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Introduction:Non-alcoholic fatty liver disease (NAFLD), a major cause of chronic

liver disease, still lacks effective therapeutic targets today. Ferroptosis, a type of

cell death characterized by lipid peroxidation, has been linked to NAFLD in

certain preclinical trials, yet the exact molecular mechanism remains unclear.

Thus, we analyzed the relationship between ferroptosis genes and NAFLD using

high-throughput data.

Method: We utilized a total of 282 samples from five datasets, including two

mouse ones, one human one, one single nucleus dataset and one single cell

dataset from Gene Expression Omnibus (GEO), as the data basis of our study. To

filter robust treatment targets, we employed four machine learning methods

(LASSO, SVM, RF and Boruta). In addition, we used an unsupervised consensus

clustering algorithm to establish a typing scheme for NAFLD based on the

expression of ferroptosis related genes (FRGs). Our study is also the first to

investigate the dynamics of FRGs throughout the disease process by time series

analysis. Finally, we validated the relationship between core gene and ferroptosis

by in vitro experiments on HepG2 cells.

Results: We discovered ANXA2 as a central focus in NAFLD and indicated its

potential to boost ferroptosis in HepG2 cells. Additionally, based on the results

obtained from time series analysis, ANXA2 was observed to significantly define

the disease course of NAFLD. Our results demonstrate that implementing a

ferroptosis-based staging method may hold promise for the diagnosis and

treatment of NAFLD.

Conclusion: Our findings suggest that ANXA2 may be a useful biomarker for the

diagnosis and characterization of NAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD), a liver condition,

results from the buildup of fat in the liver, unrelated to alcohol

consumption. Depending on its severity, it can be classified as

hepatic steatosis, nonalcoholic steatohepatitis (NASH), or cirrhosis

(a stage that is difficult to reverse) (1). According to statistics, about

30-40% of patients eventually progress to cirrhosis, even up to 55%

in some reports (2, 3). Not only that, NAFLD is currently one of the

major causes of chronic liver disease worldwide, accounting for

between 73% to 95% of all cases. A recent research in China suggests

it may be surpassing hepatitis B as the primary cause of chronic liver

disease (4). Without exaggeration, treating NAFLD will be a large

and daunting proposition.

However, the threat of NAFLD lies not only in its high

prevalence, but also in its complex and ill-defined pathogenesis. To

date, there are no specific drugs approved to treat NAFLD and its

advanced forms, although several potential drugs have been

extensively studied in the last decades (5–7). This means that we

still urgently need to identify more specific therapeutic targets.

Moreover, the staging methods for NAFLD are not well

established. Despite significant differences between the different

staging, reliable in vitro diagnostic tools to distinguish fatty liver

from NASH are still lacking, and invasive liver biopsy remains the

main diagnostic method (8). In the search for solutions to these

problems, several studies have focused on the large accumulation of

lipid peroxides in the pathogenesis of NAFLD (9). Combining this

feature with the fact that iron overload is prevalent in patients, people

link the disease to the concept of ferroptosis. Some evidence that has

emerged gives confidence in targeting ferroptosis to treat NAFLD.

Ferroptosis, a newly discovered form of cell death, distinguished

by massive iron accumulation and lipid peroxidation (10). A

growing number of studies suggest that it is closely associated

with NAFLD. We cite several studies that provide evidence

supporting this association, including 1) Hernández-Aguilera

et al. showed that increased iron content in hepatocytes leads to

fat accumulation, causing cellular damage and exacerbating NAFLD

(11); 2) a human liver specimen study reporting a positive

correlation between ferroptosis in hepatocytes of NAFLD patients

and the degree of hepatocellular pathological damage (12); 3) using

iron chelators attenuated hepatitis in a mouse model of NAFLD and

fibrosis (13); 4) ferroptosis and mitochondrial damage are major

factors in the development of NAFLD, and by inhibiting ferroptosis,

mitochondrial damage and inflammatory responses can be reduced,

thus improving hepatocyte function and injury (14). Based on the

above, we can say that ferroptosis has great potential in the study of

NAFLD. However, studies based on high-throughput data

analyzing the impact of ferroptosis molecules on NAFLD are not

available in today’s scientific field, suggesting that the role and

mechanisms of the sizeable set of ferroptosis genes in the

pathogenesis of NAFLD are still unknown. Therefore, we hope to

find reliable ferroptosis targets and provide important clues for

more studies at the molecular level.

In this study, we combined mouse, human and single cell

sequencing datasets to investigate the role of ferroptosis molecules
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in NAFLD, a total of 282 samples were included. Additionally, we

used four machine learning methods (LASSO, SVM, RF and Boruta)

to find the most robust target, resulting in ANXA2, a ferroptosis

target that has never been mentioned before. As mentioned earlier,

NAFLD is a multi-stage disease. We used time series to analyze the

dynamics of ferroptosis molecules in it, which is rarely seen and

necessary. Finally, we performed cellular experiments to verify the

relationship between core genes and ferroptosis by assaying

indicators including ferrous ions, mitochondria and reactive oxygen

species and oxidative metabolites.
2 Materials and methods

2.1 Collection and pre-processing of
disease and health samples

We retrieved the data for the study from the Gene Expression

Omnibus database (GEO) (15), applying the following criteria: 1)

search results using the keywords “NAFLD and NASH”; 2) sample

size greater than 30; 3) sampling sites limited to liver tissues; 4)

mouse samples having time sequences and human samples having

patients with different fibrosis stages. Three RNA sequencing data

sets were selected, namely GSE40481 and GSE109345, which are

mouse-derived, and GSE162694, which is human-derived

(Supplementary Table S1). Out of these, GSE40481 served as the

training set, comprising of 27 control samples and 24 high-fat diet-

induced NASH samples. GSE109345 was designated as the

validation set, which had 30 control samples and 48 samples with

NASH. Last but not least, GSE162694 was assigned as the human

validation set, with 66 NAFLD samples having no liver fibrosis

(normal/fibrosis stage = 0) and 77 NAFLD samples with varying

degrees of liver fibrosis (fibrosis stage = 1/2/3/4). In addition,

GSE158241 is a single-cell sequencing data which incorporates

liver biopsy samples from four healthy mice and two NASH mice.

GSE225381, a single-nucleus sequencing dataset, which included

two control samples and two NAFLD samples. (Supplementary

Table S1). To ensure uniformity across the gene sets, we used the R

package “homologene” to transform the mouse gene set into the

human homologene set. We also removed batch effects between the

data sets to increase the effectiveness of our findings, using the sva

package’s combat function. Principal component analysis (PCA)

method was used to evaluated the performance of the combat

function (Supplementary Figure S1).
2.2 Acquisition of ferroptosis gene sets

We obtained sets of genes associated with ferroptosis, including

drivers, suppressors, and markers, from FerrDb V1 (http://

www.zhounan.org/ferrdb/), and intersected them with search

results in Genecard (https://www.genecards.org/) using

“ferroptosis” as a keyword. All non-protein coding genes were

excluded. Finally, we identified 804 protein-coding genes related

to ferroptosis, which we named “FRGs”.
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2.3 Screening module genes by weighted
gene co-expression network analysis

The “WGCNA” in R was used to construct an unsupervised co-

expression network and identify the gene modules associated with

NAFLD. Ferroptosis gene expression was normalized and hybrid

robust-Pearson correlation coefficient formula was utilized to

determine the relationship between gene expression and NAFLD.

A weighted adjacency matrix and transformed topological overlap

matrix (TOM) were constructed, followed by filtering cells

containing more than 50 genes by a stratified clustering tree

approach. Distinct branches of the clustering indicate different

gene modules, with a high degrees of gene co-expression present

within modules. The highly correlated modules comprise genes that

strongly relate to the targeted disease (16).
2.4 Differential expression analysis of genes

The limma package was used for differential analysis of

control and NASH samples in GSE40481, with criteria of |

Log2fold change|>1 and P value<0.05, identifying differentially

expressed genes (DEGs). Subsequently, volcano maps of ANXA2

and other DEGs were plotted by the R package “ggVolcano”.
2.5 Identification of disease
signature genes

To perform feature selection of disease diagnostic factors, we

incorporated a combination of powerful machine learning

algorithms, namely LASSO, SVM, Boruta, and RF, to identify

NAFLD signature genes. The Boruta algorithm, a supervised

classification feature selection method, was utilized to accurately

pinpoint all relevant features. For categorical variables, the least

absolute shrinkage and selection operator (LASSO) was used, as it

has been proven to effectively improve statistical model

predictability and interpretability. Support Vector Machine

(SVM) was employed for classification, regression, and feature

selection of multi-class data with homogeneous or heterogeneous

features. Lastly, the immensely popular and data-adaptive Random

Forest (RF), was utilized to explain correlations and interactions

between features, thus making it an ideal integrated tree-based

machine learning tool for feature selection.
2.6 Functional enrichment analysis of
differentially expressed genes

Based on the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) databases, the pathways affected by

DEGs were analyzed through enrichment analysis of DEGs

employing the R package “clusterProfiler” (17). The q-value set as

the threshold for the adjusted p-value was smaller than 0.05.
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2.7 Analysis of dynamic expression models
(time-series analysis)

Dynamic analysis of gene expression over time, specifically

regarding ferroptosis genes in the context of nonalcoholic liver

disease in mice and humans, was conducted using the Mfuzz

package for fuzzy c-means clustering. The analysis involved six

clusters and a fuzzing parameter of 1.25 for all datasets in this study.

Subsequently, we identified sets of genes that demonstrated

progressively increasing or decreasing expression patterns in both

mouse and human samples, and performed enrichment analysis on

these sets.
2.8 Analysis of ferroptosis patterns
in NAFLD

“ConsensusClusterPlus” R package is used for unsupervised

consensus clustering taking “module genes” as input data, grounded

on k-means machine learning algorithm. This method identified

subtypes with varied expression models of ferroptosis molecules.

The consensus clustering algorithm was run for 1000 iterations,

with 80% of the data samples used in each iteration. The optimal

number of clusters was determined using item-consistency plots,

the proportion of ambiguous clustering (PAC) algorithms, and by

analyzing the relative changes in the area under the cumulative

distribution function (CDF) curve. The ferroptosis status of NAFLD

patients was assessed by two clusters (namely, “ferroptosis-low” and

“ferroptosis-high” groups). To explore the biological significance of

this grouping, inter-subgroup difference analysis, enrichment

analysis, immuno-infiltration comparison, and comparison of

molecular levels of ferroptosis markers were performed.
2.9 Immune cell infiltration estimation

The R package “MCPcounter” uses transcriptomic data to

precisely quantify the absolute abundance of eight immune cells

and two stromal cells (18). We used it to analyze immune cell

correlations in NAFLD samples and differences in immune

infiltration between ferroptosis subgroups.
2.10 Protein–protein interaction

To analyze protein-protein interactions, we generated a PPI

network for “module genes” using the STRING database (19). We

set a confidence score greater than 0.4 as a critical criterion for

selecting relevant gene interactions. Then, we visualized the

network using Cytoscape software and identified eight crucial

genes in the PPI by applying the Density of Maximum

Neighborhood Component (DMNC) method using the

CytoHubba plugin (http://hub.iis.sinica.edu.tw/cytohubba/).
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2.11 Construction of ferroptosis scores by
PCA algorithm

To effectively differentiate the two ferroptosis subtypes and

evaluate the ferroptosis status of NAFLD patients, we developed a

ferroptosis score model using the principal component analysis.

(PCA) algorithm. This model was constructed using the eight

essential ferroptosis genes identified through PPI analysis as variables.

Ferroptosis score =o(PC1 + PC2)

The Ferroptosis score was computed by adding up the values of

PC1 and PC2, which denote the vital gene expression characteristics

of samples in two distinct dimensions. Thus, this score can provide

an approximate representation of the ferroptosis pattern.
2.12 Single nucleus and single cell analysis

Single-nucleus data were quality controlled and normalized using

the Seurat software package, filtering for nFeature_RNA >200 and

nFeature_RNA<5000, and percentage of mitochondrial gene

expression<5% (percent.mt). All cells within the sample set were

downscaled by principal component analysis (PCA) followed by

uniform manifold approximation and projection (UMAP). Cell

types were globally annotated using the ImmGen and

MouseRNAseqData databases from the SingleR software package to

ensure accuracy of cell type annotation. We examined the immune

profile of eight hub genes by conducting single-cell data analysis of

murine liver tissue from GSE158241. Initially, we employed the R

package SCTransfom to identify 2000 highly variable genes (n =

2,000). Principal component analysis (PCA) was then conducted, and

the JackStraw function was used to select the appropriate principal

components for dimensionality reduction. Next, we used the

FindClusters function to identify clusters. The resolution was set to

0.4, which generated 16 clusters. Finally, we annotated these clusters

based on the expression of known genes and cell types using cell

markers and R package xCell.
2.13 Western blot

Proteins were isolated from HepG2 cells, and their concentration

was determined using a BCA protein assay kit (Sangon Biotech,

China). Subsequently, these proteins were separated through a 12%

SDS-PAGE gel and transferred onto a nitrocellulose membrane. The

membrane was then sealed with 5% bovine serum albumin (BSA) and

subsequently incubated overnight at 4°C with the primary anti-

ANXA2 antibody (ABclonal, China). The next day, the membranes

were subjected to three washes with TBST and subsequently incubated

with a horseradish peroxidase-labeled secondary antibody (1:4000) for

1 hour at room temperature. Color development was achieved by

adding BeyoECL Moon (Beyotime Biotechnology, China). GAPDH

was sourced from Sangon Biotech.
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2.14 Cell culture and siRNA transfection

Human hepatoma cell line HepG2(American Type Culture

Collection, USA) maintained in DMEM medium encompassing 10%

fetal bovine serum (Gibco, Grand Island, USA) and 1% penicillin-

streptomycin (Gibco, Grand Island, USA) and cultured at 37°C and 5%

CO2. ANXA2-siRNA was obtained from Sangon Biotechnology and

used to silence ANXA2 expression. Before transfection, HepG2 cells

were seeded in 6-or 12-well plates and grown to 60% to 70% of the cell

confluence for transfection. ANXA2 siRNA/NC siRNAwas transfected

into HepG2 cells for 48 h at a final concentration of 10nM using siRNA

transfection reagent RNATransMate(Sangon, Shanghai, #E607402).

Successfully transfected cells were used in subsequent experiments.

In this study, the sequence of ANXA2 siRNA was as follows:

siANXA2-1 5 ‘-TGAGGGTGACGTTAGCATTAC-3’; siANXA2-2

5 ‘-CGMGGATGCTTTGAACATTGAA-3’. The NC siRNA

sequence was as follows: 5 ‘-UUCUCCGAACGUGUCACGUTT-3’.
2.15 Determination of ferrous ion content
and its localization in mitochondria

After the cells were grouped and treated in different ways, the

medium was removed. After washing with PBS, serum-free medium

containing FerroOrange (Dojindo, Japan) and Mitotracker Green

(Meiunbio) was added, respectively. The cells were incubated in a

5% CO2 incubator at 37°C for 30 min and finally observed under a

fluorescence confocal microscope (FV3000, Olympus, Japan).
2.16 Determination of lipid peroxidation

After the cells were grouped and treated in different ways, the

medium was removed and C11 BODIPY 581/591(Invitrogen,

D3861) was added. After incubation at 37°C for 1 h in a 5% CO2

incubator, the plates were washed twice with PBS to remove excess

dye. Cells were digested with trypsin and then re-suspended in 5%

PBS for flow cytometry (Cytek, USA) analysis.
2.17 Reactive oxygen species analysis

The Reactive Oxygen Species Assay Kit (Beyotime, Shanghai,

China) is a kit that uses a DCFH-DA fluorescent probe to detect

ROS. The cells were seeded in 12-well plates, and the cells were

grouped in different ways. After dilution of DCFH-DA(1:1000) with

serum-free 1640 medium in the dark, 500mL per well was added to a
12-well plate and incubated at 37°C in a 5% CO2 incubator for

30 min. After washing with PBS, the cells were trypsinized and

transferred to flow tubes, and reactive oxygen species levels in the

cells were analyzed using flow cytometry (Cytek, USA) or

fluorescence confocal microscope (FV3000, Olympus, Japan).
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2.18 Measurement of superoxide
anion levels

Dihydroethidium(DHE) is the most commonly used

fluorescent probe for detecting intracellular superoxide anion

levels, which can react with intracellular superoxide anion to

produce Ethidium. Ethidium binds to RNA or DNA to produce

red fluorescence. Therefore, the higher the level of superoxide

anion in cells treated with DHE, the stronger the red fluorescence,

and the changes in its level can be analyzed by flow cytometry and

fluorescence confocal microscope. In this experiment, DHE and

cells were co-incubated at 37°C, 5% CO2 incubator for 30 min for

fluorescent probe loading, followed by PBS washing, and finally

detected and analyzed by flow cytometry(Cytek, USA) and

fluorescence confocal microscope(FV3000, Olympus, Japan).
2.19 Statistical analysis

The statistical analysis of bioinformatics were performed using

R software (https://www.r-project.org/, version 4.2.1). The

analytical and statistical software for the experiments was ImageJ

and Graphpad prism.
Frontiers in Endocrinology 05
3 Result

3.1 Weighted gene co-expression
network construction

The expression matrix of 659 ferroptosis genes in GSE40481

was used as input data for WGCNA. By setting the threshold, two

samples with significant abnormalities were excluded (Figure 1A).

The optimal soft threshold power was identified as 4 with high

average connectivity when R2 = 0.9, as shown in Figure 1B. Similar

modules were combined, resulting in the identification of nine

modules, as shown in Figure 1C. The brown and green modules

were both positively correlated with NAFLD: the brown module

had a correlation of 0.9 (p=2e-19), while the green module had a

correlation of 0.62 (p=2e-6), as displayed in Figure 1D. These two

clinically significant modules, which contain a total of 135

ferroptosis genes, were further utilized for genetic screening.
3.2 Identification of aberrantly expressed
ferroptosis genes in NAFLD

Analyses were performed using differential analysis to identify

genes exhibiting aberrant expression in NAFLD. Ultimately,
B

C

D

A

FIGURE 1

Modular analysis of weighted gene co-expression network analysis. (A) Sample clustering dendrogram for each sample corresponding to the leaves
of the tree is cut at 10.5. (B) Analysis of the scale-free index and the mean connectivity for various soft-threshold powers. (C) Displays the merged
modules under the cluster tree. (D) The correlations and corresponding p-values of each cell are presented about Module-trait correlations.
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researchers identified 29 up-regulated genes and 9 down-regulated

genes, which are compiled in Supplementary Table S2. A graphical

representation of the differentially expressed genes is depicted using

a volcano plot (Figure 2A).
3.3 Machine learning algorithms identify
the target gene ANXA2

The combined results of fold change and four machine learning

algorithms localized the core genes of the study. By utilizing LASSO

regression to streamline the ferroptosis module genes, 12 potential

markers that may serve as useful indicators for NAFLD were

uncovered (Figure 2B). SVM-RFE method selected 10 genes as

important biomarkers (Figure 2C). Randomforest algorithm listed

the importance score for each gene, with ANXA2 ranked third

(Figure 2D). And the fourth place in the ranking appears in Boruta

(Figure 2E). Five screening methods finally yielded ANXA2, the core
Frontiers in Endocrinology 06
gene of this study (Figure 2F; Supplementary Table S3). Figures 2G–I

validated the robustness of the machine learning screening results.

The expression of ANXA2 was significantly elevated in both mouse

datasets and one human dataset, while the ROC curves of single genes

demonstrated satisfactory AUC values (0.992, 0.953 and 0.892,

respectively) (Supplementary Figure S2). Therefore, ANXA2 was

selected as the core gene for subsequent analysis.
3.4 Functional enrichment analysis of
differentially expressed genes

To investigate the pathways affected by DEGs, we conducted GO

and KEGG analyses. Regarding the three levels of GO analysis

biological process (BP), cellular component (CC), and molecular

(MF) (Supplementary Figure S3A), we observed a high enrichment of

DEGs in various pathways such as “antigen processing and

presentation”, “MHC class II protein complex assembly”, “integral
B C

D E F

G H I

A

FIGURE 2

Differential analysis and selection of candidate characteristic biomarkers in module genes based on machine learning algorithms. (A) Volcano plots
displayed the differentially expressed gene with the criteria of |logFC| > 1 and p-value< 0.05. The red and green circles indicate the up-regulated and
down-regulated DEGs, respectively. (B) By conducting cross-validation to select the optimal tuning parameter log (Lambda) in LASSO regression
analysis, 12 genes were ultimately obtained. (C) 10 genes obtained using the SVM algorithm. (D) The top 4 genes with MeanDecreaseGini > 1.5 were
selected. The rank of genes is shown according to their relative importance. (E) With importance ranking, 37 selected typical genes by Boruta.
(F) Venn diagram shows that the candidate characteristic gene ANXA2 is identified via the above 4 machine learning algorithms and differential
analysis. (G, H) The expression of ANXA2 in GSE40481 and GSE109345, respectively. “***” means that p < 0.001. (I) Differential expression of ANXA2
in mild versus severe fibrosis. “***” means that p < 0.001.
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component of lumenal side of endoplasmic reticulum”, “lumenal side

of endoplasmic reticulum membrane”, “lumenal side of endoplasmic

reticulum membrane “, “MHC class II protein complex binding”,

“MHC protein complex-binding immunoreceptor activity” and

“Immunoglobulin binding”. Furthermore, the KEGG enrichment

analysis revealed several immune-related signaling pathways

(Supplementary Figure S3B), including “antigen processing and

presentation” and “Th cell differentiation “, among others. The

reason we obtained such enrichment results is due to the presence

of multiple genes encoding human leukocyte antigens (HLA) in the

differential genes. Several studies have found that polymorphisms of
Frontiers in Endocrinology 07
HLA molecules are associated with susceptibility to NAFLD and

grading of lesions (20). Also, HLA molecules have been associated

with inflammatory response and immune function in NAFLD (21).

This suggests that the relationship between the immunity and

NAFLD needs to be further studied and explored.
3.5 Expression pattern analysis of FRGs

The development of NAFLD progresses through multiple

stages, making it crucial to analyze gene expression dynamics.
A

B C

FIGURE 3

Time series analysis of module genes. (A) Time-based analysis facilitated the derivation of six clusters (clusters 1, 2, 3, 4, 5, and 6). (B) The bar chart
presented herein showcases the up-regulation of GO and KEGG terms characteristic of cluster 6. (C) Conversely, the bar chart provided depicts the
consistency of down-regulated GO and KEGG terms exhibited by cluster 3.
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Using the training set, we clustered the “module genes” based on

their temporal expression patterns, yielding six clusters. Cluster 1

comprised genes that were progressively up-regulated during high-

fat diet induction, while cluster 2 showed a reverse trend

(Figure 3A). Enrichment analysis of genes from these two clusters

showed that they are associated with biological pathways such as

oxidative stress and ferroptosis (Figures 3B, C). Notably, ANXA2 is

classified into progressively upregulated gene group, suggesting its
Frontiers in Endocrinology 08
potential to describe disease progression. In the additional mouse

dataset, we obtained consistent results that supported our idea

(Supplementary Figure S4A). Moreover, ANXA2 manifested in a

cluster positively correlated with the stage of liver fibrosis (F0-F4) in

our human dataset, indicating its importance in the progression of

NAFLD, especially during fibrosis (Supplementary Figure S4B). By

intersecting the upregulated gene sets, we identified 23 ferroptosis

genes that merit further exploration (Supplementary Table S4).
B C

D E

F G

A

FIGURE 4

Identifying Ferroptosis Subgroups Through Unsupervised Consensus Clustering Algorithms. (A) Two ferroptosis subgroups were ascertained the
optimal value for consensus clustering. (B) The corresponding relative area changes under the cumulative distribution function (CDF) curve. k takes
values ranging from 2 to 9, with the optimal k = 2. (C) The PCA plot shows two divided ferroptosis subclusters. (D) The heatmap showing differential
gene expression between the two ferroptosis isoforms. (E) KEGG analysis of differentially expressed gene in two subgroups. (F) Sankey diagram
between ferroptosis isoforms, high-fat diet feeding time and ferroptosis score (with cutoff value at 0, greater than zero for high score and less than
zero for low score). (G) Differences in immune cell expression between ferroptosis subgroups by MCPcounter. "*” means that p < 0.05; “**” means
that p < 0.01; “***” means that p < 0.001; ns, no significance.
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3.6 Consensus clustering approach to
develop ferroptosis subtypes in NAFLD

We utilized the consensus clustering method on the gene

expression data of the “module genes” from 24 high-fat diet-

induced mouse samples of GSE40481. This approach identified

two ferroptosis subtypes (A:B=11:13) with highly consistent gene

expression patterns within subtypes (Figures 4A, B), which were

clearly separated in the PCA plot (Figure 4C). Genes that were

clearly differentially expressed between subtypes were shown by
Frontiers in Endocrinology 09
heatmap (Figure 4D). Differential genes were mainly enriched in

“chemical carcinogenesis-reactive oxygen species”, “cytochrome

P450 metabolism of allosteric substances” , “fatty acid

metabolism” and other pathways (Figure 4E). Additionally, we

found that the subtypes were closely associated with the duration

of high-fat diet feeding. Specifically, cluster B was linked to more

prolonged feeding, indicating a more severe degree of the disease,

whereas cluster A represented a milder degree (Figure 4F). The

same finding was also seen in GSE109345 (Supplementary Figure

S5A). In the human dataset, the “module genes” similarly divided
B C D

E F G H

I

A

FIGURE 5

Construction and Validation of Ferroptosis Score. (A) Using Cytoscape and CytoHubba to identify 8 modular genes to construct ferroptosis score
and visualize molecular interaction networks. (B–D) Differences in ferroptosis score between two ferroptosis subgroups in GSE40481, GSE109345
and GSE162694. (E) Correlation between ferroptosis score genes. (F–H) The receiver operating characteristic (ROC) curve for differentiating
ferroptosis subgroups by ferroptosis score in GSE40481 (AUC=0.937), GSE109345 (AUC=0.859) and GSE162694 (AUC=0.911). (I) Bubble diagram of
the relationship between 8 score genes and immune cells.
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the samples into two categories - cluster A and cluster B.

Meanwhile, we were surprised to find that the former one

included almost all patients with lower fibrosis stages and the

latter cluster shows the opposite (Supplementary Figure S5B). In

summary of the results, we conclude that ferroptosis typing is likely

to be closely associated with the degree of steatosis in mice and

fibrosis in humans, which at once emphasizes that FRGs may drive

and characterize the course of NAFLD disease, and, this typing

scheme is promising.
3.7 Evaluation and analysis of immune
cell infiltration

In order to explore the correlation between the expression levels of

FRGs and immune cells, an immune infiltration analysis was

conducted through utilization of the MCPcounter algorithm. The

immune cell correlation of the disease groups is shown in

Supplementary Figure S6B, notably Fibroblasts showed a positive

correlation with Endothelial cells (R=0.79) and a negative correlation

with Monocytic lineage (R=-0.42). In addition, the correlation between

T cells and CD8 T cells was 0.67. Figure 4G shows the difference in

immune cell infiltration between ferroptosis subtypes. Compared to

cluster A, “Endothelial cells” and “ Fibroblasts” were significantly

upregulated in cluster B, while “B lineage”, “Cytotoxic lymphocytes”

and “Monocytic lineage” were significantly downregulated. We also

analyzed four immune checkpoints between subtypes. Results showed

that CD274 (encoding programmed death ligand 1) was highly

expressed in cluster A, while HAVCR2 (encoding hepatitis A Virus

Cellular Receptor 2) was highly expressed in cluster B (Supplementary

Figure S6A). Our analysis also revealed significant differences in the

levels of ferroptosis markers between subtypes, with ACSL4, HIF1A,

MAPK1, GPX4, ISCU, CAV1 and SLC7A1 significantly upregulated in

subtype B, suggesting that subtype B has a more severe degree of

ferroptosis, which is likely to be associated with the course of NAFLD

(Supplementary Figure S6C).
3.8 Ferroptosis score construction

To differentiate subtypes and quantify the level of ferroptosis,

we constructed an ferroptosis score. Cytohhuba plugin of the

DMNC algorithm identified eight key genes, including JUN,

TLR4, PTEN, TP53, EGFR, ANXA2, ANXA5, and TNF

(Figure 5A). Correlation analysis revealed statistically significant

associations between ANXA2 and all other seven genes (Figure 5E).

Subsequently, these eight genes were incorporated into the

development of the ferroptosis score. Principal components 1 and

2 were chosen, and the score was determined through

implementation of principal component analysis (PCA).

Ferroptosis score varied significantly among subtypes, with

subtype 2 receiving higher score in all three data sets

(Figures 5B–D). High AUC values were shown in Figures 5F–H

(0.937, 0.859, and 0.911, respectively), indicating that the subtype

classification efficacy of the score was reliable. Additionally, an

exploration was conducted regarding the correlation between the
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scored genes and immune cells, as is demonstrated in Figure 5I. The

analysis indicated that ANXA2 exhibited a significant positive

correlation with “Fibroblasts”, as well as a negative correlation

with “Monocytic lineage” and “Endothelial cells”. Supplementary

Figures S7A–F provides further clarification on these findings.

ANXA5 displayed similar results. However, EGFR showed

opposite results from ANXA2 and ANXA5. This may be because

EGFR belongs to the genes progressively downregulated during

disease progression, whereas ANXA2 and ANXA5 belong to the

progressively upregulated one. The above results led us to speculate

that “fibroblasts”, “monocyte lines” and “endothelial cells”, which

may undergo some regular changes during the progression of the

disease, may be associated with the expression of FRGs.
3.9 Single-nucleus RNA-seq and single-cell
RNA-seq analysis

Single-nucleus analysis showed that hepatocytes were the

predominant cells in the samples in both the normal and disease

groups, and our target gene ANXA2 was significantly more

expressed in NAFLD hepatocytes compared to the normal group

(Supplementary Figures S8A–D). To further examine the

correlation between genes responsible for scoring and immune

cells in NAFLD, we scrutinized scRNA-seq data extracted from

liver biopsy samples of high-fat diet-driven NASH mice and their

corresponding control samples. With the aid of xCell, we annotated

ten distinct cell types (Supplementary Figure S8E). The outcome

depicted ANXA2 and ANXA5 to be predominantly expressed by

monocytes, macrophages, and epithelial cells (Supplementary

Figure S8F). This finding hints towards the pivotal involvement

of monocytes, macrophages, and epithelial cells in the development

of NAFLD.
3.10 Silencing ANXA2 gene alleviated
erastin-induced ferroptosis in HepG2 cells

We used HepG2 cells to verify the relationship between the core

gene ANXA2 and ferroptosis in vitro. HepG2 cells were transfected

with ANXA2 siRNA for 48 hours, and the cells were stimulated with

ferroptosis inducer erastin. Supplementary Figures S9A,B shows

that ANXA2 was successfully knocked down. In addition, the

intracellular ferrous ion level and mitochondrial changes were

observed. As shown in Figure 6 and Supplementary Figure S9C,

compared with the control group, the intracellular ferrous ion

concentration was significantly increased, the fluorescence

intensity of mitochondria was decreased, and the co-localization

of mitochondria and iron ions was obvious after stimulation of cells

with erastin alone (Figures 6A, B). There were no significant

changes in the intracellular ferrous ion level and mitochondria

when the siRNA control was used (Figure 6C). However, after the

silencing of ANXA2 in HepG2 cells mediated by two siRNAs, the

fluorescence intensity of ferrous ions decreased, the fluorescence

intensity of mitochondria increased, and the colocalization

decreased (Figure 6D, E), which was consistent with the changes
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after the intervention of ferroptosis inhibitor Ferrostatin-1 in the

positive control (Figure 6F). These results indicated that the

deposition of ferrous ions in HepG2 cells, especially in

mitochondria, was alleviated after inhibiting the ANXA2 gene.

When ferroptosis occurs, intracellular lipid peroxidation and

reactive oxygen species (ROS) are often increased. Consistently, we

further examined important intracellular oxidative metabolites. It
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was found that compared with the control group, intracellular lipid

peroxidation was significantly increased (enhanced green

fluorescence) after treatment with erastin and siRNA control

(Figures 7A, B), while lipid peroxidation was significantly

alleviated after silencing ANXA2 gene (Figures 7C–E;

Supplementary Figure S9D). In addition, we used DCFH-DA and

DHE to characterize intracellular ROS and superoxide anion levels.
B

C

D

E

F

A

FIGURE 6

The effect of ANXA2 on Fe2+ levels in cells. (A) Normal control HepG2 cells; (B) HepG2 cells treated erastin (20 mM) for 24 h; (C) HepG2 cells co-
cultured with siRNA control for 48 h and then treated erastin (20 mM) for 24 h; (D) HepG2 cells co-cultured with siANXA2-1 control for 48 h and
then treated erastin (20 mM) for 24 h; (E) HepG2 cells co-cultured with siANXA2-2 control for 48 h and then treated erastin (20 mM) for 24 h;
(F) HepG2 cells treated erastin (20 mM) and Ferrostatin-1 (2 mM) for 24 h. (The scale bar indicates 100 mm length, cells were incubated with
Ferroorange (red color, Texas Red channel) and Mitotracker Green (green color, FITC channel) for 30 min to label intracellular Fe2+ and
mitochondria, respectively).
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Flow cytometry analysis showed that ROS level was significantly

up-regulated after erastin stimulation (average fluorescence

intensity 47048, average fluorescence intensity of the normal

control group was 20759) (Figure 8). There was little change after

siRNA control treatment, while the average fluorescence intensity of

ROS decreased to about 40000 after ANXA2 inhibition, and to

41678 after intervention with the positive control Ferrostatin-1

(Figure 8). DHE did not change significantly between groups. The

trend of ROS and DHE under fluorescence confocal microscope

was consistent with the results of flow cytometry (Supplementary

Figure S10). The above data proved that the intracellular oxidative
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stress was significantly relieved after ANXA2 inhibition. Based on

the above data, we demonstrated that ANXA2 gene inhibition could

alleviate erastin-induced ferroptosis in HepG2 cells.
4 Discussion

NAFLD has been shown to be associated with ferroptosis in

previous reports, however, we still lack evidence at the molecular

level. The aim of this study was to analyze the role of ferroptosis

molecules in NAFLD based on high-throughput data. First, we used
B
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FIGURE 7

The effect of ANXA2 on lipid peroxidation in cells. (A) Normal control HepG2 cells; (B) HepG2 cells co-cultured with siRNA control for 48 h and then
treated erastin (20 mM) for 24 h; (C) HepG2 cells co-cultured with siANXA2-1 control for 48 h and then treated erastin (20 mM) for 24 h; (D) HepG2
cells co-cultured with siANXA2-2 control for 48 h and then treated erastin (20 mM) for 24 h; (E) HepG2 cells treated erastin (20 mM) and Ferrostatin-1
(2 mM) for 24 h. (The scale bar indicates 100 mm length, cells were incubated with C11 BODIPY 581/591 for 60 min to label lipid peroxide, the FITC
channel (green color) indicates oxidized form while the Cy5 channel (red color) indicates the reduced form).
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WGCNA combined with four machine learning methods to identify

the most robust core gene, ANXA2. We observed a consistent

upregulation of ANXA2 during the course of the disease through

time-series analysis. Furthermore, we developed a ferroptosis typing

scheme for NAFLD using an unsupervised consensus clustering

approach. The significant differences between two subtypes in terms

of disease course, immune cells level, and ferroptosis marker

molecule level provide promise to improve the existing subtype

classification. Finally, we conducted in vitro experiments using

HepG2 cells and found that ANXA2 may play a role in

promoting ferroptosis, which has not been previously reported.

To our knowledge, the identification of targets for NAFLD

treatment using bioinformatics approaches is uncommon so far.

Only a few results have provided the following targets, including

ENO3, CXCL10, INHBE, LRRC31, OPTN (22) and IGFBP-2

identified by Wen et al. (18). This is far from sufficient for

targeted therapy of NAFLD. ANXA2 is a new target we have

identified, which is a phosphatidylinositol binding protein located

on the surface of exosomes. With the available evidence, ANXA2

expression levels have been found to be significantly elevated in

patients with NAFLD, while its deletion can prevent the

development of liver injury (23). Notably, ANXA2 has multiple

roles in the pathophysiological process of NAFLD. First, ANXA2 is

lowly expressed in normal liver tissues, whereas abundantly

expressed in acute liver injury, due to its ability to bind to tissue-

type fibrinogen activator to promote hepatic neovascularization and

its repair (24, 25). Secondly, ANXA2 is involved in regulating the p-

STAT3/ANXA2 axis, which induces hepatocyte pyroptosis (23).

Not only that, ANXA2 may also promote hepatic stellate cell

activation and collagen fibril synthesis by participating in the

Anxa6/miR-9-5p/Anxa2 pathway or increasing the expression of

osteopontin, thus leading to the onset and acceleration of hepatic
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fibrosis (26, 27). And our experimental results firstly reveal that

ANXA2 may induce ferroptosis, thereby further exacerbating

liver injury.

The proposal that ferroptosis is involved in the pathogenesis and

progression of NAFLD only emerged after 2019. One of the initial

studies indicated that while both apoptosis and necrosis of

hepatocytes may contribute to the development of nonalcoholic

steatohepatitis (NASH), ferroptosis is the primary mode of cell

death during the transition from simple steatosis to steatohepatitis.

The study’s experimental results demonstrated that the inhibition of

necroptosis alone did not prevent cell death onset, whereas the

inhibition of ferroptosis almost entirely protected hepatocytes from

death while suppressing the subsequent infiltration of immune cells

and inflammatory response (28). Another early study revealed that

GPX4 and its associated ferroptosis promoted NASH induced

through methionine/choline-deficient diet (MCD) feeding (29).

Subsequently, mechanisms related to ferroptosis’s involvement in

NAFLD were clarified gradually, with molecular-level evidence

including reduced GPX4 activity, upregulation of ACSL4 (due to

arsenic induction) and the suppression of Nrf2 pathway, together

with iron overload and lipid peroxidation (30). Based on these

mechanisms, several approaches that target the ferroptosis pathway

for treating NAFLD have been explored, including sodium selenite

(SS) (29), thymosin b4 (Tb4) (31), and ENO3 (32), which modulate

GPX4 to inhibit ferroptosis. Iron removal therapy has been shown to

reduce alanine aminotransferase levels in hepatocytes (33).

Rosiglitazone (ROSI), an ACSL4 inhibitor, can also suppress

arsenic-induced ferroptosis (34). Additionally, there are recognized

inhibitors of ferroptosis, including Fer-1 (35), LPT-1, and DFP (29),

which possess definite mitigatory effects on NAFLD. But in general,

these leads are incomplete, particularly in establishing the molecular

targets of ferroptosis implicated in each stage of NAFLD.
FIGURE 8

The effect of ANXA2 on ROS and DHE levels in cells. HepG2 cells were co-cultured with siRNA for 48 h and then treated erastin (20 mM) for 24 h;
Ferrostatin-1 (2 mM) were co-treated for 24 h. (DCFH-DA and DHE for 30 min to label intracellular ROS and superoxide anion, respectively).
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ANXA2 is filtered by machine learning algorithms. A previous

study of ours also demonstrated the robustness of the machine

learning results (36). In this study, the differential expression of

ANXA2 in the three datasets represents its reliability. Furthermore,

our study reveals for the first time that ANXA2 is closely associated

with disease course while being differentially expressed in NAFLD.

ANXA2 expression gradually increased with increasing feeding time

on a high-fat diet in mouse samples, and in human samples, its

expression was also upregulated with the severity of liver fibrosis

stage. This suggests that ANXA2 may act in all stages of NAFLD, and

that this action is negative. It may promote the development of

NAFLD by regulating lipid metabolism, activating the inflammatory

response (37) and influencing the fibrotic process (23). There are

another 22 genes with the same expression trend, and these deserve to

be further investigated. Although there are no reports on the

association of ANXA2 with ferroptosis, the results of our

experiments suggest that it may act as a target to rescue it by

reducing the accumulation of iron, lipid peroxidation, reactive

oxygen species (ROS) levels, and superoxide anion levels in cells. It

is worth mentioning that ANXA2 regulates ROS in previous studies

more as a protective factor for down-regulation of ROS. He et al.

found that ANXA2 showed a negative correlation with ROS levels in

sepsis models (38), which is different from our experimental results.

One possible explanation for this discrepancy is that ANXA2

promotes ferroptosis by causing upregulation of ROS levels

through the inverse regulation of PRDX2 levels (39). Two recent

studies have provided evidence that PRDX2 can inhibit cellular

ferroptosis (40, 41). Therefore, we suggest that ANXA2 may have a

dual role in the regulation of redox, and its downregulation of

antioxidant molecular activity may be important in promoting the

occurrence of ferroptosis. Additionally, the mechanism of how the

expression profile of ANXA2 affects ferrous ion levels in

mitochondria remains unclear and requires further analysis.

Our study provides a typing scheme for NAFLD based on FRGs.

It is significant that it can well differentiate different groups of

samples in the dataset. JUN, TLR4, PTEN, TP53, EGFR, ANXA2,

ANXA5, and TNF were the genes we screened for scoring, and

correlation analysis showed that ANXA2 was associated with all of

these genes. Notably, JUN, TLR4, and ANXA5, like ANXA2, showed

a trend of upregulation with increasing NAFLD in our three datasets.

JUN, TLR4 (42), EGFR (43), and TNF (44) were confirmed to

promote the progression of NAFLD in previous studies, while

ANXA5 (45) and PTEN (46) were identified as protective factors.

TP53 has a dual role in NAFLD (47). TLR4 antagonist Sparstolonin B

(SsnB) inhibited TLR4-induced liver fibrosis. The mechanism may

include upregulation of PTEN protein expression to reduce TLR4-

PI3k akt signaling and increased p53 gene and protein expression. In

addition, SsnB may also reduce fibrosis by antagonizing TLR4-

induced TGFb signaling pathway (48). Another analysis manifests

that SsnBmay exert an anti-NASH effect by reducing the transport of

TLR4 to lipid rafts (49). Not only that, a recent experimental study

demonstrated that Zeaxanthin (ZEA) has the ability to effectively

decrease the expression of p53, in turn regulating downstream targets

such as GPX4, SLC7A11, SAT1, and ALOX15. These actions

cumulatively contribute to the effective inhibition of ferroptosis in

NAFLD cells (50). In summary, the inter-regulation between these
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FRGs on which our typing scheme is based plays an important role in

NAFLD and they deserve further investigation. More evidence is

needed to target them to inhibit ferroptosis occurrence and thus

treat NAFLD.

Our study provides evidence supporting the involvement of

ferroptosis molecules in NAFLD. However, there are some

limitations to our findings. Firstly, the duration of the high-fat

diet may not fully reflect the severity of NAFLD, which could have

influenced the positive results obtained. In addition, although we

demonstrated that knockdown of ANXA2 in the presence of iron

metastasis inducers inhibited ROS levels, more experimental studies

are still needed to investigate how ANXA2 regulates ROS levels.

However, our findings indicate that ANXA2 may possess a high

degree of potential as a target for the regulation of the ferroptosis

pathway in individuals affected by NAFLD.
5 Conclusion

Our bioinformatics analysis revealed ANXA2 as a key gene in

NAFLD pathogenesis with diagnostic potential. ANXA2 expression

was found to be positively associated with the course of NAFLD and

increased along with liver fibrosis in human samples. Additionally,

we propose a new typing scheme for NAFLD based on FRGs

expression. Experimental results suggest that ANXA2 is an

important target in suppressing ferroptosis and could potentially

aid in NAFLD treatment.
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