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and Jianwu Shen1*

1Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, 2School of Basic Medical Sciences, Peking University, Beijing, China, 3Department of
Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
Background: Previous studies have yielded conflicting findings regarding the

association between circulating lipids and lipid-lowering drugs with urinary

stones, and the causal relationship between the two remains inconclusive.

Objective: This study aimed to assess the causal relationship between circulating

lipids (Triglycerides [TG], low-density lipoprotein cholesterol [LDL-C], high-

density lipoprotein cholesterol [HDL-C], apolipoprotein A [APOA],

apolipoprotein B [APOB] and Pure hypercholesterolaemia), lipid-lowering

drugs (HMGCR [HMG-CoA reductase] inhibitors and PCSK9[Proprotein

Convertase Subtilisin/Kexin Type 9] inhibitors) and the risk of urinary stones,

using genetic data.

Methods: Genetic instrumental variables (GIVs) for circulating lipids and lipid-

lowering drugs were obtained from the UK Biobank and existing literature.

Outcome data were extracted from a genetic association database with 3,625

urinary stone cases and 459,308 controls. Two-sample MR analysis, employing

the TwoSampleMR software package in R 4.2.3, was conducted to assess the

associations betweenmultiple exposures. The primary outcome was determined

using the inverse variance weighted (IVW) method for the causal relationship

between exposure and outcome, while additional methods such as MR-Egger,

weighted median, simple mode, and weighted mode were utilized as

supplementary analyses. Robustness of the Mendelian Randomization (MR)

analysis results was assessed through leave-one-out analysis and funnel plots.

Results: The MR analysis revealed a significant association between elevated TG

levels per 1 standard deviation and the occurrence of urinary stones (odds ratio

[OR]: 1.002, 95% confidence interval [CI]: 1.000-1.003, P = 0.010). However, no

significant association was observed between factors other than TG exposure

and the risk of urinary stone occurrence across all methods(LDL-C: [OR], 1.001;

95% [CI], 1.000-1.003, P=0.132;HDL-C: [OR], 0.999; 95% [CI], 0.998-1.000,

P=0.151;APOA:[OR] being 1.000 (95% [CI], 0.999-1.001, P=0.721;APOB: [OR] of

1.001 (95% [CI], 1.000-1.002, P=0.058;Pure hypercholesterolaemia: [OR] of
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1.015 (95% [CI], 0.976-1.055, P=0.455) and lipid-lowering drugs (HMGCR

inhibitors: [OR], 0.997; 95% [CI], 0.990-1.003, P=0.301 and PCSK9 inhibitors:

[OR], 1.002; 95% [CI], 1.000-1.005, P=0.099).

Conclusion: Our findings provide conclusive evidence supporting a causal

relationship between an increased risk of urinary stones and elevated serum

TG levels. However, we did not find a significant association between urinary

stone occurrence and the levels of LDL-C, HDL-C, APOA, APOB, Pure

hypercholesterolaemia and lipid-lowering drugs.
KEYWORDS

circulating lipids, lipid-lowering drugs, urinary stones, Mendelian randomization,
causality, genetics
1 Introduction

Urinary stones represent a prevalent condition in urology, with

a reported overall prevalence of 11.0% in certain populations (1).

The occurrence of urinary stones tends to increase with age in both

sexes, reaching a peak prevalence of approximately 19.4% within

the 60-69 year age range (2). Recent epidemiological studies

conducted in China have estimated a prevalence of kidney stones

at approximately 5.8%, with a substantial proportion of patients

(30%-50%) being at risk of recurrent stones within a decade (3–5).

The development of urinary stones is thought to be influenced by

various factors, including genetics, age, gender, and underlying

medical conditions (5–8). Consequently, understanding the

etiology and risk factors associated with urinary stones has

become an important research focus, providing valuable insights

for the disease prevention and treatment strategies (9).

Circulating lipids encompass a group of essential substances in

the blood, including TG, LDL-C, HDL-C, APOA, APOB,

cholesterol, and other metabolically important compounds.

However, disruptions in lipid metabolism, as common metabolic

disorders, have been linked to the onset and advancement of various

illnesses that impact multiple bodily systems (10–13). In recent

years, the relationship between metabolic disorders and the

prevalence of urinary stones has gained attention, suggesting a

potential link between circulating lipids and the occurrence of

urinary stones (14–16). Furthermore, lipid-lowering drugs,

particularly statins, have shown promise in reducing the risk of

such disorder (17–19). Previous research has indicated that the

modulation of lipid equilibrium via the administration of lipid-

lowering medications, notably HMGCR inhibitors targeting HMG-

CoA reductase-an essential enzyme in cholesterol synthesis—can

impact serum LDL-C levels (20, 21). Additionally, PCSK9

inhibitors, targeting proprotein convertase subtilisin/kexin

type 9, have been shown to decrease triglyceride, APOA, APOB,

and LDL-C levels while increasing HDL-C levels (22–24).

Numerous international studies have investigated whether

hypertriglyceridemia serves as a risk factor for urinary stones.
02
However, the findings across these studies remain contentious.

This ongoing controversy can likely be attributed to variations in

genetic backgrounds, gender distributions, age demographics, and

the geographical locations of the populations under investigation

(25–27). This study aims to investigate not only the association

between TG in the circulatory system and urinary stones but also

includes other lipid-related substances and lipid-lowering drugs as

exposure factors. By maximizing suitable sample sizes, this study

seeks to address potential limitations of previous research, provide

comprehensive insights into the associations between multiple

exposure factors and urinary stone occurrence, and furnish

evidence-based medical information for clinical diagnosis,

treatment, and prevention.

In general, the most robust and dependable experimental

approach for investigating causal relationships between risk factors

and outcome events is the randomized controlled trial (RCT).

However, in etiological studies, the implementation of RCTs can be

challenging due to ethical constraints and various other limitations.

Large-scale RCTs exploring the association between circulating lipids,

lipid-lowering drugs, and the risk of urinary stones are notably

absent. Moreover, it is imperative to acknowledge the difficulty

observational studies face in mitigating potential confounding

biases between exposures and outcomes (28). As a result, the causal

connection between circulating lipids, lipid-lowering drugs, and the

risk of urinary stones remains uncertain. Mendelian randomization,

an innovative analytical approach rooted in genetic information,

employs random genetic variants, particularly single nucleotide

polymorphisms (SNPs), as instrumental variables to mimic the

random allocation inherent in RCTs, prior to the occurrence of the

outcome event (29). Consequently, MR analysis is relatively

impervious to confounders and serves as a dependable tool for

assessing the causal impact of risk factor exposure on outcomes

(30–32). The objective of our study was to investigate, through MR

analysis based on extensive cohort GWAS data, the causal

relationship between six major lipid metabolism-related substances,

two lipid-lowering drug targets of action, and the occurrence of

urinary stones.
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2 Methods

2.1 Study design and data sources

To obtain comprehensive and robust insights into the causal

relationship between circulating lipids and lipid-lowering drugs

concerning urinary stones, we employed a two-sample MR analysis

model Figure 1. Genetic variants associated with circulating lipids were

sourced from the recent UK Biobank GWAS based on UK Biobank

data (33, 34). Specifically, the serum lipid GWAS with the most

substantial sample size to date was selected from the UK Biobank

data, including 441,016 patients for triglycerides (TG, ieu-b-111),

440,456 patients for low-density lipoprotein cholesterol (LDL-C, ieu-

b-110), 403,943 patients for high-density lipoprotein cholesterol (HDL-

C, ieu-b-109), 393,193 patients for apolipoprotein A (APOA, ieu-b-

107), 439,214 patients for apolipoprotein B (APOB, ieu-b-108), and

463,010 patients for Pure hypercholesterolaemia (ieu-b-108, expressed

as a dichotomous variable).These lipid measurements (TG, LDL-C,

HDL-C, APOA, and APOB) in our study adhered to uniform standard

serum lipid and apolipoprotein assay protocols, as they originated from

the same clinical trial. Consequently, the results are expressed as

continuous variables, allowing us to use standard deviations (SD) as

the unit for assessing the magnitude of changes in circulating lipids

concerning outcome events (Pure hypercholesterolemia was presented

as a binary variable.). Summary statistics for genetic variants associated

with lipid-lowering drug targets were derived from a recently published
Frontiers in Endocrinology 03
study (35). The summary statistics employed in our study, focusing on

urinary stones as the outcome, were obtained from a GWAS analysis

based on individuals of European ancestry, comprising 462,933

patients (ID: ukb-b-8297, https://gwas.mrcieu.ac.uk/datasets/ukb-b-

8297/). This analysis encompassed 3,625 cases of urinary stones and

459,308 control subjects, with the final GWAS yielding up to 9,851,867

associations between genotypic SNPs and urinary stones (Table 1). It is

noteworthy that all studies contributing to this GWAS meta-analysis

received approval from relevant institutional review boards.

Importantly, our present study did not necessitate separate ethical

approval, the ethical approval and consent information for the above

summary statistics were taken from the original publication.
2.2 SNPs selection

We have successfully identified independent SNPs associated

with plasma levels of TG, LDL-C, HDL-C, APOA, APOB, and Pure

hypercholesterolaemia based on three fundamental hypotheses.

Firstly, we initiated the selection process by identifying autosomal

bi-allelic SNPs with a significance level of P<5e-8. To avoid potential

confusion, we investigated each instrumental SNP (36, 37) in the

PhenoScanner GWAS database to assess any previous associations

(P<5e-8) with plausible confounders (i.e., age, gender, diet, high

uric acid levels and type 2 diabetes.) (38, 39). In order to adhere to

the assumption that only instruments exclusively related to the
FIGURE 1

Schematic representation of the three assumptions and study design. (1) The employed genetic IVs are firmly linked to the exposure; (2) The chosen
IVs exhibit no associations with potential confounding factors; (3) The IVs can solely influence the outcome risk through the exposure in a
dependent manner.
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exposure are related to the outcome, we excluded SNPs highly

correlated with the outcome.To ensure comparability of effect

estimates across lipid-associated traits in the UK Biobank, we

normalized these traits using inverse rank normalization. It’s

worth noting that this approach facilitates the comparison of effect

estimates among different traits. For the outcome event, which is the

occurrence of urinary stones, it was treated as a dichotomous event

and did not necessitate specific transformation. Secondly, to establish

the independence of the selected genetic variants, we systematically

removed SNPs that exhibited linkage disequilibrium (r2 > 0.01) and

were situated in close proximity within a 1000-kilobase aggregation

window of other SNPs with higher P-values. Lastly, we employed an

F-statistics threshold greater than 10 to identify robust instrumental

variables, thus mitigating the potential effects of bias. It is important

to note that our SNPs screening approach aligned with

methodologies utilized in previously published studies, ensuring

consistency and reliability in our selection of genetic variants

associated with two lipid-lowering drug gene targets and their

respective SNP datasets.
2.3 SNP final selection

The flowchart illustrating the significant SNP screening process,

along with the exposures and outcomes, is presented in Figure 2.

Following the stipulated criteria, we identified a total of 286 SNPs for

TG, 158 SNPs for LDL-C, 325 SNPs for HDL-C, 273 SNPs for APOA,

176 SNPs for APOB, 19 SNPs for Pure hypercholesterolaemia, and 7

and 8 SNPs for HMGCR inhibitors and PCSK9 inhibitors,

respectively, within the UK Biobank (UKB) dataset. Subsequently,

we meticulously curated and harmonized this SNP dataset, resulting
Frontiers in Endocrinology 04
in the inclusion of 219, 119, 247, 220, 120, 14, 7 and 8 SNPs for TG,

LDL-C, HDL-C, APOA, APOB, Pure hypercholesterolaemia,

HMGCR inhibitors and PCSK9 inhibitors, respectively, for use in

the Mendelian randomization (MR) analysis. All the SNPs employed

in this MR analysis are listed comprehensively in Supplementary

Tables S1-S8.
2.4 Mendelian randomization analysis

The two-sample Mendelian randomization analysis was

executed using TwoSampleMR version 0.5.7 (https://github.com/

MRCIEU/TwoSampleMR) within the R 4.2.3 environment. To

evaluate causality, we employed a total of five MR analysis

methods, encompassing the IVW, MR Egger, Weighted Median,

Simple Mode, and Weighted Mode approaches. Our primary

method of assessment was the IVW method, which assigns

weights to each ratio based on their standard errors (SE) while

accounting for potential heterogeneity in measurements. This

method yields reliable causal estimates even in the presence of

heterogeneity. Since all instrumental variables must conform to MR

assumptions in the IVW method, we also employed two other

methods, weighted median estimation, and MR-Egger, for

sensitivity analysis. The weighted median estimation method

provides a consistent assessment of causality when more than half

of the instrumental variables are deemed valid. Furthermore, we

employed the IVW method to gauge the pleiotropy and

heterogeneity of individual SNPs (40). Additionally, MR-Egger

regression was conducted in this study, enabling the detection

and adjustment of pleiotropy, thereby yielding an assessment of

causal effects (41). It aids in determining whether directional-level
TABLE 1 Baseline characteristics of lipids, lipid-lowering drugs, and urinary stones.

Trait ID Year Consortium Population/Sex
Sample
Size

n
Case

n
Control

n SNPs

TG ieu-b-111 2020 UK Biobank
European/Males
and Females

441,016 12,321,875

LDL-C ieu-b-110 2020 UK Biobank
European/Males
and Females

440,546 12,321,875

HDL-C ieu-b-109 2020 UK Biobank
European/Males
and Females

403,943 12,321,875

APOB ieu-b-108 2020 UK Biobank
European/Males
and Females

439,214 12,321,875

APOA ieu-b-107 2020 UK Biobank
European/Males
and Females

393,193 12,321,875

Pure
hypercholesterolaemia

ukb-
b-12651

2018 MRC-IEU
European/Males
and Females

463,010 22,622 440,388 9,851,867

HMGCR inhibitors
https://elifesciences.org/articles/73873

PCSK9 inhibitors

kidney/ureter/
bladder stone

ukb-b-8297 2018 MRC-IEU
European/Males
and Females

462,933 3,625 459,308 9,851,867
fro
TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; APOA, Apolipoprotein A; APOB, Apolipoprotein B; HMGCR, HMG-CoA reductase;
PCSK9, Proprotein Convertase Subtilisin/Kexin Type 9.
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pleiotropy, rather than exposure directly affecting the outcome,

underlies the observed results through other pathways.

Furthermore, we conducted leave-one-out analyses to assess the

robustness of our MR results in the presence of any outlier SNPs. In

this MR study, we considered three criteria for assuming causality:

(1) A P-value for IVW < 0.05. Consistency in the direction of

estimation between the IVW method, the MR-Egger method, and

the weighted median method. (2)A P-value > 0.05 for the MR-Egger

intercept test considered statistically significant.
Frontiers in Endocrinology 05
3 Results

3.1 Causal effects of circulating lipids on
the risk of urinary stones via MR

IVW MR method was utilized to analyze the final results

(Figure 3). In addition to IVW, other MR analysis methods,

including MR Egger, Simple Mode, Weighted Mode, and

Weighted Median, were employed to complement IVW, thereby
FIGURE 2

Genetic instrument selection of single-variable Mendelian randomization study. TG, Triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-
C, high-density lipoprotein cholesterol; APOA, apolipoprotein; APOB, apolipoprotein; IVW, inverse-variance weighting; MR, Mendelian
randomization; SNP, single nucleotide polymorphisms.
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reinforcing the robustness of the IVW analysis outcomes. The IVW

analysis, depicted in Supplementary Figure 5A, demonstrated a

causal relationship between TG and an elevated risk of urinary

stones, yielding a significant difference (Odds Ratio [OR], 1.002;

95% Confidence Interval [CI], 1.000-1.003, P=0.010). Consistent

results were observed across other analytical methods, as detailed in

Supplementary Table 1 and Supplementary Figure 4A. Notably,

heterogeneity was detected in the IVW analysis (Q=284.035,

P=0.00036). MR-Egger regression analysis revealed no evidence of

directional pleiotropic effects among the genetic variants (P=0.524)

(Table 2). Furthermore, the results of leave-one-out sensitivity

analyses indicated that the association between triglycerides and

urinary stone disease was not substantially driven by any single

SNP, as illustrated in Supplementary Figure 6A. Funnel plots, as

presented in Supplementary Figure 7A, underscored the stability of

our analytical approach.

MR analysis utilizing the IVW model (Supplementary

Figure 5B) did not reveal any association between LDL-C and an

increased risk of urinary stones, with no statistically significant

difference ([OR], 1.001; 95% [CI], 1.000-1.003, P=0.132). Consistent

results were obtained when employing other analytical methods, as

detailed in Supplementary Table 2 and Supplementary Figure 4B. It

is noteworthy that evidence of heterogeneity emerged in the IVW
Frontiers in Endocrinology 06
analysis (Q=150.751, P=0.012). MR-Egger regression analysis

provided no indication of a directed pleiotropic effect within the

genetic variance (P=0.128) (Table 2). Furthermore, the results of the

leave-one-out sensitivity analysis demonstrated that the association

between LDL cholesterol and urinary stone disease was not

primarily driven by any individual SNP, as illustrated in

Supplementary Figure 6B. Additionally, the funnel plots, as

shown in Supplementary Figure 7B, emphasized the relative

stability of our analytical approach.

MR analysis utilizing the IVWmodel (Supplementary Figure 5C)

revealed no causal link between HDL-C and a reduced risk of urinary

stones, with no significant difference ([OR], 0.999; 95% [CI], 0.998-

1.000, P=0.151). These findings remained consistent across other

analytical methods, as reported in Supplementary Table 3 and

Supplementary Figure 4C. It is notable that heterogeneity was

evident in the IVW analysis (Q=300.182, P=0.0005). MR-Egger

regression analysis detected no directional pleiotropic effect within

the genetic variance (P=0.169) (Table 2). Moreover, leave-one-out

sensitivity analyses demonstrated that the association between HDL

cholesterol and urinary stone disease was not primarily influenced by

any single SNP, as depicted in Supplementary Figure 6C. The funnel

plots, illustrated in Supplementary Figure 7C, underscored the

relative stability of our interpretation.
FIGURE 3

The impact of circulating lipids and lipid-lowering drugs on the risk of urinary stones was assessed through MR analysis utilizing the IVW model.
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MR analysis utilizing the IVW model (Supplementary

Figure 5D) did not reveal any causal association between APOA

and an increased risk of urinary stones, with the [OR] being 1.000

(95% [CI], 0.999-1.001, P=0.721), as detailed in Table 1. Consistent

findings were obtained when employing other analytical methods,

as presented in Supplementary Table 4 and Supplementary

Figure 4D. Significantly, the IVW analysis uncovered evidence of

heterogeneity (Q=324.343, P=2.040e-06). MR-Egger regression

analysis provided no indication of pleiotropic effects within the

genetic variance (P=0.634) (Table 2). Furthermore, leave-one-out

sensitivity analyses demonstrated that the association between

APOA and urinary stones was not predominantly driven by any

single SNP, as illustrated in Supplementary Figure 6D. The funnel

plot, depicted in Supplementary Figure 7D, underscored the

stability of the results we obtained.

MR analysis utilizing the IVWmodel (Supplementary Figure 5E)

revealed that APOB was not causally associated with an increased

risk of urinary stones, with the [OR] of 1.001 (95% [CI], 1.000-1.002,

P=0.058), as detailed in Table 1. Consistent findings were obtained

when employing other analytical methods, as presented in

Supplementary Table 4 and Supplementary Figure 4E. Notably, the

IVW analysis identified evidence of heterogeneity (Q=167.572,

P=0.002). MR-Egger regression analysis indicated no evidence of a

pleiotropic effect (P=0.239) (Table 2). Furthermore, leave-one-out

sensitivity analyses demonstrated that the association between

APOB and urinary stone disease was not primarily influenced by

any individual SNP, as illustrated in Supplementary Figure 6E.

Funnel plots, as depicted in Supplementary Figure 7E, underscored

the relative stability of our interpretation.

MR analysis utilizing the IVW model (Supplementary Figure 5F)

revealed no causal association between Pure hypercholesterolaemia and

an increased risk of urinary stones, with the [OR] of 1.015 (95% [CI],

0.976-1.055, P=0.455), as detailed in Table 1. Similar results were

observed across other analytical methods, as reported in Supplementary

Table 6 and Supplementary Figure 4F. Notably, heterogeneity was

observed in the IVW analysis (Q=24.086, P=0.012). MR-Egger

regression analysis found no evidence of directed pleiotropic effects

in genetic variants (P=0.842) (Table 2). Furthermore, leave-one-out

sensitivity analyses indicated that the association between cholesterol

and urinary stone disease was not primarily driven by any individual
Frontiers in Endocrinology 07
SNP, as demonstrated in Supplementary Figure 6F. The funnel plot, as

presented in Supplementary Figure 7F, also revealed no aberrations in

our interpretation.
3.2 Causal effects of lipid-lowering drugs
on the risk of urinary stones via MR

The impact of lipid-lowering drugs on the risk of urinary stones

was assessed through MR analysis utilizing the IVW model

(Supplementary Figure 5G). The analysis did not reveal any

causal relationship between HMGCR inhibitors and a reduced

risk of urinary stones, with no statistically significant difference

observed ([OR], 0.997; 95% [CI], 0.990-1.003, P=0.301). Consistent

findings were observed when employing other analytical methods,

as detailed in Supplementary Table 7 and Supplementary Figure 4G.

It is noteworthy that evidence of heterogeneity was present in the

IVW analysis (Q=26.647, P=1.685e-04). MR-Egger regression

analysis showed no indication of directional pleiotropy within the

genetic variance (P=0.937) (Table 2). Moreover, the results of the

leave-one-out sensitivity analysis indicated that the association

between HMGCR inhibitors and urinary stone disease was not

predominantly influenced by any single SNP, as illustrated in

Supplementary Figure 6G. Additionally, the funnel plot, as

presented in Supplementary Figure 7G, emphasized the relative

stability of our interpretation.

Similarly, MR analysis utilizing the IVWmodel (Supplementary

Figure 5H) did not reveal any causal association between PCSK9

inhibitors and a reduced risk of urinary stones, with no statistically

significant difference ([OR], 1.002; 95% [CI], 1.000-1.005, P=0.099).

These findings remained consistent across other analytical methods,

as reported in Supplementary Table 8 and Supplementary

Figure 4H. Notably, evidence of heterogeneity was present in the

IVW analysis (Q=4.335, P=0.740). MR-Egger regression analysis

detected no indication of a directed pleiotropic effect within the

genetic variance (P=0.251) (Table 2). Furthermore, the results of the

leave-one-out sensitivity analysis demonstrated that the association

between PCSK9 inhibitors and urinary stone disease was not

predominantly driven by any single SNP, as depicted in

Supplementary Figure 6H. The funnel plots, as illustrated in
TABLE 2 Tests of pleiotropy of selected SNPs and heterogeneity between SNPs.

Exposure
Pleiotropy Test Heterogeneity Test

Beta (SE) P Value Cochran’s Q P Value

Triglycerides 2.907e-05 0.524 284.035 0.00036

LDL-C 3.730e-05 0.128 150.751 0.012

HDL-C 2.679e-05 0.169 300.182 0.0005

Apolipoprotein A 2.910e-05 0.634 324.343 2.040e-06

Apolipoprotein B 3.785e-05 0.239 167.572 0.002

Pure hypercholesterolaemia 0.00025 0.842 24.086 0.012

HMGCR inhibitors 0.001 0.937 26.647 1.685e-04

PCSK9 inhibitors 0.00029 0.251 4.335 0.740
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Supplementary Figure 7H, underscored the stability of our

analytical approach.

To counter the potential impact of reverse causality, we

conducted a reverse Mendelian randomization (MR) analysis to

validate our study. This approach examined whether there was a

reverse causal relationship between urinary stones and circulating

lipids (TG, LDL-C, HDL-C, APOA, APOB, and Pure

hypercholesterolaemia) along with lipid-lowering drugs (HMGCR

inhibitors and PCSK9 inhibitors). We used urinary stones as an

exposure factor, circulating lipids and lipid-lowering drugs as

outcome factors(We did not extract SNPs associated with exposure

factors in the GWAS for HMGCR inhibitors and PCSK9 inhibitors).

As anticipated, our reverse Mendelian randomization analysis

confirmed the absence of a reverse causal relationship between the

genetically predicted circulating lipids, lipid-lowering drugs, and

urinary stones (Supplementary Table 9, Tables S9-S14).
4 Discussions

The primary objective of our study was to investigate the causal

relationship between circulating lipid levels and lipid-lowering

drugs and their potential impact on the incidence of urinary

stones through Mendelian Randomization analysis. Following the

rigorous application of MR techniques, we identified a causal link

between elevated serum TG levels and an increased risk of urinary

stones. In contrast, elevated serum levels of LDL-C, HDL-C, APOA,

APOB, Pure hypercholesterolaemia, as well as the use of lipid-

lowering drugs such as HMGCR inhibitors and PCSK9 inhibitors,

did not exhibit statistically significant associations with either an

increased or decreased risk of urinary stones. In other words, no

causal relationship was established between these lipid parameters

and the development of urinary stones. Importantly, our analysis

did not detect significant directional pleiotropy, further bolstering

the robustness and reliability of our results. These findings

contribute to our understanding of the complex interplay between

lipid metabolism and urinary stone formation, emphasizing that

while elevated serum TG levels may pose a risk, other lipid-related

factors and lipid-lowering medications do not appear to be major

contributors to the development of urinary stones. It is important to

note that our study is in line with the principles of Mendelian

randomization, leveraging genetic variants as instrumental variables

to infer causality. However, it is essential to consider the limitations

of our study, including the potential for residual confounding and

the generalizability of our findings to diverse populations. Future

research should delve deeper into the mechanistic links between

lipid metabolism and urinary stone formation to provide a more

comprehensive understanding of this complex relationship.

In previously published studies, the associations between serum

lipids, lipid-lowering drugs, and urinary stones have yielded results

that are not entirely consistent and, in some cases, even

contradictory. For instance, in a comprehensive population-based

follow-up analysis, it was observed that individuals with an elevated

plasma cholesterol/HDL-C ratio faced a 1.381-fold increased risk of

kidney stone disease (KSD). Paradoxically, low levels of HDL-C

were found to provide protection against the development of
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incidental KSD. This intriguing finding underscores the

complexity of the relationship between lipid profiles and urinary

stone formation (42). In this study conducted by Qi Ding within the

Chinese population, it was similarly observed that while TG levels

exhibited a notable increase in patients with kidney stones

compared to those without, a significant majority of stone-

afflicted individuals displayed markedly reduced levels of total

cholesterol (TC) and LDL-C (42). Furthermore, there remains

inconsistency in the evidence regarding the role of dyslipidemia

in pediatric kidney stones. An observational study conducted in

Poland, focusing on urinary stone formation in children and

adolescents aged 3 to 18 years, found that dyslipidemia was

present in 33% of patients with urinary stones. However, the data

also indicated that a high level of LDL-C appeared to play a

significant role in hypobarbituria, a condition linked to renal

stone formation. These varying observations emphasize the need

for further research and exploration to unravel the intricate

relationship between lipid profiles and urinary stone risk (43).

Our findings, which reveal a link between triglyceride

abnormalities and urinary stones, align with a body of evidence

derived from recent cross-sectional analyses and case-control studies

(44–50). One noteworthy study, conducted by Ho Won and

spanning 7 years with propensity score matching, demonstrated

that individuals with urinary stones were more likely to present with

hypertriglyceridemia and hypo-HDL-cholesterolemia. Importantly,

hypertriglyceridemia emerged as an independent risk factor

associated with an increased likelihood of stone recurrence in

patients with urolithiasis (51). Furthermore, a prospective

cohort study with a 7-year follow-up period unveiled that

hypertriglyceridemia heightened the risk of KSD (52). Likewise,

two retrospective cohort studies, encompassing over 5 years of

follow-up data, disclosed that individuals with dyslipidemia faced a

higher risk of developing KSD as well as experiencing recurrent KSD

(53, 54). Intriguingly, Feng (55), in an investigation that adjusted for

independent risk factors such as gender and age in the context of

kidney stone development, screened 11,827 patients for the co-

occurrence of metabolic syndrome and kidney stones. The study

revealed a noteworthy trend: an increased incidence of kidney stones

was associated with rising blood TG levels and declining levels of

lipoprotein cholesterol (P<0.05), underscoring a typical positive

correlation. Inci et al., in a similar study conducted in a Turkish

population, obtained results consistent with other studies (56).

Examining the causal mechanisms related to the components of

urinary stones and urinary metabolism, high triglyceride levels also

elevate the urinary excretion of components such as calcium, sodium,

and potassium. This phenomenon significantly increases the

supersaturation of uric acid and creatinine, thereby expediting the

formation of urinary stones (57). The presence of lipids in urinary

stones was confirmed through histochemical and biochemical

methods (58), particularly in the composition of calcium oxalate

stones, among others, affirming the close association between urinary

stones and lipids (59). Similar urinary findings in patients with

dyslipidemia have been reported in other studies (45, 54).

When examining the association between lipid-lowering drugs

and urologic diseases, certain researchers (60, 61) have reported a

noteworthy observation. They found that individuals who initiated
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statin therapy exhibited a significantly reduced likelihood of

developing new urinary stones in comparison to those who did

not receive statin treatment. This protective effect was notably more

pronounced among individuals with a history of prior stone

formation. However, it is essential to emphasize that the

underlying mechanism driving this effect appears to diverge from

the conventional lipid-lowering properties of statins. In a study

conducted by Liu et al. (62), it was elucidated that statin therapy

may potentially mitigate the risk of uric acid stone formation by

inducing alterations in the urinary composition of patients with

KSD. This included an increase in urinary pH levels and citrate

concentration. Despite these promising findings and the potential

clinical benefits of statin therapy for individuals with KSD, our own

investigations did not uncover a causal relationship between statin

use and the risk of urinary stones. It is important to underscore that

while statins may offer protective effects against stone formation,

our Mendelian randomization analysis did not reveal a direct causal

link between statin therapy and urinary stones. Further research is

needed to elucidate the precise mechanisms underpinning these

observations and to consolidate our understanding of the

relationship between statins and urologic diseases.

Our study leveraged a robust dataset comprising recent

urological stone cohort studies with large sample sizes. Notably,

the participants from the UK Biobank included in the analysis,

encompassing the five selected circulating lipids as exposures, were

sourced from the same experimental study. An exception was made

for Pure hypercholesterolaemia, which was derived from a distinct

cohort. This harmonization of exposure sources offered a notable

advantage, eliminating the potential error associated with using

different sample sources for various exposures. As a result, our

study was empowered to detect and establish a causal relationship

between circulating lipids and lipid-lowering drugs in relation to the

risk of urinary stones, at least within the European population. The

robustness of our findings is underscored by the compelling and

consistent causal links observed across different exposures and

outcomes. Specifically, based on a two-sample MR analysis

incorporating multiple exposures, our study provides support for

the assertion that elevated serum TG levels are associated with an

increased risk of urinary stones. However, we did not observe a

significant association between other lipid parameters, as well as

lipid-lowering medications, and the risk of urinary stones. While

our findings align with some previous research, they offer enhanced

credibility by providing genetic-level evidence. Nevertheless, it’s

imperative to acknowledge certain limitations in our analysis.

Firstly, all our GWAS data rely on European populations,

primarily from the UK Biobank. This geographical focus could

introduce bias stemming from differences in ethnicity,

environmental factors, and dietary habits (63–66). Secondly,

despite identifying a significant causal relationship between TG

levels and urinary stone occurrence through available MR analyses,

we cannot definitively exclude the possibility of key mediators

bridging elevated TG and the occurrence of urinary stones due to

inherent methodological constraints. Consequently, further

investigations are warranted to delve deeper into the intricate

relationship between lipid profiles and urinary stones, thereby

validating our current findings.
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5 Conclusion

Our findings suggest that elevated triglyceride levels may

heighten the risk of urinary stones. Consequently, individuals

with urolithiasis should consider enhanced monitoring of

triglyceride metabolism. However, this Mendelian randomization

study did not reveal any significant associations between LDL-C,

HDL-C, APOA, APOB, pure hypercholesterolemia, or lipid-

lowering drugs and urinary stones.
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