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Introduction: There is increasing evidence that the in utero environment affects

the health and disease risk of offspring throughout their lives. The long-term

effect of maternal hyperglycaemia on offspring glucose metabolism is of interest

in a public health perspective. The aim of this study was to examine the

association between in utero exposure to maternal glycaemia and offspring

glucose metabolism.

Methods: Mother-child pairs were recruited from an RCT to prevent gestational

diabetes mellitus where 855 healthy pregnant women were randomised to

exercise or standard antenatal care. The original RCT detected no group

differences in gestational diabetes mellitus prevalence or insulin resistance. The

two groups were analysed as one group in the present study. Maternal glucose

levels were assessed after 2-hour 75-gram oral glucose tolerance tests in

pregnancy week ~34. Offspring outcomes were evaluated at ~9 years of age

and included fasting glucose and homeostatic model assessment of insulin

resistance. Multivariable regression models were performed, controlling for

potential hereditary and lifestyle confounding factors.

Results: Complete data were available for 105mother-child pairs. The regression

analysis showed a positive association between maternal and offspring fasting

glucose that was borderline significant (beta=0.18, 95% CI [-0.00027, 0.37],

p=0.050). We did not find significant associations between maternal fasting

glucose and offspring insulin resistance (beta=0.080, 95% CI [-0.087, 0.25],

p=0.34), or between maternal 2-hour glucose and offspring fasting glucose

(beta=0.016, 95% CI [-0.038, 0.070], p=0.56) or insulin resistance (beta=0.017,

95% CI [-0.032, 0.065], p=0.49).
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Conclusions: Assessing a homogeneous group of healthy mother-child

pairs, we found a borderline significant positive association between

maternal and offspring fasting glucose, which persisted after adjustment for

potential hereditary and lifestyle confounding factors. Our findings support

other similar studies and highlight that improving the metabolic health of

pregnant women, and women in childbearing age, should remain a key

public health priority.

Clinical trial registration: ClinicalTrials.gov, identifier NCT00476567.
KEYWORDS

blood glucose, child, follow-up, gestational diabetes, hyperglycaemia, insulin
resistance, prenatal exposure
Introduction

There is increasing evidence that the in utero environment

affects the health and disease risk of offspring throughout

their lives (1–3). Hyperglycaemia and gestational diabetes

mellitus (GDM) are common pregnancy complications, and

consequences of different glycaemic levels in pregnancy have

been widely studied. It is well established that GDM increases

the risk of future type 2 diabetes in the mother and adverse

pregnancy outcomes (4–6). Studies also indicate potential long-

term effects on the offspring, including obesity, hypertension, and

abnormal glucose metabolism (7–13). These associations are,

however, less clear, and susceptible to confounders due to the

long-term perspective and multifactorial aetiology.

The incidence and prevalence of type 2 diabetes among children

and adolescents are increasing (14, 15), and associations between

maternal glucose metabolism and offspring risk of childhood

diabetes have been investigated. A large Canadian retrospective

cohort study reported higher incidence of diabetes in offspring of

GDM mothers, when adjusted for lifestyle confounders, but not

hereditary factors (16). However, a systematic review by Kawasaki

et al. did not detect increased risk of diabetes in children of mothers

with GDM (10).

Childhood glucose metabolism is a more frequently studied

outcome than childhood diabetes. As this is a strong predictor of

future risk of type 2 diabetes (17–19), it is a highly relevant outcome

to assess. The relationship between maternal and offspring glucose

metabolism has been examined in multiple studies, but the

conclusions are divergent, possibly due to methodologic

differences and quality. Two systematic reviews reported an

association between GDM and offspring glucose metabolism, but

systematic adjustments for potential hereditary and lifestyle

confounders were not performed (10, 20). Three small to

medium-sized studies detected no independent association

between maternal glycaemia and offspring fasting glucose (21, 22)

or insulin resistance (21, 23). However, other studies report
02
significant associations between maternal diabetes and offspring

glucose metabolism persisting after adjustment for maternal and

offspring BMI (24–26) and one when also adjusting for family

history of diabetes (24). Notably, a large multicentre study including

4160 mother-child pairs, the Hyperglycaemia and Pregnancy

Adverse Outcomes Follow-up Study (HAPO FUS), found

associations between maternal and childhood glucose metabolism

(7, 27), including levels of glycaemia below the diagnostic criteria of

GDM (7). The findings were independent of family history of

diabetes and maternal and offspring BMI, though not adjusted for

potential lifestyle confounders. A separate follow-up study

conducted from the Hong Kong HAPO cohort, also reported

associations between maternal glucose levels and abnormal

glucose tolerance in the offspring (11). These associations were

independent of maternal pre-pregnancy BMI, children’s exercise

level, and maternal and paternal diabetes status.

In the present study we aimed to investigate whether there is an

association between in utero exposure to maternal glycaemia and

offspring glucose metabolism at 9 years of age. We hypothesized

that such an association would be present, consistent with the

HAPO findings.
Materials and methods

Study design

Mother-child pairs were recruited from the RCT Training in

pregnancy which was designed to investigate the effects of offering a

regular exercise program during pregnancy on GDM prevalence

(28). In this study no differences were observed between the

intervention and control group in GDM prevalence or insulin

resistance (28). Pregnant women booking appointments for their

~18-week routine ultrasound scans at St. Olavs Hospital

(Trondheim University Hospital) and Stavanger University

Hospital in Norway were invited to participate in the trial from
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2007 to 2009. A total of 855 women were included, 660 in

Trondheim and 195 in Stavanger. White women ≥ 18 years of

age with a singleton live foetus who lived less than a 30-minute drive

from the hospitals were eligible for inclusion. Exclusion criteria

were history of diabetes or severe chronic diseases, known alcohol

or drug misuse, previous severe pregnancy complications (preterm

birth before 34 weeks, severe foetal growth retardation or severe

preeclampsia with delivery before 34 weeks, eclampsia or HELLP

syndrome), hypertension (systolic blood pressure ≥ 140 mmHg

and/or diastolic blood pressure ≥ 90 mmHg) at antenatal care visit

before study entry or foetal malformations, placenta previa or

identified risk of preterm birth in current pregnancy (short

cervix, amniotic fluid leakage or profuse vaginal bleeding with

proven retroplacental hematoma) at ~18-week ultrasound scan.

The participating women were randomised to receive a 12-week

exercise program or standard antenatal care. At the end of

intervention (week 32–36 of pregnancy), participants were

examined and underwent a 75-gram OGTT, where fasting and 2-

hour glucose were analysed. Demographic and lifestyle

characteristics were collected via questionnaires at two time

points in pregnancy and 3 months post-partum. Pregnancy

outcomes and newborn data were retrieved from medical charts

after delivery.

At follow-up, questionnaire data were collected between

October 2014 and December 2016 when the child was ~7 years

old, by using the safe electronic solution CheckWare. Children and

parents residing in Trondheim who had consented at the follow-up

questionnaire to be invited to an in-person study visit, were invited

to this study visit between November 2016 and December 2018,

when the child was ~9 years old. The aim was assess the long-term

effects on children’s health. For the women participating in this

follow-up, we repeated the primary analyses from the original RCT

of potential differences in GDM prevalence between the

intervention and control group, using the revised WHO 2013

criteria (29), and supplemented by analysing for group differences

in fasting and 2-hour glucose. If no new group differences were

detected, the intervention and control group would be analysed as

one cohort in this follow-up study.

Parents received written detailed information about the study.

The children received a separate easy to read information letter, and

parents and children were encouraged to discuss participation. The

parents gave written consent on behalf of their children. The study

was approved by The Regional Committee for Medical and Health

Research Ethics in Central Norway (REK no. 2015/2028,

application date 09-03-2016).
Outcomes

The primary outcome in this study was offspring glucose

metabolism at ~9 years of age, as expressed by fasting serum

glucose and estimated insulin resistance. At the study visit, fasting

blood samples were collected from the children between 07:30 and

09:00. The blood samples were collected by standard venepuncture

in vacuum tubes and sat for 30 minutes at room temperature before

centrifugation (3000g/4°C/10 minutes). Sera were aliquoted and
Frontiers in Endocrinology 03
stored at -80°C until further analyses. Sera from all children were

analysed simultaneously for glucose and insulin with accredited

analyses at St. Olavs Hospital (Trondheim University Hospital) in

September 2021. Insulin resistance was estimated by HOMA-IR

according to the formula (fasting glucose in mmol/L)*(fasting insulin

in pmol/L)/135 (30).
Predictors and covariates

Primary predictors were maternal fasting and 2-hour serum

glucose following the OGTT at ~34 weeks of gestation (28).

Covariates were chosen based on known associations with the

predictors and outcomes from previous literature, and based on

covariates chosen in similar studies to enable comparison with these

studies. Children’s height and weight were measured at the ~9-year

study visit. BMI was calculated as weight in kilograms divided by

the square value of height in meters (kg/m2). Offspring BMI was

further classified into iso-BMI categories, i.e. categories adjusted for

age and sex, with the use of a calculator published by the Norwegian

Institute of Public Health (31). Information about the child’s

physical activity was collected by questionnaire at the ~7-year

follow-up. Parents were asked if their child on average

participated in moderate to vigorous physical activity ≥ 60

minutes per day (32), according to the WHO (33) and Norwegian

Directorate of Health (34) recommendations for physical activity

for children. Gestational age was estimated at the ~18-week routine

ultrasound scan, and estimated gestational age at the OGTT was

included as a covariate. Maternal pre-pregnancy BMI was

calculated based on height and pre-pregnancy weight self-

reported at study inclusion. Socioeconomic status was calculated

based on the mother’s education and occupation reported in the

questionnaire at study inclusion, according to Hollingshead Two-

Factor Index of Social Position (35). Information about diabetes

among the mother’s first-degree relatives (mother, father, siblings,

or previous children) was collected at the questionnaire 3 months

post-partum. The mother’s group allocation in the original RCT

was also included as a covariate.
Statistical analyses

Descriptive statistics for continuous variables are presented

with mean, standard deviation (SD) and minimum and

maximum values. Categorical variables are presented with

frequencies and percentages. Histograms and Q-Q plots for

continuous variables were reviewed to assess normality, and

maternal insulin and HOMA-IR were logarithmically transformed

before further analyses due to non-normal distribution.

Independent samples t-tests were used to analyse group

differences for continuous variables. For categorical variables

differences were analysed using Chi-square tests or Fishers exact

tests as appropriate.

Simple and multivariable linear regression analyses were

performed to assess associations between outcome and exposure

variables. Mother-child pairs with missing values for one or more of
frontiersin.org
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the predictors, covariates, or outcomes were excluded from the

regression analyses. Linearity was assessed by scatterplots, and

multicollinearity was evaluated by reviewing pairwise correlations

and variance inflation factors. The normality of residuals was

assessed with residual plots. For the multivariable regression,

covariate adjustments were performed in three separate models.

Model 1 adjusted for offspring age (continuous), offspring sex (girl/

boy), offspring physical activity (on average ≥ 60 minutes moderate

to vigorous physical activity per day: yes/no), maternal group

allocation in the original RCT (intervention group/control group),

maternal socioeconomic position (continuous, class 1-5), maternal

age (continuous), diabetes among first degree relatives of the

mother (yes/no or uncertain) and gestational age at OGTT

(continuous). Model 2 adjusted for the same variables as model 1,

in addition to offspring BMI (continuous). Model 3 adjusted for the

same variables as model 2, in addition to maternal pre-pregnancy

BMI (continuous). Statistical analyses were performed using IBM

SPSS Statistics version 28. P-values less than 0.05 were considered

statistically significant.
Results

This 9-year follow-up study included a total of 118 mother-

child pairs (Figure 1). This accounts for 18% of the 660 mothers

who were included in the original RCT in Trondheim during

pregnancy, and 74% of the 160 eligible mother-child pairs who

were included in the 7-year follow-up and had given their consent

to be invited to participate in an in-person study visit. 13 mother-

child pairs were excluded from the regression analyses due to

missing values of one or more of the predictors, covariates, or

outcomes. The remaining 105 (16%) mother-child pairs were

included. Of these, 59 mothers (56%) were randomised to the

intervention group in the original RCT. When the glucose

metabolisms of the women who participated in this follow-up

study were analysed, we detected no differences between the

intervention and control groups in terms of the prevalence of

GDM (3 of 59 (5.1%) in the intervention group and 2 of 46

(4.3%) in the control group (p=0.86)), mean fasting glucose (4.3

mmol/L in both the intervention (SD=0.3) and the control (SD=0.4)

group, p=0.50), or mean 2-hour glucose (5.5 mmol/L (SD=1.4) in

the intervention group and 5.7 mmol/L (SD=1.2) in the control

group, p=0.60). Therefore, the intervention and control groups

from the original RCT were analysed as one cohort in this follow-

up study.

Mother-child pairs who did and did not participate in the 9-

year follow-up are compared in Table 1. Characteristics were

similar in the two groups, except for a slightly higher maternal

age (p=0.016), higher socioeconomic status (p=0.0021), and lower

fasting glucose (p=0.022) among participants. Mean maternal

fasting and 2-hour glucose was 4.3 mmol/L (SD ± 0.4) and 5.6

mmol/L (SD ± 1.3), respectively. Table 2 shows characteristics of the

children at the ~9-year study visit and reported physical activity at

the ~7-year follow-up. Mean fasting glucose was 4.7 mmol/L (SD ±

0.3), and mean HOMA-IR was 1.08 (SD ± 0.30).
Frontiers in Endocrinology 04
Model diagnostics for linear regression analyses showed a good

fit. Scatterplots indicated linearity between predictors and

outcomes, and residual plots indicated reasonably normal

distributions. Collinearity assessment showed pairwise

correlations ranging between 0.0039 and 0.28 for covariates,

except for the correlation between maternal fasting glucose and

maternal pre-pregnancy BMI, which was 0.47. Although higher

than ideal for the regression analyses, it was acceptable, and

variance inflation factors were satisfactory; 1.31 for maternal

fasting glucose and 1.36 for maternal pre-pregnancy BMI.

Results of the linear regression analyses are presented in

Tables 3, 4. The analyses examined associations of maternal

fasting and 2-hour glucose with offspring fasting glucose

(Table 3) and offspring insulin resistance (Table 4). In the

unadjusted analysis, a positive, though borderline significant

association was observed between maternal and offspring fasting

glucose. Adjusting for possible confounders and other covariates in

model 1, and further adjustment for offspring BMI in model 2,

strengthened the association. Adjusting for pre-pregnancy BMI in

model 3, weakened the association. Other investigated associations

were not significant in any of the models.
Discussion

Main findings

In this study, assessing 105 mother-child pairs, we observed a

borderline significant positive association (beta=0.18, 95% CI

[-0.00027, 0.37], p=0.050) between maternal and offspring fasting

glucose when adjusted for potential confounders (model 2). The

interpretation of this is that a 1 mmol/L increase in maternal fasting

glucose, keeping everything else constant, would lead to a 0.18

mmol/L increase in offspring fasting glucose. We did not find

significant associations between maternal fasting glucose and

offspring insulin resistance, or between maternal 2-hour glucose

and offspring fasting glucose or insulin resistance.
Strengths and limitations

This study has two main strengths in its investigation of the

association between maternal and offspring metabolism. First, we

examined serum levels of glucose and insulin which are objective

measures of the offspring outcomes and maternal exposures.

Second, a variety of relevant covariates were collected through

study visits and questionnaires during pregnancy and at 7- and 9-

year follow-ups, including both potential hereditary and lifestyle

confounding factors.

There are inherent limitations to the analysis. The sample size is

small, which limits the study’s power to demonstrate associations.

Though associations between investigated exposures and outcomes

were positive, confidence intervals were wide, and p-values did not

meet the set significance level at < 0.05. Moreover, the study was not

originally designed to examine the long-term effects of maternal
frontiersin.org
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hyperglycaemia in pregnancy, and no a-priori power calculation

was performed. Though the study is generally well adjusted for

confounders, we did not have access to relevant paternal factors,

such as diabetes, BMI, and socioeconomic status.

Offspring fasting blood samples were analysed in this study. It is

possible that glucose tolerance (1- or 2-hour glucose), obtained

following a 75-gram glucose load, would be more sensitive in

identifying abnormal glucose metabolism in children, as argued in

a systematic review by Kawasaki et al. (10). However, the HAPO

FUS detected associations between maternal 2-hour glucose and

both offspring fasting and 2-hour glucose (7). The disadvantage of

performing glucose tolerance tests is the increased discomfort for

the participating children, and in this study, we therefore preferred

fasting blood samples.

The OGTT was performed at ~34 weeks of gestation in the

present study, in contrast to many other studies, and screening

programs in most countries, where testing in week 24-28 is

recommended. This is of importance when comparing results
Frontiers in Endocrinology 05
with other studies, as glucose metabolism changes during a

normal pregnancy, with decreasing fasting glucose and increasing

non-fasting glucose and insulin resistance with advancing

gestation (36).

It is possible that the present study might be exposed to some

degree of selection bias, in favour of healthier mother-child pairs.

74% of the eligible mother-child pairs from the 7-year follow-up

participated in this 9-year follow-up study. However, only 18% of

the mother-child pairs included in the original study in Trondheim

participated in the present follow-up study. Participating mothers

had higher socioeconomic position and lower third trimester fasting

glucose than non-participants, though other characteristics were

similar between the groups. It is also reasonable to assume that

women who agreed to participate in the initial RCT might be

healthier than the general population, as it was an exercise study.

Compared with data from the medical birth registry of Norway

(MBRN) in 2021 (37) the women in our study had slightly better

metabolic health. The percentage of women with GDM (4.4% in
FIGURE 1

Study flow diagram.
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this study and 6.3% in MBRN) and pre-pregnancy overweight or

obesity (BMI ≥ 25) (21% in this study and 38% inMBRN) was lower

in our study, even though MBRN utilized slightly stricter GDM

criteria and OGTTs were performed earlier in pregnancy.

Compared to the HAPO FUS participants (7), the women in the

current study had slightly lower mean fasting glucose (4.3 mmol/L

in this study and 4.5 mmol/L in HAPO FUS), lower mean 2-hour
ABLE 1 Characteristics of participants and non-participants.

Characteristic Participants
(n=118)

Non-
participants
(n=542)

P-
value

Maternal characteristics at study inclusion ~18 weeks
of gestation

Randomised to exercise
group, n (%)

63 (53%) 267 (49%) 0.42

Age, years 31.2 ± 3.6 [24-41] 30.3 ± 4.4 [19-46] 0.016

Education, n (%) 0.46

≤ 13 years in total 10 (8.5%) 57 (11%)

≤ 4 years
higher education

41 (35%) 211 (39%)

> 4 years
higher education

67 (57%) 274 (51%)

Married or living with
partner, n (%) a

117 (99.2%) 528 (97.6%) 0.48

Socioeconomic
position, class

4.1 ± [0.8] 3.8 ± [1.0] 0.0021

Diabetes among first
degree relatives, n (%) b

9 (7.6%) 43 (7.9%) 0.64

Parity, n (%) 0.48

No children 61 (52%) 313 (58%)

1 child 40 (34%) 159 (29%)

2 or more children 17 (14%) 70 (13%)

Pre-pregnancy BMI, kg/
m2 c

23.1 ± 3.0
[17.5-35.9]

23.2 ± 3.3
[17.3-38.4]

0.55

Pre-pregnancy
overweight or obesity
(BMI ≥ 25), n (%) c

25 (21%) 117 (22%) 0.89

Smoking, n (%) 2 (1.7%) 3 (0.6%) 0.22

Hypertension, n (%) 1 (0.8%) 8 (1.5%) 1.00

Maternal characteristics at third trimester exam

Gestational age at exam,
weeks d

33.7 ± 2.0
[26.9-38.3]

33.7 ± 2.0
[27.0-42.6]

0.70

Fasting serum glucose,
mmol/L e

4.3 ± 0.4 [3.5-5.2] 4.4 ± 0.4 [3.4-6.4] 0.022

2-hour serum glucose,
mmol/L f

5.6 ± 1.3 [2.3-9.3] 5.8 ± 1.2 [3.1-9.9] 0.18

Fasting serum insulin,
pmol/L g

74.4 ± 1.5
[18.5-145.7]

79.6 ± 1.6
[22.1-406.7]

0.13

HOMA-IR h 2.34 ± 1.52
[0.59-5.58]

2.53 ± 1.60
[0.59-15.07]

0.11

GDM, n (%) f 5 (4.4%) 26 (5.8%) 0.55

Neonatal characteristics

Gestational age at birth,
weeks a

40.1 ± 1.3
[34.7-42.3]

40.0 ± 1.7
[27.0-42.6]

0.39

Birth weight, g a 3565 ± 464
[1940-4830]

3509 ± 546
[850-4930]

0.30

(Continued)
TABLE 2 Characteristics of the children at follow-up.

Characteristic Children (n=118)

Questionnaire at ~7 years

Daily MVPA: 1 h or more, n (%) a 75 (66%)

Study visit at ~9 years

Age, years 9.0 ± 0.4 [8.1-10.0]

Height, cm 137 ± 6 [121-153]

Weight, kg 31 ± 4 [22-46]

BMI, kg/m2 16.6 ± 1.7 [12.8-24.3]

Iso-BMI categories, n (%)

Underweight (isoBMI ≤ 18.4) 5 (4.2%)

Normal weight (isoBMI 18.5-24.9) 106 (89.8%)

Overweight (isoBMI ≥ 25) 7 (5.9%)

Serum glucose, mmol/L b 4.7 ± 0.3 [3.5-6.4]

Serum insulin, pmol/L 31.5 ± 8.4 [10.0-56.4]

HOMA-IR b 1.08 ± 0.30 [0.31-1.80]
BMI, body mass index, Iso-BMI, BMI adjusted for age and sex, HOMA-IR, Homeostatic
model assessment for insulin resistance; MVPA, moderate to vigorous physical activity.
Data are mean ± SD [min - max] or n (%)
a: Data were missing for 5 children.
b: Data were missing for 4 children.
TABLE 1 Continued

Characteristic Participants
(n=118)

Non-
participants
(n=542)

P-
value

Female sex, n (%) a 61 (52%) 260 (48%) 0.47

Vaginal delivery, n (%) i 104 (88%) 482 (89%) 0.68
front
BMI, body mass index; HOMA-IR, Homeostatic model assessment for insulin resistance;
GDM, Gestational diabetes mellitus defined by the 2013 WHO criteria as fasting glucose ≥ 5;1
mmol/L or 2-hour glucose ≥ 8;5 mmol/L; Hypertension defined as systolic blood pressure ≥
140 mmHg and/or diastolic blood pressure ≥ 90 mmHg.
Data are mean ± SD [min - max] or n (%)
a: Data were missing for 1 woman in the non-participant group.
b: Data were missing for 3 women in the participant group, and for 75 women in the non-
participant group.
c: Data were missing for 6 women in the non-participant group.
d: Data were missing for 4 women in the participant group, and for 75 women in the non-
participant group.
e: Data were missing for 4 women in the participant group, and for 89 women in the non-
participant group.
f: Data were missing for 4 women in the participant group, and for 96 women in the non-
participant group.
g: Data were missing for 6 women in the participant group, and for 76 women in the non-
participant group.
h: Data were missing for 6 women in the participant group, and for 90 women in the non-
participant group.
i: Data were missing for 3 women in the non-participant group.
The bold values are statistically significant; however, they may preferably be reformatted back
to normal text as the information is not necessary to include in this table.
iersin.org

https://doi.org/10.3389/fendo.2023.1324925
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nyen et al. 10.3389/fendo.2023.1324925
glucose (5.6 mmol/L in this study and 6.1 mmol/L in HAPO FUS),

and a considerably lower percentage had GDM, 4.4%, vs 14.1% in

HAPO FUS, using the same GDM criteria (29). Notably, the glucose

analyses were performed at a mean gestational age of 28 weeks in

the HAPO study, i.e. 6 weeks earlier than in the present study,

indicating that the genuine difference in metabolic health might be

even larger than displayed by these numbers. The present study and

the HAPO FUS had different ethnic compositions, which may also

have influenced the results.

Comparison with the ungKan3 study (38), reporting health and

physical activity of Norwegian children in 2018, indicates that the

children as well as the mothers in the present study are healthier

than the Norwegian average. A considerably lower percentage in the

present study were overweight or obese (6% in this study and 21%

in ungKan3), both studies with a mean participant age of 9 years.

The children in our study were, however, equally or slightly less

physically active, with 66% in total meeting the WHO

recommendation of ≥ 60 minutes of moderate to vigorous

physical activity per day, vs 64% of the girls and 81% of the boys

in the ungKan3 study. This difference might be caused by different

measuring techniques (accelerometers in UngKan3 vs reported by

parents in our study), as it has been shown that parents tend to

under-report children’s physical activity (39). To conclude, the

study population of both mothers and children seemed to be

healthier than average and relatively homogeneous, which might

have decreased the chance of detecting potential associations in our

analyses. It may also decrease the generalizability of our findings to
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the general population. However, it would be unexpected for

detected associations to be stronger when investigating a healthier

study population.
Interpretation

In the HAPO FUS, significant associations between maternal

and offspring glucose levels were detected, which were suggested by

the authors to be clinically important, possibly contributing to the

increasing prevalence of type 2 diabetes in children (7). In the

present study comparable beta-estimates (in fully adjusted models,

with child BMI, but without maternal BMI) were similar or higher

than in the HAPO FUS. For the association between maternal and

offspring fasting glucose, our beta-estimate of 0.18 (95% CI

[-0.00027, 0.37]) was higher than in the HAPO FUS (0.042, 95%

CI [0.031, 0.054]), and for the association between maternal 2-hour

glucose and offspring fasting glucose, beta-estimates were similar

(0.016 in the present study and 0.014 in the HAPO FUS). However,

confidence intervals were wider in our study, as expected with a

smaller sample size. Although borderline significant, our observed

association between maternal and fasting glucose supports and

aligns with the HAPO FUS findings.

The HAPO FUS observed the strongest associations between

maternal and offspring fasting glucose, and maternal and offspring

2-hour glucose. The authors argued that this suggested that

hereditary factors, not captured by family history, contributed to
TABLE 3 Associations between maternal glucose and offspring fasting glucose (n=105 mother-child pairs).

Crude Model 1 Model 2 Model 3

Beta
(95% CI)

P-value Beta
(95% CI)

P-value Beta
(95% CI)

P-value Beta
(95% CI)

P-value

Maternal fasting glucose,
mmol/L

0.17 (-0.011
to 0.35)

0.066 0.18 (-0.0013
to 0.36)

0.052 0.18 (-0.00027
to 0.37)

0.050 0.15 (-0.053
to 0.36)

0.14

Maternal 2-hour glucose,
mmol/L

0.024 (-0.027
to 0.075)

0.35 0.016 (-0.037
to 0.069)

0.56 0.016 (-0.038
to 0.070)

0.56 0.010 (-0.044
to 0.064)

0.71
fro
CI, confidence interval.
Model 1: adjusted for maternal group allocation in the original RCT, maternal age, maternal socioeconomic position, gestational age at OGTT, diabetes among first degree relatives of the mother
(yes/no or uncertain), offspring age, offspring sex and offspring physical activity (on average ≥ 60 minutes moderate to vigorous physical activity per day: yes/no).
Model 2: model 1, additionally adjusted for offspring BMI.
Model 3: model 2, additionally adjusted for maternal pre-pregnancy BMI.
TABLE 4 Associations between maternal glucose and offspring insulin resistance (HOMA-IR) (n=105 mother-child pairs).

Crude Model 1 Model 2 Model 3

Beta
(95% CI)

P-value Beta
(95% CI)

P-value Beta
(95% CI)

P-value Beta
(95% CI)

P-value

Maternal fasting glucose,
mmol/L

0.063 (-0.097
to 0.22)

0.44 0.078 (-0.087
to 0.24)

0.35 0.080 (-0.087
to 0.25)

0.34 0.042 (-0.14
to 0.23)

0.66

Maternal 2-hour glucose,
mmol/L

0.014 (-0.031
to 0.059)

0.53 0.016 (-0.031
to 0.064)

0.50 0.017 (-0.032
to 0.065)

0.49 0.013 (-0.036
to 0.061)

0.61
CI, confidence interval.
Model 1: adjusted for maternal group allocation in the original RCT, maternal age, maternal socioeconomic position, gestational age at OGTT, diabetes among first degree relatives of the mother
(yes/no or uncertain), offspring age, offspring sex and offspring physical activity (on average ≥ 60 minutes moderate to vigorous physical activity per day: yes/no).
Model 2: model 1, additionally adjusted for offspring BMI.
Model 3: model 2, additionally adjusted for maternal pre-pregnancy BMI.
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the associations (7). Consistent with HAPO FUS, the strongest

association in our study was the association between maternal and

offspring fasting glucose.

The children in our study were examined at ~9 years of age.

There are indications that associations between maternal and

offspring glucose metabolism might be more evident in older

children. Most studies detecting significant associations have

examined children older than in the current study (7, 16, 24–26,

40). The systematic review by Kawasaki et al. discovered significant

associations between GDM and offspring fasting glucose among 20-

year-olds, but not among 15-year-olds or 7-10-year-olds (10).

However, the Hong Kong HAPO cohort found significant

associations between maternal glucose levels and offspring risk of

abnormal glucose tolerance among 7-year-old children (11).

When evaluating the relationship between maternal and

offspring glucose metabolism it is relevant to assess whether an

association is mediated by the in utero environment or by the

influence of hereditary factors or postnatal environment. To assess

the in utero exposure effects, the analyses in models 1-3 in this study

were adjusted for potential confounding factors related to heredity

or similar lifestyle. Diabetes among first-degree relatives of the

mother was included in the analyses for this purpose.

Socioeconomic status may be associated with lifestyle factors of

both mother and child, which in turn may affect their respective

glucose metabolisms, and several studies support the relationship

between socioeconomic status and child metabolic health (41, 42).

Physical activity of the children is also known to affect their glucose

metabolism (43, 44), and may be associated with maternal glucose

through similar mechanisms as socioeconomic status.

Previous literature does not provide clear evidence on how

maternal BMI affects the relationship between maternal and

offspring glucose metabolism. BMI is an established risk factor for

hyperglycaemia in pregnancy (45). Several studies have also

detected associations between pre-pregnancy BMI and offspring

glucose levels, however, not after adjustment for offspring BMI (22,

26, 46, 47). This indicates that the relationship between pre-

pregnancy BMI and offspring glucose levels is largely mediated by

offspring BMI, and it is therefore not necessary to adjust for both

maternal and offspring BMI. In the current study, analyses without

pre-pregnancy BMI were performed in models 1 and 2, and the

model 2 analyses were adjusted for offspring BMI to minimise the

risk of confounding. Offspring BMI was included in the model 2

analyses with the additional purpose of examining if offspring BMI

had a role as a mediator in the relationship between maternal and

offspring glucose metabolism. In the HAPO FUS (7) and in the

Effect of Preeclampsia On Cardiovascular Health (EPOCH) study

(26), results were not attenuated when adjusting for offspring BMI,

indicating that the associations were mediated by other

mechanisms. Though insufficient to firmly conclude, the

associations in our study were not attenuated when adjusting for

offspring BMI, thus pointing in the same direction. Most studies

investigating similar exposures and outcomes as this study have

included maternal BMI or overweight in their analyses (7, 11, 21–

24, 27), and maternal pre-pregnancy BMI was included in the

model 3 analyses in our study to enable comparison with relevant

studies. The model 3 analyses show that the associations were
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attenuated when adjusting for maternal BMI, but the reason cannot

be determined with certainty. It is possible that the previously

mentioned collinearity between maternal BMI and maternal fasting

glucose, though below commonly used cut-of values, is affecting the

precision of the model 3 analyses. The attenuated results might also

be caused by maternal BMI mediating the association between

maternal and offspring glucose levels.

In the current study, adjustments were also performed for

selected additional covariates. Gestational age at the time of the

OGTT was included as a covariate because of the known

physiological changes in glucose metabolism over the course of

pregnancy (36). Maternal age was considered a possible confounder

because it affects the risk of hyperglycaemia in pregnancy (45) and

might affect the long-term health of the offspring (48). Smoking

during pregnancy and maternal hypertension were also assessed to

be interesting covariates, but not included in the final analyses due

to the few cases.

Other studies investigating associations between maternal and

offspring glucose metabolism are generally less comprehensively

adjusted than the present study, missing adjustments for hereditary

and/or lifestyle confounding factors (7, 16, 21, 24–27, 40, 49).

However, most of the studies conclude that in utero exposure

probably constitutes part of the association between maternal and

offspring glucose metabolism. This hypothesis is also supported by

studies of Pima Indians, comparing the risk of diabetes between

siblings born before and after their mother was recognised as having

diabetes (50). Furthermore, it is important to note that the Hong

Kong HAPO cohort found that maternal glucose levels were

associated with the risk of offspring abnormal glucose tolerance,

when adjusted for both lifestyle and hereditary factors (11). Though

borderline significant and with a lower sample size, the results in the

present study were not attenuated by adjustment for confounders,

thus supporting previous studies.
Future perspectives

Previous literature and our study indicate that maternal

hyperglycaemia negatively impact the offspring’s long-term

health. Optimising metabolic health before conception and during

pregnancy may therefore lead to offspring with improved metabolic

health, and this should be a focus point for improving public health.

Further studies should be performed to confirm the associations,

with greater power and adjustment for as many covariates.

Moreover, the effects of maternal interventions on long-term

offspring outcomes are not yet well documented and future high-

quality studies are needed to address this gap.
Conclusion

In the present study, assessing a small group of healthy mothers

and children at low risk of metabolic diseases, we observed a

borderline significant positive association between maternal and

offspring fasting glucose, which persisted after adjustment for

potential hereditary and lifestyle confounding factors. Our
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findings support other similar studies and highlight that improving

the metabolic health of pregnant women, and women of

childbearing age, should remain a key public health priority.
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