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The ovarian microenvironment is critical for follicular development and

oocyte maturation. Maternal conditions, including polycystic ovary

syndrome (PCOS), endometriosis, and aging, may compromise the ovarian

microenvironment, follicular development, and oocyte quality. Chronic low-

grade inflammation can induce oxidative stress and tissue fibrosis in the

ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels

are often elevated in follicular fluids. In women with obesity and PCOS,

hyperandrogenemia and insulin resistance induce ovarian chronic low-grade

inflammation, thereby disrupting follicular development by increasing

oxidative stress. In endometriosis, ovarian endometrioma-derived iron

overload can induce chronic inflammation and oxidative stress, leading to

ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging),

senescent cells may secrete senescence-associated secretory phenotype

factors, causing chronic inflammation and oxidative stress in the ovary.

Therefore, controlling chronic low-grade inflammation and fibrosis in the

ovary would present a novel therapeutic strategy for improving the follicular

microenvironment and minimizing ovarian dysfunction.
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1 Introduction

Acute and chronic low-grade inflammation are two distinct types

of inflammatory responses in the body. Acute inflammation is the

immediate and transient response to tissue injury, infection, or foreign

substances. Although acute inflammation can be associated with severe

symptoms, it is a normal and essential process for eliminating harmful

stimuli, initiating tissue repair, and restoring homeostasis (1, 2). Acute

inflammation typically resolves within a few days or weeks.

In contrast, chronic low-grade inflammation is characterized by

long-term, mild, systemic inflammation (3). Unlike acute

inflammation, it may not manifest obvious signs or symptoms.

Nevertheless, chronic low-grade inflammation disrupts immune

function and causes tissue damage. It significantly contributes to the

development and progression of various diseases, including

cardiovascular diseases, metabolic disorders, neurodegenerative

conditions, and certain types of cancer (4).

Although the relationship between inflammation and

reproduction is complex, chronic low-grade inflammation can

influence many ovarian reproductive processes (5, 6). Therefore,

this review highlights recent findings regarding the impact of

chronic low-grade inflammation on ovarian function.
2 Overview of chronic low-
grade inflammation

Cytokines function as chemical messengers in the immune

system, facilitating communication between cells and regulating

immune responses. Various immune cells (e.g., macrophages,

neutrophils, and lymphocytes) secrete cytokines, which have pro-

or anti-inflammatory effects. Notably, pro-inflammatory cytokines

are of particular significance in chronic low-grade inflammation.

These cytokines, including tumor necrosis factor-alpha (TNFa),
interleukin-1 beta (IL-1b), and interleukin-6 (IL-6), are released in

response to inflammatory signals (7, 8). Moreover, the dysregulated

production of pro-inflammatory cytokines promotes further

inflammation and tissue damage via the inhibitor of nuclear

factor kappa-B kinase subunit beta/nuclear factor kappa-B (NF-

kB) and Janus kinase/signal transducer and activator of

transcription signaling pathways.

Chronic low-grade inflammation and reactive oxygen species

(ROS) are closely linked. ROS are chemically reactive oxygen-

containing molecules, including superoxide (O2
-), hydrogen

peroxide (H2O2), and hydroxyl radicals (•HO). They play crucial

roles in physiological processes, and a delicate balance with the

antioxidant defense system maintains cellular homeostasis.

However, excessive or uncontrolled ROS production causes

oxidative stress in chronic low-grade inflammation (9). ROS can

damage cellular components, including lipids, proteins, and DNA,

and induce cell death. Consequently, oxidative stress activates

several signaling pathways, contributing to further inflammation,

tissue damage, and subsequent fibrosis (10, 11).

Fibrosis involves the excessive deposition of extracellular matrix

(ECM) components, leading to tissue remodeling and scarring (12).
Frontiers in Endocrinology 02
Collagens are the main components of the ECM, and the increased

deposition of type I and III collagen is a hallmark of fibrosis (13).

Additionally, increased ROS levels and oxidative stress activate

transforming growth factor-b1 (TGF-b1), which is a key cytokine

involved in the fibrotic process (14). TGF-b1 promotes fibroblast

proliferation, fibroblast-to-myofibroblast conversion, and ECM

production and deposition (14, 15). Furthermore, fibrosis disrupts

tissue architecture and can cause organ dysfunction in the liver,

lungs, heart, kidneys, skin, and possibly ovaries (12, 16, 17).
3 Folliculogenesis in the
ovarian cortex

The ovarian follicle, comprising an oocyte surrounded by somatic

cells (cumulus cells [CCs], granulosa cells [GCs], and theca cells [TCs]),

represents the basic functional unit for female reproduction.

Folliculogenesis involves the activation of primordial follicles;

continual growth through primary, secondary, preantral, and antral

follicles; selection and maturation of dominant follicle(s); and

ovulation. It is tightly regulated by pituitary gonadotropins (follicle‐

stimulating hormone [FSH] and luteinizing hormone [LH]) and

intraovarian regulators, including steroids, growth factors, and

cytokines (18). More than 99% of follicles do not become dominant,

leading to growth arrest and eventual atretic degeneration.

Consequently, this results in the loss of follicles and oocytes (19).

Oogenesis is a process involving the forming and development of a

competent, mature oocyte within ovarian follicles. The surrounding

CCs, GCs, and TCs provide essential steroids, growth factors,

cytokines, and metabolites for oogenesis (20). Therefore, the

follicular microenvironment is critical for oocyte growth, maturation,

and the acquisition of developmental competence (21).

The ovarian stroma comprises both the cortex and medulla.

The composition and organization of the stromal ECM change

dynamically around the follicles (22). In vitro follicle culture

experiments have demonstrated that growing follicles are

sensitive to the stiffness of the surrounding ECM (16). The

biomechanical pressure exerted by the surrounding stroma can

influence follicular expansion and development through mechano-

transduction pathways. For instance, Hippo signaling disruption

and Akt stimulation are known to promote folliculogenesis in

rodents and humans (22–24). Early follicles lack direct blood

supply and receive various substances through passive diffusion

from the surrounding stromal tissue (25). The progression of

folliculogenesis beyond the preantral stage requires angiogenesis

and vascularity in the ovarian stroma and TC layer to supply

nutrients, oxygen, and gonadotropins.
4 Pro-inflammatory cytokines and
follicular development

Altered levels of pro-inflammatory cytokines (e.g., TNFa, IL-
1b, and IL-6) in the follicular microenvironment can negatively

impact ovarian function (26, 27).
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TNFa induced apoptosis and inhibited steroidogenesis in rat,

bovine, and human GCs, indicating its negative impact on GCs (28,

29). In contrast, the effects of TNFa on TCs functions are

inconclusive (30–32). Importantly, TNFa gene deletion in mice

showed increased GC proliferation and decreased oocyte apoptosis,

resulting in prolonged fertility (33). Therefore, excess TNFa is

believed to adversely affect follicular development and cause

follicular atresia (26). Moreover, TNFa can induce oxidative

stress in porcine oocytes, causing DNA and mitochondrial

damage and reducing oocyte quality (34).

IL-1b suppressed FSH and LH receptor (LHR) expression in

mice, rat, and porcine GCs (26), as well as estradiol production in

rodent and human GCs (26). Conversely, another study found that

IL-1b stimulated bovine GC proliferation (35) and suppressed

apoptosis in rat follicular cells (36). Notably, IL-1 gene deficiency

in mice resulted in an increase rather than a decrease in fertility

(37). Therefore, IL-1b negatively impacts follicular development

and oocyte maturation (38, 39).

IL-6 inhibited FSH-induced LHR expression in rat and porcine

GCs (40, 41) and suppressed FSH-induced steroidogenesis in rat

and bovine GCs (42, 43). Although a report indicated that IL-6

enhanced FSH-induced LHR expression in rat GCs (44), excess IL-6

is commonly associated with aging and believed to affect follicular

development negatively (45–47).

Chronic low-grade inflammation can cause persistent oxidative

stress in the ovary (48). Additionally, high ROS levels and low

antioxidant capacity in follicular fluids were associated with poor

pregnancy outcomes in human-assisted reproductive technology

(ART) (49, 50). Maternal conditions, including polycystic ovary

syndrome (PCOS), endometriosis, and aging, may compromise the

ovarian microenvironment (47, 48, 51). Therefore, the following

sections discuss whether and how chronic low-grade inflammation

negatively impacts ovarian function in PCOS, endometriosis,

and aging.
5 PCOS and chronic low-
grade inflammation

PCOS is the most common cause of ovarian dysfunction, with a

prevalence of 8–13% in reproductive-aged women (52). The clinical

and pathological hallmarks of PCOS include oligo/anovulatory

ovarian dysfunction, polycystic ovarian morphology, and clinical/

biochemical hyperandrogenism (53). Follicular development

frequently halts at the small antral stage in PCOS, preventing full

maturation and ovulation. Hyperandrogenism, insulin resistance,

hypothalamic-pituitary-ovarian axis imbalance (LH > FSH), and

chronic low-grade inflammation are major contributors to the

pathophysiological changes observed in PCOS (54, 55). In ART

for PCOS, ovarian stimulation overcomes the follicular growth

arrest and allows more oocytes to be retrieved. However, the

percentage of high-quality oocytes/embryos was lower in PCOS

cases than in non-PCOS cases (56).

Follicular fluid is derived from blood and tissue fluid, and its

composition correlates with that of the serum (27). Women with
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PCOS usually exhibit elevated serum levels of inflammatory

markers, including C-reactive protein (CRP), TNFa, and IL-6 (6,

57). They also exhibit higher concentrations of TNF-a and

interleukins in follicular fluids (58–60). Furthermore, macrophage

and lymphocyte infiltration increases throughout the ovary in these

women (61). Systemic and local chronic low-grade inflammation

can increase oxidative stress in the ovary and negatively impact

folliculogenesis in PCOS (6, 62) (Figure 1A). These phenomena are

more pronounced in patients with obesity and PCOS (i.e., obese

PCOS) than in normal-weight patients with PCOS (6).

The negative impact of obesity on ovarian function is evident,

and ovulatory infertility prevalence in women with obesity is up to

three times higher than that in those without obesity (63).

Decreased pregnancy and birth rates in women with obesity were

overcome by oocyte donation from those without obesity,

suggesting that obesity disrupts folliculogenesis and reduces

oocyte quality (64). Furthermore, excess adipose tissue produces

inflammatory adipokines, including TNFa, IL-6, and free fatty acids
(FFAs), which can contribute to cellular lipotoxicity, inflammation,

and oxidative stress in the ovary (65). Oocytes from obese mice

exhibited decreased germinal vesicle breakdown and polar body

extrusion, along with abnormalities in spindle structure,

chromosome alignment, and mitochondrial function (65–69).

Therefore, these results suggest that obesity-induced oxidative

stress negatively impacts both the meiotic and cytoplasmic

maturation of oocytes.

Patients with obese PCOS who exhibit hyperandrogenism and

insulin resistance are at a higher risk of abnormal folliculogenesis and

poor oocyte competence (70). Hyperandrogenemia impairs the

hypothalamic-pituitary-ovarian axis, resulting in a sustained increase

in the gonadotropin-releasing hormone pulse frequency and the

hypersecretion of LH over FSH (71). Hyperinsulinemia stimulates

LH activity in TCs and promotes ovarian hyperandrogenism, which

prevents follicular maturation and promotes follicular atresia (72).

Additionally, insulin resistance can trigger a series of pro-

inflammatory events, including hyperglycemia and oxidative stress

(73, 74). Androgens promoted the differentiation of pre-adipocytes

into mature adipocytes and increased lipolysis, resulting in an elevated

release of FFAs (75, 76). Women with PCOS had higher FFA levels in

follicular fluid, causing lipotoxicity and endoplasmic reticulum stress

in the follicular microenvironment (77). These results suggest that

hyperandrogenism and insulin resistance directly or indirectly

stimulate chronic low-grade inflammation and increase ovarian

oxidative stress (Figure 1A), which consequently compromises

follicular maturation and oocyte quality in PCOS without follicle

loss (57, 71).

Ovarian dysfunction in women with PCOS may also be

correlated with ovarian fibrosis, which is characterized by

excessive fibroblast proliferation and ECM deposition in the

ovary (65, 78). Follicles in PCOS are surrounded by densely

collagenized rigid stroma, which may inhibit follicular

development (16). The molecular mechanisms underlying ovarian

fibrosis in PCOS remain unclear. However, increased ROS levels

and oxidative stress can activate TGF-b1, which is a key cytokine

involved in tissue fibrosis (14). TGF-b1 levels were elevated in the
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serum and ovaries of women with PCOS and rat PCOS models (79–

83). Therefore, these results indicate that ROS-induced TGF-b1
signaling may be involved in the pathophysiology of PCOS by

stimulating ovarian fibrosis.
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6 Endometriosis and chronic low-
grade inflammation

Endometriosis is among the most common causes of

infertility, with a prevalence of 10–15% in reproductive-aged

women (84). It is a disease characterized by the growth of

endometrial tissue outside the uterine cavity and estrogen-

dependent chronic inflammation, primarily affecting pelvic

tissues, including the ovary (i.e., endometrioma) (85). Although

the effect of endometrioma on folliculogenesis remains

inconclusive, follicular growth was significantly suppressed in

the ovarian cortex surrounding the endometrioma (86). In ART,

women with endometrioma had fewer retrieved oocytes than

those without endometrioma, suggesting that endometrioma

reduces follicular response to ovarian stimulation (84, 87, 88).

The endometrioma is surrounded by stroma and a single layer

of columnar epithelial cells, but unlike other benign cysts, it is not

surrounded by a capsule (17, 22). The toxic components of

endometrioma, such as pro-inflammatory cytokines and ROS,

can readily diffuse into the ovarian cortex and adjacent follicles

(89). Indeed, altered levels of TNFa, interleukins, and ROS have

been reported in the follicular fluid adjacent to the endometrioma

(90, 91). These pro-inflammatory cytokines and ROS can induce

oxidative stress and fibrosis in the ovary, impairing

folliculogenesis and oocyte maturation (Figure 1B) (17, 92).

Free iron may also be harmful to the ovary, and the

endometrioma fluid contains large amounts of free iron,

approximately 10 times higher than the serum level (17). Iron

levels were significantly elevated in the follicular fluid adjacent to

endometriomas (93). Notably, iron is an essential mineral that

plays a crucial role in various physiological processes, such as

oxygen transport and energy production. However, ferrous iron

(Fe2+) catalyzes the conversion from H2O2 to •HO via the Fenton

reaction (Fe2+ + H2O2 → Fe3+ + •HO + OH−). •HO is among the

most reactive and toxic ROS. Consequently, unbalanced and

excessive iron levels (i .e . , iron overload) can induce

inflammation, oxidative stress, lipid peroxidation of the cellular

membrane, and subsequent ferroptotic cell death (i.e. ,

ferroptosis), a new type of programmed cell death (Figure 1B)

(94–97). Although the effect of ferroptosis on ovarian function in

endometriosis remains unclear, iron overload in the follicular fluid

has been shown to induce GC ferroptosis and oocyte

dysmaturation in endometriosis (98).

Ovarian dysfunction in endometriosis may also be correlated

with ovarian fibrosis. One of the histologic features associated with

endometriomas is fibrosis inside and outside the cyst (99). Indeed,

follicular density was lower in the ovarian cortex adjacent to

endometriomas, possibly because of the inhibition of

angiogenesis, increased follicular atresia, and induction of fibrosis

(100–102). Although the molecular mechanisms underlying ovarian

fibrosis in endometriosis are yet to be elucidated, it is noteworthy

that disruption in iron homeostasis induces organ fibrosis in the

liver, heart, and pancreas (45). Endometrioma-derived free iron,

pro-inflammatory cytokines, and ROS may cooperate with TGF-b1
A

B

C

FIGURE 1

Hypothetical models illustrating chronic low-grade inflammation,
oxidative stress, fibrosis, and ovarian dysfunction. (A) obesity and
polycystic ovary syndrome (obese PCOS), (B) endometriosis, and
(C) aging.
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signaling to promote stromal fibrosis around endometriomas (99,

103, 104).

Nevertheless, whether endometrioma reduces oocyte quality

remains controversial. Many previous studies have shown poor

ART outcomes in women with endometriosis (84, 105).

Additionally, oocyte donation programs showed that embryos

derived from women with endometrioma have lower implantation

rates than those from women without endometrioma, suggesting

reduced oocyte quality in endometriosis (91, 106). Oocytes from

patients with endometrioma exhibited zona pellucida hardening,

altered spindle structure, and decreased mitochondrial number (84,

107, 108). However, recent reports have shown that the presence of

endometrioma does not affect clinical pregnancy and live birth rates,

provided multiple oocytes are successfully retrieved and fertilized in

the ART setting (87, 109). Although endometrioma negatively

impacts the number of growing follicles and oocytes retrieved,

whether the percentage of high-quality oocytes/embryos is lower in

endometriosis remains inconclusive (84).
7 Aging and chronic low-
grade inflammation

Female fertility begins to decline in the late 20s, and the decline

accelerates rapidly beyond the mid-30s (110). Ovarian aging

becomes noticeable in women in their late 30s and typically

completes around the age of 50, suggesting that ovaries may be

more susceptible to aging than other organs (111, 112). Notably,

lower live birth rates and higher miscarriage rates in aged women

were overcome by oocyte donation from young women, indicating

that oocyte quality declines with age (113).

The progressive decline in oocyte quality and quantity is the main

cause of age-related decline in female fertility. Multiple oocyte-related

factors contribute to age-associated infertility, including chromosome

mis-segregation, meiotic recombination errors, DNA damage,

telomere shortening, mitochondrial dysfunction, genetic mutations,

and protein metabolic dysregulation (111).

Additionally, the inflammatory follicular microenvironment and

stromal fibrosis might contribute to ovarian aging (Figure 1C) (46,

47). Physiological aging is associated with chronic low-grade

inflammation (114). Cellular senescence is the irreversible cell cycle

arrest associated with aging. Senescent cells secrete inflammatory

substances known as senescence-associated secretory phenotype

(SASP) factors (e.g., IL-6, IL-1b, and IL-8). SASP factors induce

chronic inflammation and oxidative stress in surrounding cells (47,

112). Inflammatory aging (i.e., inflammaging) has been implicated in

age-related diseases and conditions, such as cardiovascular disease,

neurodegenerative disorders, metabolic dysfunction, and possibly

ovarian dysfunction (112).

Serum concentrations of IL-6, IL-1b, and TNFa were

modestly but definitely increased in aged women (115). Aged

women also showed higher IL-6 concentrations and lower

antioxidant levels in follicular fluids (27, 116). Aged mice

exhibited increased macrophage infiltration and fusion and pro-

inflammatory cytokine expression in the ovary (45, 46, 117).
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Furthermore , the NF-kB pathway, which is a major

inflammatory signaling pathway, was also activated in the

ovaries of aged mice (118).

Whether and how inflammaging affects physiological ovarian

aging remains unknown. Nevertheless, sustained small changes in

pro-inflammatory cytokine expression and subsequent long-term

accumulation of oxidative stress may deteriorate the follicular

microenvironment and cause GC apoptosis and follicular atresia

(Figure 1C) (46, 47, 119). Cellular senescence and SASP secretion

were significantly increased in the ovaries of agedmice, particularly in

TCs (120). Oocyte-somatic cell communication is indispensable for

folliculogenesis and oocyte maturation (18, 121, 122). Loss of support

from surrounding CCs, GCs, and TCs can result in defects in oocyte

chromosomal, genetic, mitochondrial, and cytoplasmic factors,

compromising oocyte quality (111, 112).

Furthermore, ovarian ECM deposition and stromal fibrosis were

also observed in aged mice and humans (16, 45, 123). Transcriptome

analysis of aged women showed that hypoxia stress response-

associated genes (e.g., genes downstream of the hypoxia-inducible

factor-1 pathway) were overexpressed in CCs, suggesting a hypoxic

microenvironment in aging follicles (124). In the aging ovary, stromal

changes, such as increased fibrosis and decreased angiogenesis, may

induce a stressed environment (e.g., hypoxia), leading to impaired

folliculogenesis and reduced oocyte quality (47).
8 Conclusion

Recent research suggests that chronic low-grade inflammation is

associated with ovarian dysfunction in women with PCOS,

endometriosis, and aging. However, our understanding of the

impact of the pro-inflammatory microenvironment and fibrotic

ECM remodeling on folliculogenesis and oocyte maturation

remains limited. Therefore, explaining the pathologies of ovarian

dysfunction in PCOS, endometriosis, and aging by chronic low-grade

inflammation is still difficult. It remains unclear whether chronic low-

grade inflammation and fibrosis are the cause or consequence of these

conditions. Nevertheless, controlling chronic low-grade

inflammation and fibrosis in the ovary would represent a novel

therapeutic strategy to improve the follicular microenvironment.

Animal models have indicated that antioxidants (27, 51), insulin-

sensitizing drugs (125), anti-aging drugs (senolytics) (126), immune

checkpoint inhibitors (127), and antifibrosis drugs (125) may help

minimize follicular depletion and oocyte quality decline. However,

further studies are required to determine whether these drugs

overcome ovarian dysfunction in PCOS, endometriosis, and aging.
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Outcome of patients with endometriosis in assisted reproduction: results from in-vitro
fertilization and oocyte donation. Hum Reprod (Oxford England) (1994) 9:725–9. doi:
10.1093/oxfordjournals.humrep.a138578

107. Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM.
Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in
women with endometriosis. Fertility sterility (2014) 102:151–159.e155. doi: 10.1016/
j.fertnstert.2014.03.053

108. Xu B, Guo N, Zhang XM, Shi W, Tong XH, Iqbal F, et al. Oocyte quality is
decreased in women with minimal or mild endometriosis. Sci Rep (2015) 5:10779. doi:
10.1038/srep10779

109. Younis JS. Is oocyte quality impaired in cases with ovarian endometriosis? A
second look into the clinical setting. Front Endocrinol (2022) 13:921032. doi: 10.3389/
fendo.2022.921032

110. O’Connor KA, Holman DJ, Wood JW. Declining fecundity and ovarian ageing
in natural fertility populations. Maturitas (1998) 30:127–36. doi: 10.1016/S0378-5122
(98)00068-1

111. Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging. Reprod
(Cambridge England) (2021) 162:R19–r33. doi: 10.1530/REP-21-0022

112. Rodichkina V, Kvetnoy I, Polyakova V, Arutjunyan A, Nasyrov R, Ivanov D.
Inflammaging of female reproductive system: A molecular landscape. Curr Aging Sci
(2021) 14:10–8. doi: 10.2174/1874609813666200929112624

113. Luke B, Brown MB, Wantman E, Lederman A, Gibbons W, Schattman GL,
et al. Cumulative birth rates with linked assisted reproductive technology cycles. New
Engl J Med (2012) 366:2483–91. doi: 10.1056/NEJMoa1110238

114. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its
potential contribution to age-associated diseases. journals gerontology Ser A Biol Sci
Med Sci (2014) 69 Suppl 1:S4–9. doi: 10.1093/gerona/glu057

115. Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for
healthspan extension. Immunol Rev (2015) 265:63–74. doi: 10.1111/imr.12295

116. Pellicer A, Garrido N, Albert C, Navarro J, Remohı ́ J, Simón C. Cytokines in
older patients undergoing in vitro fertilization: the relationship to the response to
controlled ovarian hyperstimulation. J assisted Reprod Genet (1999) 16:247–52. doi:
10.1023/A:1020363312252

117. Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated
with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reprod
(Cambridge England) (2020) 159:325–37. doi: 10.1530/REP-19-0330

118. Yuan S, Wen J, Cheng J, Shen W, Zhou S, Yan W, et al. Age-associated up-
regulation of EGR1 promotes granulosa cell apoptosis during follicle atresia in mice
through the NF-kB pathway. Cell Cycle (Georgetown Tex) (2016) 15:2895–905. doi:
10.1080/15384101.2016.1208873

119. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al.
Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update (2008)
14:131–42. doi: 10.1093/humupd/dmm048

120. Shen L, Chen Y, Cheng J, Yuan S, Zhou S, Yan W, et al. CCL5 secreted by
senescent theca-interstitial cells inhibits preantral follicular development via granulosa
cellular apoptosis. J Cell Physiol (2019) 234:22554–64. doi: 10.1002/jcp.28819

121. Orisaka M, Jiang JY, Orisaka S, Kotsuji F, Tsang BK. Growth differentiation
factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen
biosynthesis. Endocrinology (2009) 150:2740–8. doi: 10.1210/en.2008-1536

122. Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell
interactions during preantral follicular development. J Ovarian Res (2009) 2:9. doi:
10.1186/1757-2215-2-9

123. Amargant F, Manuel SL, Tu Q, Parkes WS, Rivas F, Zhou LT, et al. Ovarian
stiffness increases with age in the mammalian ovary and depends on collagen and
hyaluronan matrices. Aging Cell (2020) 19:e13259. doi: 10.1111/acel.13259

124. Molinari E, Bar H, Pyle AM, Patrizio P. Transcriptome analysis of human
cumulus cells reveals hypoxia as the main determinant of follicular senescence. Mol
Hum Reprod (2016) 22:866–76. doi: 10.1093/molehr/gaw038

125. Umehara T, Winstanley YE, Andreas E, Morimoto A, Williams EJ, Smith KM,
et al. Female reproductive life span is extended by targeted removal of fibrotic collagen
from the mouse ovary. Sci Adv (2022) 8:eabn4564. doi: 10.1126/sciadv.abn4564

126. Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular
senescence in female reproductive aging and the potential for senotherapeutic
interventions. Hum Reprod Update (2022) 28:172–89. doi: 10.1093/humupd/dmab038

127. Wang TW, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, et al.
Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes.
Nature (2022) 611:358–64. doi: 10.1038/s41586-022-05388-4
frontiersin.org

https://doi.org/10.1093/humrep/det341
https://doi.org/10.1038/s41598-017-11252-7
https://doi.org/10.1038/s41598-017-11252-7
https://doi.org/10.1093/humupd/dmab014
https://doi.org/10.1210/er.2018-00242
https://doi.org/10.1016/0002-9378(93)90093-X
https://doi.org/10.1097/AOG.0000000000000592
https://doi.org/10.1016/j.rbmo.2014.04.019
https://doi.org/10.1016/j.rbmo.2014.04.019
https://doi.org/10.3389/fendo.2022.1020827
https://doi.org/10.1007/s10815-016-0865-3
https://doi.org/10.1186/s13048-017-0341-4
https://doi.org/10.1016/j.rbmo.2019.12.005
https://doi.org/10.1093/humrep/det466
https://doi.org/10.1007/s43032-020-00164-z
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1038/nchembio.2239
https://doi.org/10.1038/nchembio.2238
https://doi.org/10.1038/s41419-022-05037-8
https://doi.org/10.1038/s41419-022-05037-8
https://doi.org/10.1007/s43032-022-01083-x
https://doi.org/10.1016/j.fertnstert.2009.08.068
https://doi.org/10.1016/j.fertnstert.2009.08.068
https://doi.org/10.1016/j.fertnstert.2011.06.064
https://doi.org/10.1016/j.fertnstert.2013.12.049
https://doi.org/10.1016/j.fertnstert.2013.12.049
https://doi.org/10.1093/biolre/iox140
https://doi.org/10.3389/fendo.2023.1174817
https://doi.org/10.3389/fendo.2023.1174817
https://doi.org/10.1093/humrep/10.suppl_2.91
https://doi.org/10.1093/oxfordjournals.humrep.a138578
https://doi.org/10.1016/j.fertnstert.2014.03.053
https://doi.org/10.1016/j.fertnstert.2014.03.053
https://doi.org/10.1038/srep10779
https://doi.org/10.3389/fendo.2022.921032
https://doi.org/10.3389/fendo.2022.921032
https://doi.org/10.1016/S0378-5122(98)00068-1
https://doi.org/10.1016/S0378-5122(98)00068-1
https://doi.org/10.1530/REP-21-0022
https://doi.org/10.2174/1874609813666200929112624
https://doi.org/10.1056/NEJMoa1110238
https://doi.org/10.1093/gerona/glu057
https://doi.org/10.1111/imr.12295
https://doi.org/10.1023/A:1020363312252
https://doi.org/10.1530/REP-19-0330
https://doi.org/10.1080/15384101.2016.1208873
https://doi.org/10.1093/humupd/dmm048
https://doi.org/10.1002/jcp.28819
https://doi.org/10.1210/en.2008-1536
https://doi.org/10.1186/1757-2215-2-9
https://doi.org/10.1111/acel.13259
https://doi.org/10.1093/molehr/gaw038
https://doi.org/10.1126/sciadv.abn4564
https://doi.org/10.1093/humupd/dmab038
https://doi.org/10.1038/s41586-022-05388-4
https://doi.org/10.3389/fendo.2023.1324429
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging
	1 Introduction
	2 Overview of chronic low-grade inflammation
	3 Folliculogenesis in the ovarian cortex
	4 Pro-inflammatory cytokines and follicular development
	5 PCOS and chronic low-grade inflammation
	6 Endometriosis and chronic low-grade inflammation
	7 Aging and chronic low-grade inflammation
	8 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


