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Role of gonadotropin-releasing
hormone 2 and its receptor in
human reproductive cancers
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NE, United States, 2Department of Animal Science, University of Nebraska-Lincoln, Lincoln,
NE, United States
Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive

reproduction by regulating gonadotropins. Another form, GnRH2, and its

receptor (GnRHR2), also exist in mammals. In humans, GnRH2 and GnRHR2

genes are present, but coding errors in the GnRHR2 gene are predicted to hinder

full-length protein production. Nonetheless, mounting evidence supports the

presence of a functional GnRHR2 in humans. GnRH2 and its receptor have been

identified throughout the body, including peripheral reproductive tissues like the

ovary, uterus, breast, and prostate. In addition, GnRH2 and its receptor have been

detected in a wide number of reproductive cancer cells in humans. Notably,

GnRH2 analogues have potent anti-proliferative, pro-apoptotic, and/or anti-

metastatic effects on various reproductive cancers, including endometrial,

breast, placental, ovarian, and prostate. Thus, GnRH2 is an emerging target to

treat human reproductive cancers.
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Introduction

GnRH2

Hypothalamic GnRH1 binds GnRHR1 on gonadotropes, promoting gonadotropin

[luteinizing hormone (LH) and follicle-stimulating hormone (FSH)] synthesis/secretion.

Another form, GnRH2, is also present in mammals (1). GnRH2 is ubiquitously expressed

(1) and originates from the GnRH2 gene (chromosome 20) in humans (2). Both

decapeptides, GnRH2 and GnRH1 have a 70% sequence identity (3). Amino acid

substitutions in GnRH2 enhance its stability (4) and half-life (5, 6) compared with GnRH1.
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GnRHR2

A 7-transmembrane (TM) G-protein coupled receptor (GPCR)

specific to GnRHR2 is present in mammals and ubiquitously

expressed (1). GnRH2 binds its cognate receptor with greater

affinity than GnRHR1 (24-fold increase (7)), leading to greater

activity (up to 440-fold increase (8–10)). In contrast, GnRH1

exhibits 12-fold greater activity at GnRHR1 compared to GnRH2

(9, 11). Thus, GnRHR2 displays greater selectivity for GnRH2,

whereas GnRHR1 binds/activates both decapeptides reasonably

well (8). Both receptors utilize Gaq/11 to trigger IP3 synthesis and

activate protein kinase C (PKC (8, 12, 13)), but downstream

signaling pathways diverge (7). Additionally, GnRH2 activation of

GnRHR1 initiates different signaling pathways than GnRH1 (14),

suggesting that GnRH2 elicits different physiological effects than

GnRH1 at GnRHR1.

Humans maintain a full-length GnRHR2 gene (chromosome 1

(10)), although a frameshift mutation and premature stop codon are

predicted to prevent full-length receptor production (15, 16).

Nevertheless, there is mounting evidence for a functional GnRHR2

in humans (12, 17–23), potentially via production of a 5-TM

GnRHR2 (17). Mammals, including humans, produce functional 5-

TM GPCRs (11, 24–26). Notably, pigs produce 5-TM GnRHR2

transcripts with translatable protein characteristics, resulting from

alternative splicing and an alternative start codon (27, 28). In addition

to the full-length GnRHR2 gene (chromosome 1), a truncated

GnRHR2 gene (chromosome 14) is also present in humans (10),

which is more transcriptionally active and widely expressed (29).
GnRH2 and GnRHR2 in human
reproductive cancers

The tumor microenvironment is dependent on unchecked cell

division, cytokines, anti-apoptotic mediators, and immune cell

recruitment, which are controlled by a variety of important

biomolecules like hormones, growth factors, cytokines, and

immune mediators (e.g., Toll-like receptors) (30–32). For decades,

we have known that GnRH1 and GnRHR1 are expressed in

reproductive tumors and GnRH1 analogues inhibit cancer cell

proliferation (19, 33–38). In fact, the newest approaches utilize

GnRH1-tagged nanoparticles to directly target chemotherapeutics

into cancer cells (39). In addition, elevated expression of GnRH1

and GnRHR1 in bladder cancer is linked with better survival in men

but worse survival in women, suggesting possible regulation of the

GnRH1/GnRHR1 system by gonadal steroids in non-reproductive

tissues (40). Recently, GnRH2 and GnRHR2 have been detected in

reproductive cancer cells (Table 1). Like GnRH1, GnRH2 analogues

inhibit cancer cell proliferation; however, GnRH2 is often more

potent (18, 19, 21, 44, 57). It remains unclear if GnRHR2 or

GnRHR1 are mediating these effects. A role for GnRHR2 seems

plausible due to difficulty detecting high affinity receptors for

GnRH1 in peripheral reproductive tissues (34). Also, high

concentrations of GnRH1 analogues are required to suppress
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cancer cell proliferation (35). Indeed, many independent groups

have reported evidence for a functional GnRHR2 in reproductive

cancer cells (12, 18, 19, 21, 44, 58). Moreover, new data suggests that

differential methylation of GnRH2 may affect cancer progression in

non-reproductive organs (59, 60). Likewise, gene polymorphisms

are increasingly being linked with the onset of cancer (31). GnRH2

gene polymorphisms have been linked with bone cancer (61, 62).

Thus, GnRH2 and GnRHR2 may be novel, unexploited

cancer targets.
Breast

In 2002, Chen et al. (41) demonstrated that GnRH2mRNA was

overexpressed in cancerous versus normal breast tissue. In another

study, GnRH2 expression was 2-fold greater in malignant compared

to normal tissue (42). Moreover, GnRH2 expression in breast cancer

samples correlated with indices of a poorer prognosis (42).

GnRHR2 immunostaining is detectable in breast cancer cells

(Table 1 (43)), suggesting autocrine/paracrine interactions. Others

identified direct anti-proliferative effects of GnRH2 on breast cancer

cells (47, 63). In MCF-7 and T47D cells, GnRH2 agonist pre-

treatment interrupted epidermal growth factor (EGF) signaling,

ablating EGF-mediated autophosphorylation of EGF receptor and

the induction of the mitogen-activated protein kinase (MAPK),

extracellular-signal-regulated kinase 1/2 (ERK1/2 (43)).

Furthermore, a GnRH2 agonist reversed 4OH-tamoxifen

insensitivity of breast cancer cells (43). In MCF-7 cells, GnRH2

downregulated proteins required for translation and cell

proliferation (41).

In addition to reducing cell proliferation, GnRH2 analogues

induce apoptosis. GnRH2 antagonists stimulated loss of

mitochondrial membrane potential and apoptosis in breast cancer

cells via p38 MAPK and c-Jun N-terminal kinase (JNK) pathways,

culminating in activation of the pro-apoptotic protein, BAX (47).

The same antagonists failed to activate protein kinase B (also known

as AKT) or ERK1/2 (47). In a different study, GnRH2 antagonists

induced apoptosis in triple negative MDA-MB-231 breast cancer

cells [lack estrogen receptors, progesterone receptors, and human

EGF receptor 2 (HER2)], which was mediated by p38 MAPK

signaling, loss of mitochondrial membrane potential, and capsase-

3 activation (23). GnRHR1 knockdown failed to fully ablate GnRH2

antagonist-mediated apoptosis, implicating GnRHR2 (23).

Moreover, GnRH2 antagonists completely inhibited breast cancer

tumor growth in nude mice (23).

Notably, MCF-7 cells take up fluorescently labeled GnRH2-

conjugates effectively, which is under investigation as a method of

targeted drug delivery (64). Indeed, GnRH2 analogues conjugated

to cytotoxic drugs (e.g., daunorubicin) have shown promising anti-

tumor effects in vitro (64, 65). In addition to anti-proliferative and

pro-apoptotic effects, GnRH2 analogues also have anti-metastatic

properties. For example, breast cancer cell migration to bone and

invasion of an artificial basement membrane were attenuated by

GnRH2, although to a lesser extent than GnRH1 (66).
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Uterine

Endometrium
GnRH2 has been detected in endometrial carcinomas (45),

whereas GnRHR2 mRNA is present in both endometrial

carcinomas (45) and endometrial cancer cells (HEC-1A, HEC-1B,

HHUA, and Ishikawa (18, 19, 48; Table 1)). Further, GnRHR2
Frontiers in Endocrinology 03
protein was identified in endometrial cells (44). Co-expression of

GnRH2 and GnRHR2 suggest an autocrine/paracrine role in

endometrial cancers (67). Several independent groups determined

that GnRH2 analogues reduced endometrial cancer cell growth (18,

19, 21, 47, 57, 58, 68). GnRH2 more effectively inhibited the growth

of HEC-1A and Ishikawa cells compared to the same dose of a

potent GnRH1 agonist (triptorelin (18)). Triptorelin, cetrorelix
TABLE 1 Presence of GnRH2 and/or GnRHR2 in malignant reproductive tissues and cells of humans.

Tissue or Cell line Origin GnRH2a GnRHR2a References

Female

Tissues

Breast Adenocarcinoma + + (41–43)

Endometrium (uterus) Adenocarcinoma + + (44, 45)

Ovarian Carcinoma + + (44, 46)

Cancer cell lines

MDAMB-231 Breast adenocarcinoma + (41)

MCF-7 Breast adenocarcinoma + + (41, 43, 47)

T47D Breast carcinoma + (43)

HeLa Cervical adenocarcinoma + (9, 22)

HEC-1A Endometrial adenocarcinoma + (19)

HEC-1B Endometrial adenocarcinoma + (18)

Ishikawa Endometrial adenocarcinoma + (19)

HHUA Endometrial adenocarcinoma + (48)

A2780 Ovarian carcinoma + (49)

EFO-21 Ovarian cystadenocarcinoma + (19)

EFO-27 Ovarian adenocarcinoma – (18)

OVCAR-3 Ovarian adenocarcinoma + + (19, 49, 50)

SK-OV-3 Ovarian adenocarcinoma + + (19, 49, 50)

CaOV-3 Ovarian adenocarcinoma + (49, 50)

BG-1 Ovarian adenocarcinoma + (18, 49)

JEG-3 Placental carcinoma + (51–53)

Male

Tissues

Prostate Adenocarcinoma + + (44, 54, 55)

Cancer cell lines

ALVA-41 Prostate adenocarcinoma + (22)

PPC-1 Prostate adenocarcinoma + (22)

DU-145 Prostate carcinoma + + (22, 48, 56)

LNCaP Prostate adenocarcinoma + + (55, 56)

PC3 Prostate adenocarcinoma + + (55, 56)
aThe presence of a (+) symbol indicates that either mRNA or protein has been identified whereas a (-) symbol specifies that the tissue was negative. Blanks designate cell lines that have not yet
been examined.
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(pan GnRHR antagonist), and GnRH2 exerted anti-proliferative

effects on endometrial cancer cells (Ishikawa, HEC-1A, and HEC-

1B) that produce GnRHR1 and GnRHR2 transcripts (18). GnRHR1

knockdown ablated anti-proliferative effects of triptorelin but failed

to ablate the efficacy of cetrorelix and GnRH2 (18).

The same group detected protein corresponding to the 5-TM

GnRHR2 (43-kDA) in Ishikawa and HEC-1A cells (44). Their

antibody was validated in part via detection of a 7-TM GnRHR2

band (54-kDa) in ovarian protein from marmoset monkeys (44), a

species that produces a full-length GnRHR2 (9). Interestingly,

radiolabeled GnRH2 binds a 43-kDA protein in human

endometrial cancer cells (44). Both native GnRH2 and cetrorelix

(pan GnRHR antagonist) were able to displace 125I-labeled GnRH2,

but not triptorelin (GnRH1 agonist (44)). Of note, cetrorelix binds

both GnRHR1 and GnRHR2 reasonably well (22, 69, 70), whereas

triptorelin is highly specific for GnRHR1 (10). The authors

hypothesized that these results occurred due to a functional 5-TM

GnRHR2 (44). Indeed, both low and high affinity binding sites for

GnRH1 were detectable in human endometrial cancer cells (71),

implicating the presence of GnRHR1 (high) and GnRHR2 (low).

GnRH2 also has anti-proliferative effects in endometrial cancer

cells. For example, a GnRH2 agonist attenuated the proliferative

effects of growth factors on Ishikawa and HEC-1A cells (21).

Specifically, the GnRH2 agonist activated phosphotyrosine

phosphatase, which reduces the autophosphorylation of activated

EGF receptors, and downregulated genes associated with EGF-

mediated transcription, leading to reduced cell proliferation (21).

Importantly, these effects persisted following GnRHR1 deletion,

implicating GnRHR2 (21). Furthermore, Park et al. (58)

demonstrated reduced proliferation of HEC-1A cells after GnRH2

treatment, which was more effective than GnRH1.

The efficacy of GnRH analogues to induce apoptosis has been

tested in endometrial cancer cell lines. Analogues of GnRH1

(agonist and antagonist) failed to induce apoptosis (57). In

contrast, antagonists of GnRH2 induced apoptosis via caspase-3

activation, which appeared to be mediated by GnRHR1 (47).

Likewise, GnRH2 induced apoptosis in Ishikawa cells via

GnRHR1 (72). GnRH2 induced apoptosis and suppressed cell

proliferation in endometrial carcinoma cell lines, with a greater

effect observed in cells with PTEN knockdown (68). Additionally,

GnRH2 reduced protein kinase B (AKT) and ERK1/2 activity in

HEC-1A-ND cells (68). In animal models, growth of

xenotransplants from HEC-1B cells in nude mice was suppressed

by GnRH2 (57). Researchers have also found that a GnRH2 agonist

enhanced ce l l migrat ion through GnRHR1-mediated

phosphorylation of ERK1/2 and JNK, leading to MAPK-

dependent activation of matrix metalloproteinase-2 (MMP-2) in

Ishikawa and ECC-1 cells (73). Notably, GnRH2 analogues have a

more potent inhibitory effect than GnRH1 on proliferation of

endometrial cancer cells (18, 19, 21, 44, 57). Interestingly, a

metabolite of GnRH1 [GnRH-(1–5)] also regulates the

progression of endometrial cancer (74); however, effects of

GnRH2 metabolites on endometrial cancer cells have not yet

been explored.
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Myometrium
GnRH analogues are clinically utilized to treat leiomyomas,

benign fibroids of the myometrium (75). Induction of a

hypoestrogenic state is thought to drive fibroid involution (75).

However, transcripts for both GnRH2 and GnRHR2, as well as

protein for GnRH2, were detected in normal myometrial tissue and

leiomyomas of women, suggesting a direct effect of GnRH

analogues on fibroid growth (76).
Ovarian

Both GnRH2 and/or GnRHR2 have been detected in cancerous

ovarian cells (Table 1). GnRH2 was overexpressed in malignant

compared to benign ovarian tumors or normal ovarian tissue (46).

GnRH2 expression in ovarian cancer cells appears to be mediated in

part by gonadotropins. Choi et al. (49) reported that gonadotropin

treatment (FSH or LH) reduced GnRH2 expression in the majority

of ovarian cancer cell lines tested (including OVCAR-3 cells);

however, GnRH1 mRNA was unaffected by treatment (49).

GnRHR1 mRNA was downregulated by FSH or LH in most

ovarian cancer cell lines but GnRHR2 expression was not

examined (49). Converse to this data, Ling Soon et al. (51) found

that a GnRH2 promoter-luciferase reporter gene construct was

activated by8-bromoadenosine-cAMP in OVCAR-3 cells (cAMP

is a second messenger of LH and FSH (51)). The cause of the

discrepancy has not been resolved in the literature but may relate to

differences in treatment (LH/FSH versus 8-bromoadenosine-

cAMP), dose, culture conditions, and/or testing of the

endogenous cellular machinery versus luciferase assay. Notably, in

post-menopausal women with ovarian tumors, there was a positive

correlation between serum LH and FSH concentrations and GnRH2

expression in ovarian tumor samples (46), suggesting a stimulatory

role of the gonadotropins on GnRH2 expression in vivo. GnRH2

expression is also regulated by EGF in ovarian cancer cells. For

example, EGF upregulates GnRH2 promoter activity in OVCAR-3

cells; an effect that is abolished in the presence of an EGF receptor

inhibitor (77).

Due to its potent anti-proliferative effects, GnRH2 has garnered

attention as a possible therapeutic for ovarian cancer treatment.

Early studies demonstrated that treatment of both non-tumorigenic

(IOSE-29) and tumorigenic (IOSE-29EC) cells with GnRH2

reduced cell proliferation (19, 50). Choi et al. (49) reported that

GnRH2 agonists inhibited growth of ovarian cancer cells, an effect

that was reversed by LH or FSH pre-treatment. Grundker et al. (19)

showed that GnRH2 reduced ovarian cancer cell proliferation,

outperforming equimolar triptorelin (a GnRH1 agonist)

treatment. In SK-OV-3 ovarian cancer cells (expressing GnRHR2

but not GnRHR1), GnRH2 exhibited powerful anti-proliferative

effects, unlike triptorelin (19), suggesting that GnRHR2 is mediating

these effects. However, others contested the assertion that GnRHR1

is not expressed in SK-OV-3 cells (78), although they acknowledged

that it may be present, but expressed at low levels (77). In another

study, anti-proliferative effects of triptorelin were abolished after
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GnRHR1 knockdown in ovarian cancer cells (EFO-21 and OVCAR-

3), but effects of GnRH2 and the pan GnRHR antagonist, cetrorelix

(binds both GnRHR1 and GnRHR2 (70)), persisted (18). Together,

these findings suggest that GnRHR2 is functional in certain ovarian

cancer cells. However, other groups provided evidence that

GnRHR1 is involved in mediating anti-proliferative effects of

GnRH2 (78). Thus, the exact receptor (GnRHR1 and/or

GnRHR2) eliciting anti-proliferative effects of GnRH2

remains controversial.

Data from Eicke et al. (44) supports the presence of GnRHR2

protein in humans; immunostaining identified GnRHR2 in ovarian

cancer samples. Both immunoblotting of protein and photo labeling

studies of cell membrane fractions from ovarian cancer cells (EFO-

21, SK-OV-3) resulted in a band corresponding to the 5-TM

GnRHR2 isoform (43-kDa (44)). Competition experiments

showed that triptorelin weakly competed for the binding site (43-

kDa) compared to the stronger effect of cetrorelix (44) (pan GnRHR

antagonist (70)). However, GnRH2 was the most potent competitor,

indicating the presence of a functional 5-TM GnRHR2 in human

ovarian cancer cells (44).

Subsequent studies have been conducted to determine the

mechanism underlying anti-proliferative effects of GnRH2 on

ovarian cancer cells. For example, GnRH2 treatment led to p38

MAPK activation, an effect which was reversed by SB203580 (p38

MAPK inhibitor (79)). Likewise, activator protein-1 was stimulated

by GnRH2 but reduced in the presence of SB203580 (79). In

OVCAR-3 cells, GnRH2 treatment inhibited cell growth, but this

effect was abolished when cells were pre-treated with SB203580

(79). GnRH2 treatment also enhanced apoptosis, which was

reversed with SB203580 pre-treatment (79). The same group

showed that ERK1/2 (but not JNK) is involved in mediating anti-

proliferative effects of GnRH2 (63). Others reported that GnRH2

mediated cell proliferation is dependent on PKC (78). In this study,

however, data suggested that GnRHR1 (not GnRHR2) mediated

these effects (78). Additional research demonstrated that GnRH2

treatment inhibited mitogenic effects of EGF in ovarian cancer cells

(21). GnRHR1 knockdown failed to prevent these effects, suggesting

the contribution of GnRHR2.

Many researchers have investigated pro-apoptotic activities of

GnRH2 analogues on ovarian cancer cells (47, 57, 79, 80). GnRH2

antagonists induced apoptosis by activating caspase-3 and

effectively inhibited growth of human ovarian cancer

xenotransplants in nude mice (57). Furthermore, GnRH2

antagonists activated p38 MAPK and JNK, resulting in activation

of BAX mitochondrial dysfunction (loss of membrane potential,

release of cytochrome C), and caspase-3 activation (47). Recent data

also demonstrated that co-treatment of ovarian cancer cells with a

glycolysis inhibitor and a GnRH2 antagonist reduced cell viability

and increased apoptosis to a greater extent than each treatment

individually (80).

The role of GnRH2 in ovarian cancer metastases has also been

explored. Chen et al. (81) found that low doses of GnRH1 and

GnRH2 promoted invasion of OVCAR-3 cells but had the opposite

effect in SKOV-3 cells (both GnRH1 and GnRH2 inhibited invasion

but only at high doses). GnRHR1 knockdown abolished the effect of
Frontiers in Endocrinology 05
treatment in both cell types; however, GnRHR2 expression was not

examined (81). Treating SKOV-3 cells with either GnRH1 or

GnRH2 led to reduced MMP-2 expression and increased

secretion of tissue inhibitor of MMP-2 (TIMP2), both important

mediators of ovarian carcinoma metastasis (81). Furthermore,

GnRH1 and GnRH2 d i s r u p t e d a c t i v a t i o n o f t h e

phosphatidylinositol-3-kinase (PI3K)/AKT pathway, which

promotes proteolysis and invasion in ovarian cancer cells (81).

Thus, in SKOV-3 cells, GnRH2 inhibits ovarian cancer invasion by

regulating the balance of MMP2/TIMP2, and disrupting AKT-

mediated proteolysis and invasion (81). In contrast, others

r epo r t ed tha t GnRH2 enhanced membrane t yp e I

metalloproteinase production via the PI3K/AKT pathway and

phosphorylation of GSK3b in OVCAR-3 and CaOV-3 cells (82).

Chen et al. (81) hypothesized several different mechanisms that

might enable two lines of ovarian cancer cells to exhibit different

invasive responses to GnRH2 (presumably both via GnRHR1).

Possible explanations include differences in inherent cell

invasiveness and/or receptor expression levels, which is a known

driver of differential cellular responses (83). For example, Chen

et al. (81), found that low doses of GnRH2 promoted invasion in

OVCAR-3 cells (with elevated GnRHR1 expression) unlike SKOV-

3 cells (with low GnRHR1 expression). Interestingly, both SKOV-3

and OVCAR-3 cells express GnRHR2 (Table 1), but the level of

expression has not been compared to our knowledge.

Interestingly, GnRH2 and EGF worked synergistically to

promote invasion of OVCAR-3 and CaOV-3 cells, but not

SKOV-3 cells (reduced endogenous GnRHR1 expression (77)).

GnRHR1 knockdown in OVCAR-3 and CaOV-3 cells only

partially inhibited invasiveness mediated by EGF (77), suggesting

that GnRHR2 may be involved. Later studies demonstrated that

EGF increased GnRH2 expression in OVCAR-3 and CaOV-3 cells,

potentially enhancing autocrine signaling (mediated by GnRHR1

(84)). Enhanced GnRHR1 signaling leads to increased production

of the 37-kDa laminin receptor precursor, more tumor cell

interactions with laminin in the extracellular matrix, and

enhanced MMP-2 production (84). These data suggest that

GnRH2 modulates pro- and anti-metastatic effects depending on

the ovarian cancer cell type. This discrepancy has not yet been

resolved but may be related to expression differences in GnRHR1

and/or GnRHR2 among cell types.
Placental

GnRH2mRNA is present in the choriocarcinoma cell line, JEG-

3 ((51–53); Table 1), and cAMP treatment activated the GnRH2

promoter (51). Both GnRH1 and GnRH2 enhanced JEG-3 cell

invasion (12) but GnRHR1 knockdown only inhibited GnRH1-

mediated effects, not GnRH2 (12), implicating GnRHR2.

Furthermore, GnRH2 treatment of JEG-3 cells reduced cell

proliferation, results which were ascribed to GnRHR1 (85).

GnRHR2 has not been investigated in JEG-3 cells, although Eicke

et al. (44) demonstrated evidence for a functional 5-TMGnRHR2 in

human placentae.
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Prostate

GnRH1 agonists are commonly used to treat prostate cancer but

increase the risk of adverse cardiovascular events (86), which

highlights the need for more therapeutic options. In addition to

normal tissue, GnRH2 is also present in hyperplastic and neoplastic

prostate tissues ((54, 55); Table 1). Eicke et al. (44) reported

immunoreactive GnRHR2 in prostate adenocarcinomas,

specifically within epithelial (not stromal) cells. A recent study

found an association between prostate cancer progression and a

GnRH2 gene polymorphism in Japanese men (87), although a

separate study did not observe this link in Caucasian men (54).

Therefore, GnRH2 and GnRHR2 may be involved in autocrine/

paracrine regulation of prostate cancer progression.

Notably, GnRH2 and GnRHR2 are expressed in normal and

cancerous prostate cell lines (22, 48, 55, 56). GnRH2 treatment

reduced proliferation of all tested prostate cancer cell lines; these

results were ascribed to GnRHR1 and activation of cAMP (56).

Others showed that GnRH2 increased intracellular calcium levels

via activation of the ryanodine receptor in androgen independent

DU-145 cells (22). Likewise, a GnRH2-specific antagonist

(trptorelix-1) induced cell death and prevented GnRH2-mediated

calcium influx (22). Photoaffinity labeling suggested that GnRH2

binds with high affinity to a protein in prostate cancer cells (22),

implicating GnRHR2.

Androgens enhanced GnRH2 expression in prostate tumors by

binding a putative androgen response element on the 5’ flanking

region of the human GnRH2 gene (55). Thus, anti-androgen

therapy reduces GnRH2 expression in tumor biopsies (55).

Studies using a prostate xenograft model demonstrated that

androgens enhanced GnRH2 expression, whereas androgen

deprivation reduced GnRH2 expression (55). Consistent with this,

GnRH2 expression is elevated in prostate cancer cells (e.g., LNCaP

cells) that produce androgen receptors (ARs) compared to those

lacking ARs (e.g., PC3 cells (55)) and AR inhibition blocked

androgen-mediated increases in GnRH2 expression in LNCaP

cells. Interestingly, GnRH2 treatment of LNCaP (AR positive)

and PC3 (AR negative) cells led to reduced cell proliferation and

migration, suggesting that these actions are not dependent on AR

signaling (55).

The anti-proliferative activity of GnRH2 has garnered

increasing attention as a therapeutic target. For example, Kim

et al. (88) developed a GnRH2 specific antagonist, trptorelix-1,

that effectively inhibited growth of PC3 cells in vitro and ex vivo

(88). Moreover, trptorelix-1 decreased mitochondrial membrane

potential and enhanced reactive oxygen species (ROS) within the

cytoplasm and mitochondria (88). Antioxidant co-treatment

partially protected against trptorelix-1-mediated growth

inhibition. Furthermore, autophagosome formation was observed

in the absence of apoptosis markers in prostate cancer cells treated

with trptorelix-1, which induced cell signaling cascades consistent

with autophagy (88).

The same group developed another GnRHR2 antagonist, SN09-

2 (89). When compared to trptorelix-1, SN09-2 suppressed growth
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of prostate cancer cells, even at low concentrations, and was an

effective inhibitor of PC3 xenograft growth. These effects were

associated with mitochondrial accumulation of SN09-2, leading to

mitochondrial dysfunction and ROS generation (89). Furthermore,

SN09-2 induced markers of apoptosis in PC3 cells (89).

Researchers have also investigated the potential for targeted

tumor treatment by incubating LNCaP cells with selectively labeled,

fluorescent derivatives of GnRH analogues, including GnRH2 (64).

Effective cellular uptake of GnRH2 conjugates were observed in

LNCaP cells, which was ascribed to GnRHR1 (64). However,

GnRHR2 is also expressed in these cells (56), so it remains

unclear which receptor mediated these effects since GnRHR2 was

not examined (64). Of note, uptake of GnRH2 conjugates by LNCaP

cells was greater than GnRH1 conjugates or any other cell type

tested (human breast, colon, pancreas (64)).
Other reproductive cancers

Cervical
There is a severe lack of information about the potential role of

GnRH2 and GnRHR2 in cervical cancer despite the detection of

GnRHR2 mRNA in HeLa cells ( (9, 22); Table 1), an important cell

line for biomedical and oncology research (90). There is a critical

need to better understand the potential function of GnRH2 and

GnRHR2 in these cells since cervical cancer is the second most

common cancer in women (91).

Testis
Although GnRH2 and GnRHR2 have been investigated in the

regulation of many different reproductive cancers, there is a gap in

our knowledge regarding the potential influence of GnRH2 and

GnRHR2 as a therapeutic to treat testicular cancer. This gap is

surprising given that GnRH2 and GnRHR2 are both present within

the human testis (29, 92) and highly abundant in swine testes (93),

an important biomedical model (94). Likewise, GnRHR2 expression

was greatest in marmoset monkey testes compared to 30 other

tissues (7). To our knowledge, neither GnRH2 nor GnRHR2 have

been evaluated as possible regulators of testicular cancer. Further

study is especially important given the recent discovery that a single

nucleotide polymorphism in the GnRH2 gene is associated with

both GnRH2 expression in the testis as well as bone cancer risk (62).

Furthermore, GnRH2 gene polymorphisms were associated with

elevated testosterone levels and an increased prostate cancer

risk (87).
Conclusions

GnRH2 and GnRHR2 are expressed in a wide range of human

reproductive cancers suggesting an autocrine/paracrine role.

Notably, GnRH2 and its analogues mediate potent anti-

proliferative and pro-apoptotic activities in many different

reproductive cancer cells suggesting an overall inhibitory role
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(Figure 1). However, the metastatic effects of GnRH2 are variable

based upon cell type, which remains unresolved. To date, the most

widely studied cells have been derived from cancers of the ovary,

endometrium, prostate, and breast. However, GnRH2 and/or

GnRHR2 are also expressed in other reproductive cancer cells

(cervical, placenta), warranting further study. Importantly, the

anti-tumor effects of GnRH2 are often more robust than GnRH1,

enhancing therapeutic potential. Of concern, the ubiquitous

expression of both GnRH2 and GnRHR2 could result in more

off-target effects unless GnRH2 analogues could be delivered

directly to tumorigenic reproductive tissues (e.g., nanoparticle

drug delivery). In addition, further exploration of the connection

between methylations/mutations in the GnRH2 gene with the onset

of cancer is essential. Although controversial, the effects of GnRH2

may indeed be mediated via a unique GnRHR2 (e.g., 5-TM). Thus,

GnRH2 and GnRHR2 are negative paracrine/autocrine regulators

of human reproductive cancers and represent emerging

oncological targets.
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