLOCK-BMAL1 complex expression, forming a feedback loop

that controls circadian expression of core clock genes (55–57).

DEC1 and DEC2 clock-controlled gene, regulate FA synthesis by

inhibiting lipogenesis in the liver through binding to the promoter

region of SREBP1c (58, 59). FASN and ACC also exhibit circadian
FIGURE 2

Molecular mechanisms of de novo fatty acid synthesis. As a key lipid source gene, SREBP is an important transcription factor throughout the
process. The INSIG/SCAP/SREBPs complex is stable in the ER. When sterol levels decrease, SCAP dissociates from INSIG and facilitates the inclusion
of SCAP/SREBP into COPII-coated vesicles for subsequent transport to the Golgi. PPAR a up-regulates the expression of the INSIG gene by binding
to the PPRE in the promoter region and inhibits the nuclear translocation of the transcription factor SREBPs. SREBPs undergoes proteolysis under
the action of S1P and S2P, and then translocate to the nucleus to activate SREBP target genes (such as FASN, SCD1, ACC, and ACLY). Citrate is acted
upon by ACLY to form acetyl-CoA and oxaloacetate. Acetyl-CoA is converted into FA under the action of FASN. Acetyl-CoA is converted into
Malonyl-CoA under the action of ACC, and then Malonyl-CoA is converted into FA under the action of FASN (Conversion of FA to MUFA by SCD).
SIRT1 and PGC-1b can inhibit SREBP1 in the nucleus.
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fluctuations in adipose tissue and liver regulated by clock genes (60,

61). REV-ERBs effectively inhibit the expression of FASN, SCD1

and PGC-1b to impact FA synthesis (32, 62, 63).

PPARa directly binds to the circadian clock promoter,

maintaining circadian oscillations of the BMAL1 gene in brain

and muscle (64). BMAL1 regulates PPARa expression (65), while

REV-ERBs is also a target gene of PPARa (66). The BMAL1-

CLOCK complex activates PPARa by binding to the E-box (67). In

turn, the response element of PPARa binds to the promoters of

BMAL1 and REV-ERBs genes, activating their expression (65, 66).

This highlights the close relationship between the circadian clock

and FA metabolism. Previous studies have shown that both

circadian clock and lipid metabolism disorders significantly

impact carcinogenesis. Further research aims to understand key

signaling pathways connecting circadian clock and lipid

metabolism disorders in tumorigenesis, providing new directions

for future investigations.
3 Effects of lipid metabolism
transcription factors on
cancer development

Although cancer types and genetic alterations vary, cancer is

characterized by abnormal cell growth and proliferation, resulting

in increased energy and macromolecules demands. These demands

necessitate the synthesis of cellular building blocks such as nucleic
Frontiers in Endocrinology 05
acids, proteins, and lipids (68). Lipid synthesis is particularly

enhanced in malignant tumors (68, 69), contributing to their

aggressiveness. In fact, lipid synthesis is generally upregulated in

human cancers (70), with 95% of tumor cell fat derived from

endogenous de novo lipogenesis compared to normal cells (71).

Notably, the key transcription factor SREBP1 and its downstream

lipid-derived genes ALCY, ACC, FASN, and SCD1 play crucial roles

across various tumors (Table 1).
3.1 SREBP1

SREBP1 primarily controls the expression of lipogenic genes

(121). It acts as a key transcription factor regulating de novo

lipogenesis and lipid homeostasis. In tumor cells, SREBP1 plays a

crucial role in promoting growth, survival, proliferation, apoptosis,

invasion and metastasis (72, 73, 122, 123). Overexpression of

SREBP1 is closely associated with cancer progression and

metastasis. Conversely, knockdown of SREBP1 reduces the

expression of FA synthesis genes, inhibits cancer cell

proliferation, and suppresses tumor growth (124). SREBP1 plays a

significant role in promoting lipogenesis and tumor growth in

breast cancer (BRCA), hepatocellular carcinoma (HCC),

Esophageal squamous cell carcinoma (ESCC), pancreatic cancer

(PAAD), and gastric cancer (GC) (74, 80, 125). Inhibition of

SREBP1 can hinder tumor progression and metastasis. SREBP1

also plays a role in chemotherapy resistance among cancer cells

which has been associated with reduced patient survival rates.
FIGURE 3

Molecular mechanisms of FA synthetic and circadian clock. FA synthetic and circadian clock networks have multiple interwoven negative feedback
loops, such as BMAL1/DEC/SREBP1, PPARa/INSIG/SREBP1, BMAL1/SIRT1/SREBP1 and REV-ERBs/PGC-1b/SREBP1. The circadian network regulates
the circadian expression of FA synthesis genes and metabolites through feedback loops.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1292011
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1292011
Targeting SREBP1 can inhibit lipid synthesis, gemcitabine-induced

CSCs, increases sensitivity to gemcitabine, reducing chemical

resistance, and ultimately improving patient survival rates (75,

126, 127). In addition to chemical resistance, Osimertinib

facilitated degradation of mature form of SREBP1 and reduced

protein levels regulated by genes in EGFR-mutant NSCLC. This

inhibition leads to decreased lipogenesis, cancer cells apoptosis, and

reduced acquired resistance to Osimertinib (76). Moreover,

inhibition of SREBP1 results in lipid peroxidation. Patients with

EGFR-mutated NSCLC developed resistance to gefitinib following

targeted therapy. However, SREBP1 restoration restores their

sensitivity to gefitinib and exhibits synergistic effects on anti-

proliferation and pro-apoptosis (77–79). In conclusion, SREBP1 is

generally up-regulated in CRC, HCC, PRAD, BRCA, THCA,

NSCLC and PAAD, which aligns with its role in regulating lipid

homeostasis in human cells.
Frontiers in Endocrinology 06
3.2 SCD1

SCD1, a rate-limiting enzyme in MUFA biosynthesis, is

overexpressed in lung cancer, BRCA and OV (128–132). Inhibiting

SCD-induced accumulation of MUFA leads to cancer cell death (133),

and SCD1 has also been identified as a marker of CSCs in CRC (134).

Increased expression of SCD1 is associated with tumor progression and

poor prognosis (30, 135). Its expression is regulated by factors such as

the millet bran (a total polyphenol consisting of 12 compounds

extracted from foxtail millet bran, BPIS), Hypoxia-inducible factor-

1a (HIF-1a), and miR-433-3p. Targeting SCD1 may be a potential

therapeutic strategy for different cancers (81, 82, 86). Cancer cells rely

on regulating SREBP1 expression as well as activating both SCD1 and

FASN to promote lipogenesis and proliferation (87, 88). In genetic and

pharmacological studies, inhibiting SCD1 alters cellular lipid

composition which disrupts plasma membrane fluidity leading to
TABLE 1 Association of de novo fat synthesis genes with tumor development.

Factor Notes Disease Proposed function References

SREBP1 Downregulation Ovarian cancer (OV), Clear cell renal cell carcinoma (ccRCC),
Pancreatic cancer (PAAD)

Anti-proliferative, anti-migration, anti-invasion
and pro-apoptotic

(72–75)

Non–Small-Cell Lung Cancer (NSCLC) Reduce chemotherapy resistance and
acquired resistance

(76–79)

Upregulation Breast cancer (BRCA) Enhanced proliferative, migration and invasion (80)

SCD1 Downregulation Prostate cancer (PRAD), BRCA, Hepatocellular carcinoma (HCC),
Endometrial cancers (EC)

Anti-proliferative and anti-invasion. (30, 81–85)

Upregulation Nasopharyngeal carcinoma (NPC), Colorectal Cancer (CRC),
(Gastric cancer) GC

Pro-proliferative and pro-migration,
poor prognosis.

(86–88)

HCC Enhance drug sensitivity (89, 90)

FASN Downregulation NSCLC, EC, Esophageal squamous cell carcinoma (ESCC),
CRC, PRAD

Anti-proliferative, anti-migration, anti-invasion
and pro-apoptotic.

(91–98)

NPC Enhanced radiotherapy sensitivity (99)

Upregulation NPC Pro-proliferative, pro-invasion and
pro-migration,

(100)

ACLY Downregulation PRAD, NPC, HCC Anti-proliferative, anti-migration and
pro-apoptotic.

(101–104)

BRCA Improve curative effect (104)

OV Reduce chemotherapy resistance. (105)

HCC Enhance cancer stem cell. (106, 107)

Upregulation HCC, PRAD Pro-proliferative, pro-invasion and
pro-migration

(108, 109)

ACC Downregulation NSCLC, HCC Anti-proliferative, anti-migration and
pro-apoptotic.

(110–112)

Upregulation PRAD Enhanced hormone resistance (113)

PPAR Downregulation BRCA, NSCLC, Shortened survival and pro-migration (114, 115)

RCC, BRCA, lung cancer Anti-proliferative, anti-migration and
pro-apoptotic

(116–119)

Upregulation HCC Pro-apoptotic (120)
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inhibiting of HCC cell invasion in vitro, which could serve as a

biomarker for HCC aggressiveness (30, 83). Studies on FA

metabolism in EC have shown that reducing SCD1 expression can

inhibit EC growth (84). SCD1 has been associated with drug resistance

acquisition. The multikinase inhibitor sorafenib targets SCD1 through

the ATP-AMPK-mTOR-SREBP1 pathway to suppress MUFA

synthesis, disrupt lipogenesis, induce liver cancer cell death, and

enhance sensitivity to sorafenib (89, 90) Docetaxel effectively impedes

the tumor progress in PRAD by down-regulating mRNA and protein

levels of SREBP1 and SCD1. This enhances docetaxel’s anti-

proliferation, anti-migration and anti-invasion capabilities (85).
3.3 FASN

FASN up-regulation promotes cancer progression by enhancing

lipid synthesis and signaling pathways, while its inhibition can

impede tumor development and indicate poor prognosis.

Compared to normal human tissues, increased FASN expression

promotes endogenous FA synthesis in various cancer tissues (91–

94, 136–138). FASN is associated with tumor invasiveness, and

increased expression of FASN is positively correlated with lipid

droplet formation and enhanced cancer cell activity. FASN

regulates metabolic disorders and can indicate poor prognosis

(139–142). Various compounds have been found to reduce FASN

expression and inhibit lipogenesis, demonstrating potential

anticancer activity such as extract of eriobotrya japonica and

Davallia formosana, Oridonin (95–97). Additionally, Long

intergene non-coding RNA2570(LINC02570) promotes NPC

progression by up-regulation SREBP1 and FASN through miR-

4649-3p (100). In the reprogramming of lipid metabolism that

occurs in cancer-associated fibroblasts (CAF), FASN is significantly

increased in CAF, enhancing colorectal cancer cell migration (98,

143). Moreover, FASN inhibitors can enhance the effects of

chemotherapy drugs, restore tumor sensitivity to treatment, and

inhibit tumor growth in resistant cancer cells (144, 145).

Combination therapy with FASN inhibitors and other targeted

therapies or radiotherapy shows promising therapeutic effects

(146). Additionally, some studies have demonstrated that

inhibiting the FASN gene significantly increases nasopharyngeal

carcinoma cell sensitivity to radiotherapy (99).
3.4 ACLY

ACLY is up-regulated in various tumors and plays a crucial role

in cancer cell proliferation, growth, migration and apoptosis (147–

149). Its overexpression provides energy for malignant proliferation

of tumor cells and promotes their progression (101). Increased

expression of ACLY and SCD1 mRNA in HCC leads to enhanced

FA synthesis, resulting in cell proliferation and deterioration of

HCC (108). Modulating the expression of ACLY and FASN through

SREBP1 affects de novo lipogenesis production in PRAD cells,

promoting cell proliferation (109), which is consistent with the

inhibitory effects observed upon ACLY knockdown in NPC and

PRAD that inhibit tumor cell migration and growth (102, 103).
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Targeting ACLY can synergistically enhance the efficacy of targeted

therapy and chemotherapy while reducing drug resistance. The

ACLY inhibitor BMS-303141 induces apoptosis in HCC cells when

combined with sorafenib to improve therapeutic efficacy (101).

Competitive inhibition of ACLY by Hydroxycitric acid enhances

tamoxifen’s toxic effect on breast cancer cells, improving its efficacy

(104). Down-regulation of ACLY promotes apoptosis in ovarian

cancer cells while attenuating cisplatin resistance (105). Increased

levels of FASN and ACLY contribute to cancer stem cell-like

properties, self-renewal induction, cellular steatosis, affecting HCC

progression (106, 107). Additionally, ACLY has emerged as a

potential biomarker for predicting breast cancer recurrence (150).
3.5 ACC

ACC plays a crucial role in de novo lipogenesis and its inhibition

can hinder tumor nutrient supply and development, making it a

potential target for cancer treatment. It has been reported that

FASN utilizes ACC for de novo lipogenesis (151). The regulation of

de novo lipogenesis affects the tumor’s energy supply and is divided

into two phenotypes: ACC1 (ACCa or ACACA) and ACC2 (ACCb
or ACACB) (152). ACC1 is highly enriched in lipid tissues, while

ACC2 occurs in oxidized tissues and has distinct metabolic effects

due to their different locations (153). Malonyl-CoA produced by

ACC1 serves as a substrate for lipogenesis, whereas malonyl-CoA

produced by ACC2 inhibits CPT1, thereby preventing FA

degradation. Upregulation of ACC1 has been observed in various

tumors, likely promoting lipogenesis to meet the demands of rapid

growth and proliferation (70, 154, 155). Therefore, it can be

speculated that inhibiting ACC expression can hinder tumor

nutrient supply and tumor development. Knockdown of SREBP1-

associated genes such as ACLY and both isoforms of ACC in

NSCLC cell lines promote cell apoptosis and differentiation (110,

111). Moreover, reduced phosphorylation of ACC was found to

increase HCC genesis in mice and the proliferation of liver cancer

cells. Inhibitors targeting allosteric sites on ACC can alleviate HCC

deterioration and improve survival rate (112). Other studies have

highlighted the significance of ACC and FASN expression in

hormone resistance and cancer prevention (113).
3.6 PPAR

PPARa plays a crucial role in lipid metabolism and is highly

expressed in organs with significant FA catabolism, such as the liver

(156). It acts as key regulator of lipid and glucose metabolism,

controlling FA catabolism and lipoprotein metabolism (157). As a

ligand-activated transcription factor, PPAR is involved in cellular

processes like cell differentiation, proliferation, and apoptosis (158–

160). When activated, PPARa exhibits antiangiogenic and anti-

inflammatory effects, thereby inhibiting tumor development (161).

PPARa agonists like fenofibrate andWY-14,643 have been found to

inhibit tumor growth in multiple cancer studies and are potential

targets for treating various malignancies (38). Knockdown of

PPARa has been associated with reduced breast cancer-specific
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survival (114). The chemical sensitivity of breast cancer cells to the

PPARa agonist clofibrate was high. Clofibrate significantly affected

the PPARa DNA-binding activity and free FA production while

effectively reducing levels of SREBP-1c and FASN. It targeted

lipogenic and inflammatory pathways in invasive breast cancer

(162). The PPARa agonist clofibrate induced apoptosis in HepG2

cells in both time-dependent and concentration-dependent

manners (120).

Interestingly, PPARa regulates FAO activity to meet the higher

energy requirements of high-grade renal cell carcinoma (RCC)

compared with low-grade RCC (163). Additionally, in PAAD and

CRC, the PPARa signaling pathway ensures high lipid turnover in

cancer stem cells, maintaining their high energy requirements and

self-renewal (164). The levels of PPARa protein were associated

with RCC invasiveness in two renal cell carcinoma cell lines (AKI-1

and 786-O) (116). Furthermore, loss of PPARa expression in host

animals inhibited tumor growth in lung cancer cells according to a

study using a mouse xenograft model (117). Studies have

demonstrated that regulating the PPAR/NF-kB signaling pathway

can promote multi-organ distant metastasis of NSCLC (115). Mice

lacking PPARa showed resistance to increased DNA synthesis and

liver tumorigenesis induced by the agonist WY-14, 643, further

supporting the involvement of PPARa in HCC (165). In breast

cancer stem cells, the PPARa antagonist GW6471 has anti-

proliferation and pro-apoptotic effects while the PPARa agonist

Wy14643 promotes clonal expansion through NF-kB/IL-6 axis

signaling activity promotion (118, 119). Clofibrate was also found

to promote OV and PRAD progression without correlation with

PPARa (166). Therefore, it is evident that the influence of PPARa
on tumor progression varies depending on tissue type and

difference in its ligand. This highlights the potential for

developing specific synthetic ligand targeting PPARa as a novel

approach for cancer treatment.
4 Influence of circadian clock genes
on cancer development

Circadian rhythm disorders are independent risk factors for

cancer, as disruption of the circadian clock may be associated with

cancer cell proliferation, senescence, metabolism and DNA damage

(167–169). However, the exact molecular mechanisms underlying

this effect have yet to be elucidated. Studies have shown that

disturbance or dysregulation of circadian rhythm is associated

with poor prognosis of various tumors. CLOCK genes such as

BMAL1 and REV-ERB mainly play an anticancer role while DEC

has both anticancer and cancer-promoting effects in relevant

literature (Table 2).
4.1 BAML1

The circadian clock is composed of rhythmic genes and gene

products that regulate the expression of clock control genes,

generating a distinct circadian rhythm. BMAL1 serves as a crucial
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transcription factor within the transcription-translation feedback

loop of the circadian clock. Its functions are associated with cellular

processes such as metabolism, proliferation, metastasis, and cell

cycle regulation. Additionally, it plays a significant role in

modulating oncogenes and tumor suppressor genes (175, 188).

Analysis conducted on GSE39582, GSE21510 and Cancer

Genome Atlas (TCGA) pan-cancer datasets revealed notable

down-regulation of BMAL1 expression in BRCA and CRC tumor

samples when compared to normal tissues. However, in tumors

exhibiting TGFb activation or BRAF mutations, BMAL1 showed

slight up-regulation (189, 190). Knockdown of BMAL1 disrupts

circadian rhythm and enhances migration or invasion in lung

cancer, breast cancer, and glioma cells (170, 171). Loss of BMAL1

may contribute to lung cancer development by activating KRAS and

cancer-regulating genes such as P53 and c-Myc (172).

Overexpression of BMAL1 inhibits proliferation and increases

sensitivity to oxaliplatin in CRC cell lines and HCT116 cell

models in vivo (174). Immunohistochemical analysis reveals that

low Bmal1 expression in tumor tissues significantly impact tumor

progression and prognosis compared to adjacent non-tumor tissues

(173). In vitro experiments demonstrated that BMAL1

overexpression suppresses proliferation and invasion of pancreatic

cancer cells through the activation of P53 pathway (175).

Interestingly, on the contrary, BMAL1 overexpression promotes

invasion and metastasis of breast cancer cells by upregulation

matrix metalloproteinase 9 (MMP9), a mediator of local tumor

invasion and distant metastasis (176). Additionally, CLOCK and

BMAL1 overexpression can promote cancer cells growth by

affecting F-actin formation (191), indicating that regulation of

BMAL1 has diverse effects on tumor proliferation, invasion and

metastasis across different oncogenic pathways.
4.2 REV-ERB

The nuclear hormone receptors REV-ERBa and REV-ERBb
(REV-ERBs) are important components of the circadian clock (49,

50). Abnormal expression of REV-ERBs has been observed in various

cancer types and is involved in tumor metabolism, proliferation, as

well as regulation of plasma glucose levels, lipid and energy

metabolism (192–195). Treatment with agonists SR9011 and

SR1078 specifically enhances the function of REV-ERBa and

RORa receptors in cells. After 72 hours of agonist treatment,

cervical cancer and esophageal cancer cells exhibit dose-dependent

decreases in proliferation accompanied by induced apoptosis.

Moreover, these agonists have minimal impact on the viability of

normal cells or tissues (177). In breast cancer cells, SR9011 remains

unaffected by ER and HER2 expression while inhibiting the

proliferation of breast cancer cell lines (178). The REV-ERB agonist

SR9009 selectively induces cell death in both chemosensitive and

chemoresistant SCLC cells. REV-ERBa demonstrates antitumor

effects in SCLC cells (179). Activation of REV-ERBa eliminates

oncogene-induced senescent cells, mediates chemotherapy

resistance and relapse, thus making REV-ERBa agonists potential

therapeutic options for different types of cancer (62).
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4.3 DEC
The DEC family genes, including DEC1 and DEC2, are

expressed by different iated embryonic chondrocytes .

Physiologically, DEC1 and DEC2 are both expressed in a

circadian manner and are regulators of the mammalian circadian

clock, forming the fifth clock gene family that regulates circadian

and metabolic functions (19, 196, 197). Abnormal expression of

DEC1 is associated with tumor development and invasiveness,

making it a potential predictor for cancer prognosis after

treatment (183, 198, 199). Dysregulated expression of DEC may

alter normal circadian rhythms and significantly contribute to the

development of various diseases, including cancer. It has been

observed that DEC1 expression is increased in various cancers

and promotes cell proliferation and survival, while DEC2

expression is low in lung cancer. The impact of DEC on tumor

development varies depending on the specific cancer type (23, 172,

180–182, 185, 200). Furthermore, it has been found that the role of

DEC1 in apoptosis may differ among different type of cancer tissues.

DEC1 exhibits a pro-apoptotic effect in BRCA and ESCA (183, 184).

But it has an anti-apoptotic effect in cervical cancer, GC, and colon

cancer (185–187). Currently, the effect of DEC on tumor remains

controversial; however, there is no doubt that alterations in the level

of the DEC gene significantly influence tumor occurrence

and progression.

Circadian clock genes have a dual role in cancer, acting as

tumor suppressors in most cases but possibly serving as catalysts in

specific cancer cells. The precise mechanisms and factors governing

their roles as oncogenes or tumor suppressors are still unknown,

posing both challenges and opportunities for future research.
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5 The influence of interlocking of
circadian clock and lipid metabolism
on cancer

Circadian clock disorders strongly affect tumor transformation

and tumor growth by altering a variety of cancer regulatory

pathways, such as lipid metabolism. Multiple organs of the

human body are involved in lipid metabolism, and these organs

are controlled by the circadian clock to regulate the body’s

metabolic functions. In metabolic organs such as white adipose

tissue, liver, gut, pancreas and muscle, the circadian clock drives the

rhythmic expression of export genes involved in metabolism,

biosynthesis, signal transduction, and cell-cycle pathways. It also

coordinates glucose, lipid, and protein metabolism (201).

Researchers have found a link between the circadian clock

regulated by chromatin remodeling and cellular metabolism,

suggesting that metabolic disorders in cancer may be the result of

circadian clock disturbances (169, 202). Cancer cells use metabolic

reprogramming to meet the energy requirements for rapid cell

proliferation and survival, indicating metabolic plasticity.

Mitochondria contain metabolic centers that catabolize fatty

acids, amino acids, and glucose to provide energy for cell growth.

Related studies have found that circadian gene expression and

mitochondrial activity seem to interact and balance each other,

but the detailed underlying mechanisms are still unclear. Previous

studies have found a link between cancer cells’ metabolic disorders

and disruptions to the circadian clock, which may play an

important role in cancer progression (203).

50% of liver metabolites in mice are regulated by circadian

rhythm (204). The circadian rhythms of 50% of metabolites in liver,
TABLE 2 Association of circadian rhythm genes with cancer development.

Factor Notes Disease Proposed function References

BAML1 Downregulation NSCLC、BRCA Enhanced proliferative, migration and invasion (170–172)

PAAD Poor prognosis. (173)

Upregulation CRC Enhanced drug sensitivity. (174)

PAAD Anti-proliferative and anti-invasion (175)

BRCA Pro-migration and pro-invasion (176)

REV-
ERB

Upregulation Cervical Cancer, Esophageal cancer (ESCA), BRCA, Small-Cell
Lung Cancer (SCLC)

Anti-proliferative and pro-apoptotic (177–179)

DEC Downregulation OV Anti-proliferative, anti-migration, anti-invasion
and pro-apoptotic

(180)

NSCLC Promoter tumor progress (181)

Upregulation NSCLC, CRC Pro-proliferative and anti-apoptotic (172, 182)

BRCA, ESCA Anti-proliferative and pro-apoptotic (183, 184)

Cervical Cancer, GC, CRC Anti-apoptotic (185–187)
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muscle, adipose tissue, and serum were phase shifted in mice fed a

high-fat diet (61, 205–207). The disruption of the circadian system

leads to the dysregulation of chronic jet lag driver genes, resulting in

hepatic metabolic dysfunction and changes in circulating energy

consumption, lipid metabolism, insulin, and glucose signaling to

promote the occurrence of liver cancer (204, 208). Systemic and

liver-specific knockdown of BMAL1 can cause metabolic disorders,

leading to hyperlipidemia and increased lipoprotein production

(209). In untreated MDA-MB-231 cells and chronically insulin-

treated MDA-MB-231 cells, BMAL1 knockdown inhibited the

utilization of glutamine and FA by increasing their oxidation

(189). Disruption of circadian clock genes can cause disorders of

lipid metabolism. BMAL1 can play a role as a tumor suppressor in

obese mice, inhibiting the growth of BRCA and lung metastases,

and the down-regulation of BMAL1 was associated with an

increased risk of breast cancer metastasis (189). It has been

reported that BMAL1 can regulate metabolic reprogramming and

affect the expression of PD-L1 in macrophages (210), suggesting

that the circadian clock influences tumor development by

regulating metabolic pathways.

REV-ERBa is a transcription factor that plays an important role

in a series of physiological processes, including the regulation of

glucose, lipid metabolism, and circadian rhythm, as a core

inhibitory component of the cell autonomous clock and a

regulator of metabolic genes (194, 211–213). REV-ERBa and b
are present on several key lipid and bile acid regulatory genes,

including Insig2 and SREBP, providing mechanisms for rhythmic

lipid and bile acid metabolism molecules (50). Coordination of

REV-ERBa and REV-ERBb activities is required for normal hepatic

clock gene expression and lipid metabolism (49). The hepatic

circadian clock regulates the transcription function of the

circadian transcription suppressor REV-ERBa , thereby

controlling the production of SREBP-dependent fatty acids,

cholesterol, and bile acids (53). REV-ERBs can also inhibit lipid

producing enzymes including FASN and SCD1, and strictly control

lipid metabolism (63). When comparing metabolic parameters

between tamoxifen-treated controls and REV-ERBa and b double

knockout animals, it was found that the double knockout mice

showed increased circulating glucose and triglyceride levels and

decreased free fatty acid levels (50). Cancer cells are highly

dependent on de novo lipogenesis, which plays a central role in

meeting the metabolic needs of cancer cells and is one of the

important cancer markers involved in the anticancer activity of

REV-ERB agonists (1). REV-ERB agonists SR9009 and SR9011 play

a key role in regulating autophagy and de novo lipogenesis to induce

an apoptotic response in malignant cells. REV-ERB agonists can act

as novel inhibitors of de novo lipogenesis and have selective activity

against malignant and benign tumors (62).

SIRT1 affects the circadian expression of core clock genes

BMAL1 and ROR g, which in turn is controlled by NAD-

dependent mammalian sirtuins (214–217). The levels of NAD,

NADP, NADH, and NADPH affect the ability of CLOCK-

BMAL1 heterodimer to bind to E-box elements (218). Meanwhile,

the circadian clock can regulate the rhythmic activity of

niacinamide phosphoribosyl transferase (NAMPT), thus

regulating the cyclic availability of NAD and forming a closed
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pathway (56, 57). SIRT1 can not only modify the expression rhythm

of circadian clock genes (CLOCK and BMAL1) but also affect the

expression rhythm of clock-controlled genes related to lipid

metabolism (PPARa, SREBP-1c, ACC1, and FASN) in high-fat

diet mice (219). SRT1720 (a chemical activator of SIRT1) inhibits

the expression of SREBP target genes, and orthologs of SIRT1

inhibit lipid synthesis and fat storage by downregulating SREBP

orthologs during fasting (220). SIRT1 has also been shown to alter

cellular metabolism and responses to stress, thereby affecting the

progression of direct transcription, apoptosis, autophagy, DNA

damage repair, and senescence (221–223). SIRT1 overexpression

has been found in BRCA, PRAD, GC, CRC, and liver cancer (224–

228). Significant upregulation of SIRT1 promotes tumor

proliferation, migration, and invasion by targeting SREBP1 and

lipogenesis in EC (229). SIRT1 expression has been found to be

significantly associated with distant metastatic recurrence and

reduced survival in BRCA (224). Down-regulation of SIRT1 can

continuously inhibit the proliferation of HCC and prostate cancer

cells by inducing senescence or apoptosis (226). SIRT1 can inhibit

PRCA invasion and enhance chemical sensitivity (230).

Through the above studies, it has been found that SIRT1

functions as an oncogene, and the inhibition of SIRT1 expression

can inhibit tumor development. However, some studies have found

that SIRT1 acts as a tumor suppressor gene in cancer tissues. After

the downregulation of NAMPT expression, the activity of SIRT1

deacetylase significantly decreased, and the gene expression of two

key lipid factors, FASN and SREBP1c, significantly increased,

promoting the accumulation of triglycerides in HepG2 cells (231).

SIRT1 mRNA was found to be down-regulated in GC (232), which

is significantly related to shortened overall survival and relapse-free

survival in gastric cancer (233). SIRT1 depletion enhanced

proliferation and metastasis, promoting the growth of GC. SIRT1

may play a role as a tumor suppressor (228). However, SIRT1

overexpression inhibits lipid metabolism in prostate cancer cells by

activating AMPK phosphorylation and inhibiting SREBP1

expression and nuclear translocation. Additionally, astragalus

polysaccharide has been found to inhibit tumor progression and

lipid metabolism by regulating the miR-138-5p/SIRT1/SREBP1

pathway (234). The present results suggest that SIRT1 has dual

roles as a tumor promoter and tumor suppressor (235).

PPAR is involved in circadian clock control independently of

the suprachiasmatic nucleus (236). CLOCK and BMAL1 play

important roles in lipid homeostasis by regulating the circadian

activation of controlled target genes of potential PPAR response

elements (237). PPARa deficiency disrupts the normal circadian

regulation of certain SREBP-sensitive genes in the liver (238).

Furthermore, studies have shown that the PPARa-SCD1 axis

promotes CSC properties in HCC cells. Inhibition of the PPARa
pathway or SCD1 decreases the expression of CSC-related markers,

leading to the loss of CSC properties (239).

From the above studies, it is reasonable to speculate that the

circadian clock may be related to increased de novo fatty acid

synthesis in tumors, and tumor-dependent metabolites may be

secreted in a temporal manner, which indicates that targeted

pharmacological studies can be conducted on the daily peak of

fatty acid metabolism pathway. Although the specific mechanism of
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the occurrence and development of cancer is still unknown, a large

number of studies have been conducted on the related role of

circadian clock and lipid metabolism in the process of tumor

development. How circadian clock affects tumors by regulating

lipid metabolism has been explored, but still needs to be further

studied. Collectively, there is a key signaling axis involved that

coordinates the central pacemaker and peripheral circadian

transcription with lipid metabolism, although the implications of

these findings for humans remain unclarified.
6 Cancer therapeutic strategies based
on circadian clock and
lipid metabolism

6.1 Targeting lipid metabolism disorders

In the reprogramming of lipid metabolism in cancer cells,

endogenous FA are usually up-regulated and are essential for

maintaining cell proliferation, division, and ATP energy (240). FA

are substrates for producing lipid signaling molecules, and the

mutual adjustment between lipid metabolic factors and oncogenic

signals affects tumor proliferation, migration, and apoptosis. There

is a close relation between the abnormal increase of de novo fatty

acid synthesis and the growth and differentiation of cancer cells.

SREBP1, ACLY, ACC, FASN, SCD and PPARa have been widely

studied as key lipid metabolic factors. SREBP regulates lipid

homeostasis by controlling the expression of a series of enzymes

required for the synthesis of endogenous FA, cholesterol,

triacylglycerol, and phospholipids. SREBP inhibitors reduce cell

membrane fluidity, which leads to decreased tyrosine

phosphorylation of EGFR and enhances the sensitivity of gefitinib

in lung cancer cells (79). ACLY provides energy for cancer cells to

function properly during catabolism and biosynthesis. ACLY

overexpression in a variety of cancers indirectly destroys citrate

binding by altering the citrate binding site of the enzyme, which is

one of the options for cancer treatment. The ACLY inhibitor SB-

204990 was found to inhibit the growth of tumors, such as lung

cancer and PRAD (241). In addition, the functional polymorphism

of ACLY can also be used as a prognostic marker to predict the

recurrence of CRC (242). ACC is a key enzyme in the process of

tumor lipid metabolism. It was found that ACC inhibitor ND-654

inhibited the proliferation and differentiation of liver cancer cells by

inhibiting the production of nascent FA (112). Preclinical animal

studies have shown that ACC inhibitors ND-646 and ND-654

significantly inhibit the growth of mouse lung tumors and rat

HCC, respectively (110, 112). Additionally, ND-646 also inhibited

the growth of NSCLC (243). TVB2640, a FASN inhibitor, has been

observed to have a significant inhibitory effect on tumor growth in

cancer cell lines and xenograft models, but due to its

pharmacological nature, its clinical transformation and

application are limited (244). In ovarian cancer models, the SCD1

inhibitor BZ36 reduces SCD1 expression and increases cancer cell

sensitivity to ferroptosis inducers, thereby inducing tumor cell

apoptosis (245). One study found that activators of PPARa could

be used to prevent or treat CRC (246). In a variety of cancer types, a
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considerable number of drugs that can inhibit the synthesis of

SREBP, ACLY, ACC, FASN, SCD, and PPARa have been tested for

anticancer effects in preclinical and clinical studies. Targeting lipid

metabolism has been confirmed to have positive anti-tumor effects,

which may become a new therapeutic strategy for cancer.
6.2 Chronotherapy as a new
therapeutic strategy

The circadian clock regulates the absorption, distribution,

metabolism, and elimination of drugs (247). Circadian timing of

drugs may be an important parameter in the treatment of diseases,

therefore, chronotherapy has received a lot of attention.

Chronotherapy is a strategy that uses the natural rhythms and

cycles of the physiological and biochemical processes of an

organism to treat disease (248–250). Prior to the discovery of a

more detailed mechanism of the core clock, therapeutic strategies to

reduce toxic side effects and improve efficacy during cancer

treatment by controlling the duration of treatment have been

used in clinical practice (251–253). It has also been found

through mechanistic studies that many anticancer drugs have

been shown to increase cytotoxicity at specific stages of cell

division (247, 254). Chronotherapy was also found to improve

survival and quality of life in cancer patients by minimizing the

cytotoxicity of anticancer drugs (255–257). This suggests that

optimizing the timing of treatment administration by predicting

the drug properties associated with circadian rhythms can translate

into desired clinical outcomes. It has also been shown that for

anticancer drugs that are limited by their ability to cause side effects

on healthy host tissues, regulating the timing of administration in

accordance with their circadian characteristics not only helps to

produce beneficial effects, but also avoids adverse effects (247, 258,

259). Multiple phase I to III clinical trials have demonstrated the

effectiveness of chronotherapy in various tumors (260, 261). More

than 30 chemotherapeutic drugs were found to differ in efficacy by

more than 50% due to the different time of administration (259).

One study, which included 186 cases of patients with metastatic

colorectal cancer in a randomized multicenter phase III trial, found

that compared with the constant rate of infusion, adjusting the

delivery time of oxaliplatin, 5-fluorouracil (5-FU), and folic acid

reduced the incidence of severe mucosal toxicity by about 5 times.

At the same time, the rate of peripheral nerve lesions caused by

dysfunction decreased by about 50% (251). Additionally, it was

found that the maximum plasma concentration and optimal

tolerance time were at 4:00 a.m. in cancer patients treated with 5-

FU for 5 days (262, 263). In addition, timed irinotecan therapy in 31

cancer patients showed that time-mediated irinotecan infusion

caused less diarrhea and patient-to-patient variability than the

traditional 30-minute morning infusion (264). In a study of 41

patients with NSCLC, lower gastrointestinal toxicity was observed

in patients treated with cisplatin at 6 p.m. or 6 a.m. compared with

conventional chemotherapy, and a higher clearance rate was

observed in patients treated with cisplatin at 6 p.m (265).. The

REV-ERBs agonists SR9009 and SR9011 have been reported to have

anticancer activity in different tumor types, including leukemia,
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brain, colon, breast, and melanoma, without significant side effects

on normal cells or tissues (62, 178, 179, 266). In addition, autophagy

and de novo lipogenesis were identified as key events in initiating

apoptotic responses in malignant cells treated with SR9009 and

SR9011 (62). SR9011 and SR9009 also reduce the proliferation of

glioblastoma stem cells by inhibiting the expression of TCA cycle

enzymes and inhibiting autophagy, and are lethal to chemoresistant

small cell lung cancer cells (179, 267). However, paradoxically, the

study found that SR9009 can exert an effect on cell proliferation

independently of REV-ERB proteins, questioning the role of REV-

ERB in the action of the drug specifically in cancer treatment (268).

A comparison of the morning and evening doses of cisplatin in

patients with prostate, breast, cervical and ovarian cancer showed

significant differences in the efficacy, indicating that chronotherapy

can reduce the toxicity ratio of cisplatin treatment and enhance the

efficacy (269). In addition, other chemotherapeutic agents showed

optimal timing of administration to improve outcomes in bladder,

colorectal, endometrial, and renal cancers (270–273). These studies

found that the activity of several anticancer drugs may be limited by

their side effects and toxicity on healthy cells, thus proving that

temporal therapy offers the potential to optimize drug dosage and

treatment duration to effectively eliminate cancer cells and reduce

adverse effects, thereby preventing early drug resistance. Therefore,

chronotherapy aims to optimize drug administration time to

improve drug efficacy and safety without increasing drug dosage

or changing drug type, maximize the antitumor effect of cancer

chemotherapy by minimizing toxicity and adverse side effects, and

increase tolerance to improve survival of patients.
7 Conclusion and perspectives

The data reviewed here demonstrate an overlap between the

circadian clock and de novo FA synthesis in tumor lipid

metabolism. Disorders of circadian clock can affect de novo FA

synthesis, while dysregulation of this process can affect tumor

development. The interaction between circadian clock and lipid

metabolism plays a crucial role in tumor occurrence and

progression, representing a potential mechanism influencing

tumor development. However, several questions remain

unanswered regarding the role of lipid metabolism in

carcinogenesis, including the possible beneficial or harmful effects

on cancer development that hinder the development of new

therapeutic strategies. Our review establishes a connection

between a disrupted circadian clock and key regulators of

dysregulated lipid metabolism, as well as the molecular

mechanisms underlying their effects on cancer. Nevertheless, to

date, research has primarily focused on how the circadian clock

regulates transcription factors involved in novo FA synthesis

without thoroughly investigating key pathways through which
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both systems jointly influence tumor development. Although

current studies have shown a strong association between

circadian disruption, dysregulation of lipid metabolism, and

cancer progression, there is still no systematic establishment of

the mechanisms linking these factors together; thus future clinical

and research efforts are necessary in this area. Future hypothesis-

oriented studies should concentrate on specific interactions between

circadian clock genes and lipid metabolism mechanisms to fully

realize the clinical potential of their link in tumors.

To gain a deeper comprehension of how specific cancer genes

obliterate tumor cells, targeting lipid metabolism and integrating it

with the biological clock may offer a potent tool for optimizing

cancer treatment. This approach also aims to enhance patients’

quality of life and survival rates by individualizing treatment time.
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255. Bernard S, Cajavec Bernard B, Lévi F, Herzel H. Tumor growth rate determines
the timing of optimal chronomodulated treatment schedules. PLoS Comput Biol (2010)
6(3):e1000712. doi: 10.1371/journal.pcbi.1000712

256. Hesse J, Martinelli J, Aboumanify O, Ballesta A, Relógio A. A mathematical
model of the circadian clock and drug pharmacology to optimize irinotecan
administration timing in colorectal cancer. Comput Struct Biotechnol J (2021)
19:5170–83. doi: 10.1016/j.csbj.2021.08.051
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Glossary

FA fatty acid

SREBP sterol regulatory element binding protein

ACLY ATP citrate lyase

ACC acetyl-CoA carboxylase

FASN fatty acid synthetase

SCD1 stearoyl-CoA desaturase 1

DEC differential embryo-chondrocyte expressed gene

SCN suprachiasmatic nucleus

TTFL transcription-translation feedback loop

PER Period Circadian Regulator

CRY Cryptochrome

RORE retinoic acid-related orphan receptor response elements

bHLH basic helix-loop-helix

TAG triacylglycerols

CPT1 carnitine palmitoyl transferase 1

FAO fatty acid b-oxidation

TCA tricarboxylic acid

ATP adenosine triphosphate

MUFA monounsaturated fatty acids

SCAP SREBP cleavage-activating protein

ER endoplasmic reticulum

COP II coat protein complex—II

S1P site 1 protease

S2P Site 2 protease

PPAR a Peroxisome proliferator-activated receptor alpha

PGJ2 prostaglandin J2

ACO acyl-CoA oxidase

MLYCD malonyl-CoA decarboxylase

PPRE PPAR response element

PGC-1b peroxisome proliferator-activated receptor g

SIRT1 Sirtuin 1

NAD+ nicotinamide adenine dinucleotide

HDAC nicotinamide adenine dinucleotide-dependent histone deacetylase

NAMPT nicotinamide phosphoribosyltransferase

THCA thyroid cancer
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ccRCC clear cell renal cell carcinoma

HCC hepatocellular carcinoma

ESCC esophageal squamous cell carcinoma

CRC colorectal cancer

EC endometrial cancer

BRCA breast cancer

PAAD pancreatic cancer

CSCs cancer stem cells

NSCLC non–small-cell lung cancer

OV Ovarian cancer

NPC nasopharyngeal carcinoma

SFA saturated fatty acids

PC pyruvate carboxylase

PI3K phosphatidylinositol 3-kinase

RCC renal cell carcinoma

CCGS clock control genes

TCGA Cancer Genome Atlas

MMP9 matrix metalloproteinase 9

GSC glioblastoma stem cells.
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