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Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in

reproductive-age women. PCOS is characterized by androgen excess, oligo/

anovulation, and polycystic appearance of the ovaries. Women with PCOS have

an increased prevalence of multiple cardiovascular risk factors such as insulin

resistance, hypertension, renal injury, and obesity. Unfortunately, there is a lack of

effective, evidence-based pharmacotherapeutics to target these cardiometabolic

complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide

cardiovascular protection in patients with and without type 2 diabetes mellitus.

Although the exact mechanisms of how SGLT2 inhibitors confer cardiovascular

protection remains unclear, numerous mechanistic hypotheses for this protection

include modulation of the renin-angiotensin system and/or the sympathetic

nervous system and improvement in mitochondrial function. Data from recent

clinical trials and basic research show a potential role for SGLT2 inhibitors in

treating obesity-associated cardiometabolic complications in PCOS. This narrative

review discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in

cardiometabolic diseases in PCOS.
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Introduction

Polycystic Ovary Syndrome (PCOS) is the most common

endocrine disorder in reproductive-age women, affecting 5-20% of

this population (1–3). While there has been evidence of women with

PCOS since the time of Hippocrates (4), the syndrome was first

described by Stein and Leventhal in 1935 in their article “Amenorrhea

associated with bilateral polycystic ovaries” (5). Stein and Leventhal

described a series of cases focusing on amenorrhea in women with

polycystic ovaries as determined by bimanual pelvic exam and/or

pneumoroentgenography (5). However, they also noted physical signs

of androgen excess in most cases (5). Since the 1930s, our

understanding of the disease has evolved. However, the etiology of

PCOS remains unknown, and there are still many gaps in our

knowledge and disagreements in the field, in part due to three

coexisting sets of criteria for PCOS diagnosis (6–8).

PCOS, a diagnosis of exclusion, can be characterized by using three

different sets of diagnostic criteria: the National Institutes of Health

(NIH) 1990 criteria, the Rotterdam 2003 criteria, and the Androgen

Excess-PCOS Society (AE-PCOS) 2006 criteria (6–8) (Figure 1). The

NIH and AE-PCOS criteria consider androgen excess a requirement for

diagnosis. Androgen excess can be defined as either biochemical or

clinical evidence of high levels of androgens (6–8). Therefore, if a woman

presents to the clinic with hirsutism (as defined by the Ferriman-Gallwey

Scale) (9), excessive acne after puberty, or male-pattern balding, then

measurement of serum androgens is not necessary for the PCOS

diagnosis per se. However, biochemical testing, including testosterone

levels, is required to eliminate other possible causes of androgen excess, as

PCOS is a diagnosis of exclusion. Workup to exclude elevated prolactin,

Cushing syndrome, non-classic congenital adrenal hyperplasia, thyroid

dysfunction, androgen-producing tumors, and exogenous administration

of androgens should be done before conferring the PCOS diagnosis (6–

8). In particular, if total serum testosterone is above 200 ng/dL, if

dehydroepiandrosterone sulfate is above 800 mg/dL, if signs of excess

androgen progress rapidly, or if the voice changes, then the possibility of

an androgen-producing tumor in the adrenal gland or ovary should be

thoroughly investigated before diagnosing the patient with PCOS (10).

Women with PCOS will have elevated levels of androgens, but they
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should not approach male levels (10, 11). The Rotterdam criteria, the

most common criteria used in the clinic, requires the presence of two of

the three PCOS’ characteristics (Figure 1) generating 4 different

phenotypes. As a result, there are women diagnosed with PCOS with

and without hyperandrogenism. In recent years, several lines of evidence

suggest that women with hyperandrogenic PCOS have worsened

cardiovascular profiles (12). Unfortunately, there are no safe and

effective therapeutic agents to decrease the levels or block the action of

androgens in women. Furthermore, the heterogeneity of the clinical

manifestation of PCOS suggests that the involvement of multiple

pathophysiological pathways as suggested by GWAS studies (13, 14).

Thereby, novel and effective therapeutic agents are needed for safe and

effective PCOS clinical management.

Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide

cardiovascular protection in patients with and without type 2 diabetes

mellitus (T2DM). Although the exact mechanisms of how SGLT2

inhibitors confer cardiovascular protection remains unclear, numerous

mechanistic hypotheses have been postulated, including modulation of

the renin-angiotensin system and/or the sympathetic nervous system and

improvement in mitochondrial function. Data from recent clinical trials

and basic research show a potential role for SGLT2 inhibitors in treating

obesity-associated cardiometabolic complications targeting those

abnormal pathophysiological systems in PCOS. This narrative review

discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in

cardiometabolic diseases in PCOS.
Cardiovascular disease in PCOS

Cardiovascular disease is the number one cause of death among

females in the United States (15). Unfortunately, PCOS is associated

with multiple cardiovascular risk factors, such as obesity,

hypertension, insulin resistance, dyslipidemia, and renal injury (16–

19). While it is clear that women with PCOS have increased

prevalence of cardiovascular risk factors, there is debate about

whether or not these cardiovascular risk factors translate into

increased cardiovascular events (20). In 2006, a study including

~11,000 women with PCOS from California (USA) showed no
FIGURE 1

PCOS diagnosis criteria.
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increased risk of coronary artery disease, cerebrovascular disease, or

peripheral arterial disease in PCOS (17). Later, in 2015, a study

including ~20,000 Danish women with PCOS also showed no

increased risk of cardiovascular disease (21). However, when the

same Danish population was reanalyzed broadening the definition of

CVD to include hypertension and dyslipidemia, women with PCOS

showed a ~2-fold increase in CVD events (22). The negative findings

of the American and some of the Danish studies were in spite of both

studies showing increased prevalence of cardiovascular risk factors,

such as hypertension, dyslipidemia, and T2DM, in women with PCOS

(17, 21). Conversely, in 2020, a meta-analysis showed that women

with PCOS have an increased risk of cardiovascular disease and stroke

(23). Furthermore, in 2021, a study including ~175,000 British

women with PCOS demonstrated an increased risk for

cardiovascular events, including myocardial infarction, angina, and

revascularization in young women with PCOS (24). Participants were

matched with controls for body mass index (BMI) on a 1:1 ratio in a

total of 350,000 women, giving unprecedented strength to the work of

Berni et al. (20, 24). Although there are multiple pharmacological

agents used to manage the cardiometabolic complications in PCOS,

their safety and effectiveness to prevent or ameliorate cardiovascular

disease and mortality in PCOS are limited (25).

Although the etiology of the syndrome remains unknown,

hyperandrogenemia may constitute a key mechanism underlying the

cardiovascular risk factors in PCOS. We have demonstrated that

hyperandrogenemia in female rats elicits several cardiovascular risk

factors also present in women with PCOS (Figure 2). More recently,

we demonstrated the potential benefit of SGLT2 inhibitors in body

composition and blood pressure in such PCOS experimental model.

Therefore, novel pharmacotherapies, such as sodium-glucose

cotransporter-2 inhibitors, could simultaneously target multiple

mechanisms of the pathophysiology of the cardiometabolic

complications associated with PCOS.
SGLT2 inhibitors: Discovery and use
beyond type 2 diabetes mellitus

Discovery of SGLT2 and its function

As the kidney filters blood, it must exercise precise, selective

control over the reabsorption of electrolytes, carbohydrates, and
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amino acids while excreting waste products like urea. In the 1930s,

with experiments from Shannon and Fisher, glucose in the

mammalian nephron was shown to go “into reversible combination

with some element in the tubule cells, present in constant but limited

amount,” and this mystery element was proposed to be the rate-

limiting step of glucose reabsorption from the nephron (26). In the

1970s, Scriver et al. hypothesized that there might be a G1/G2 system

to reabsorb hexoses in the kidney, with G1 having a low-capacity, and

low affinity for glucose. In contrast, G2 would have a high-capacity,

high affinity. Inspired by familial renal glucosuria, Scriver et al. also

hypothesized that only the G1 system was present in the intestines

while G2 was not (27). Experiments from Turner and Moran in the

1980s gave further evidence for two different sodium-dependent

glucose transporters in the proximal tubule of the nephron (28).

The G1 and G2 systems were later characterized as low-capacity,

high-affinity, or high-capacity, low-affinity and were recognized as

SGLT1 and SGLT2, respectively (29). SGLT2 expression was localized

to the renal cortex, while SGLT1 was localized to the renal medulla

and intestine (29, 30). As SGLT2 has a high capacity for glucose, it was

later confirmed that SGLT2 is explicitly responsible for the vast

majority of renal glucose reabsorption (31).
Discovery of SGLT2 inhibitors

By inhibiting SGLT2, blood glucose could be lowered

independently of insulin via its glucosuric effect, thus minimizing

the risk of hypoglycemia observed with other antidiabetic agents (32).

However, there were multiple drawbacks to using phlorizin, an early

SGLT2 inhibitor naturally found in apple trees (33, 34), such as poor

absorption in the gut and its concurrent inhibition of SGLT1 (35).

Lack of functioning SGLT1 can lead to diarrhea, as seen with

hereditary glucose/galactose malabsorption, so the search began for

selective and orally available drugs to inhibit SGLT2 (36). Out of this

search came the burgeoning drug class of gliflozins, which were based

on the structure of the o-glucoside phlorizin (37, 38). While some

gliflozins, such as the o-glucoside sergliflozin, were not successful

candidates for managing glucose homeostasis (37), many c-glucosides

made it through phase III clinical trials, such as empagliflozin,

dapagliflozin, and canagliflozin, which are the SGLT2 inhibitors

that are widely used in clinical practice nowadays (38, 39).
FIGURE 2

Cardiometabolic complications in PCOS.
frontiersin.org

https://doi.org/10.3389/fendo.2023.951099
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pruett et al. 10.3389/fendo.2023.951099
SGLT2 inhibitors confer cardiovascular
protection in patients with and without
diabetes

Around the time that currently available SGLT2 inhibitors were

progressing through clinical trials, the United States Food and Drug

Administration (FDA) issued an additional requirement for phase III

clinical trials of antidiabetic medications for T2DM (40). Because of

evidence that thiazolidinediones, PPARg agonists that act as insulin
sensitizers (41), may increase cardiovascular risk in patients with

T2DM even while improving glycemic control, the FDA began

recommending that all new antidiabetic medications also needed to

demonstrate cardiovascular safety (40, 42).

Intriguingly, with the landmark EMPA-REG study (43),

empagliflozin was shown to reduce the risk of cardiovascular death

in T2DM, becoming the first antidiabetic medicine proven to do so

(40, 43). Additionally, EMPA-REG showed preservation of renal

function with empagliflozin (44). Later with the CANVAS (45),

DECLARE-TIMI 58 (46), and CREDENCE (47) trials, the SGLT2

inhibitors canagliflozin and dapagliflozin were also shown to decrease

the risk of cardiovascular death and renal failure. These benefits have

been proposed to be independent of changes in glycemic status (47) as

the reduction in blood glucose with SGLT2 inhibition is modest (43,

45, 47), suggesting that the positive benefit of SGLT2 inhibitors could

be possible in patients without overt T2DM. Additionally, in terms of

side effects, there was no increased risk of hypoglycemia or acute

kidney injury with SGLT2 inhibition (43, 45–47). However, there are

some notable side effects of this drug class. SGLT2 inhibition does

increase the risk of mycotic genital infection (43, 45–47). More rarely,

SGLT2 inhibition also increases the risk of diabetic ketoacidosis (46,

47), in particular euglycemic diabetic ketoacidosis (48), often

occurring with surgery or illness. Euglycemic diabetic ketoacidosis

is a severe and life-threatening complication that can be overlooked

by providers because of the normal range blood glucose in this

condition, so this is an important consideration for anyone taking

or prescribing gliflozins.

More recently, with multiple trials such as EMPEROR-Reduced

(49), EMPEROR-Preserved (50), DAPA-HF (51), and DAPA-CKD

(52), even in the absence of T2DM, SGLT2 inhibition benefited

patients with chronic kidney disease and patients with heart failure

(with either reduced or preserved ejection fraction). These findings
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implicated a potential role of SGLT2 inhibition in cardiovascular or

renal disease for various conditions. However, exactly how SGLT2

inhibition produces this cardiovascular/renal protection

independently of its effect on glycemia is uncertain and is an open

question. There are multiple hypotheses concerning these

mechanisms (53, 54).
SGLT2 inhibition in women with PCOS

PCOS is associated with insulin resistance, obesity, renal injury,

mitochondrial dysfunction, and activation of both the Sympathetic

Nervous System (SNS) and Renin-Angiotensin System (RAS). SGLT2

inhibitors have demonstrated improvements in all these disease states,

suggesting they may be a promising novel therapy to improve

women’s healthcare in PCOS (Figure 3). Recently three small

clinical trials used SGLT2 inhibitors to improve the cardiometabolic

complications of patients with PCOS with exciting results (see

summary in Table 1). In the trial by Javed et al., empagliflozin

decreased body weight, body mass index, and fat mass in

overweight women with PCOS compared to metformin (55).

However, there was no decrease in insulin resistance or blood

pressure, though it should be noted that the patients in this study

had normal blood pressure at baseline (55). In the trial by Elkind-

Hirsch et al., they explored if there were a synergistic effect between

SGLT2 inhibition with dapagliflozin and glucagon-like peptide-1

receptor agonism (GLP-1RA) with exenatide in obese women with

PCOS (56). Their data show that dapagliflozin and exenatide have an

additive effect to further reduce body weight and fat mass than either

drug individually can, which is likely due to their differing

mechanisms of action. Combination therapy of SGLT2 and GLP-

1RA could constitute a promising therapeutic tool to ameliorate

cardiometabolic complications in PCOS women.

More recently, Tan et al. reported that licogliflozin decreased

insulin resistance and circulating dehydroepiandrosterone sulfate

(DHEAS) in women with PCOS, with a similar tendency in other

circulating androgens (57). However, licogliflozin is not yet approved

by the FDA and is more promiscuous than other SGLT2 inhibitors,

having only a 30-fold selectivity for SGLT2 over SGLT1 (58), instead

of the over 2,500-fold selectivity that empagliflozin has for SGLT2

(38). Higher-quality clinical trials are needed to better define the
FIGURE 3

Potential mechanisms by which SGLT2 inhibitors improve the cardiometabolic complications in PCOS.
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potential role of selective SGLT2 inhibitors in treating the

cardiometabolic complications in women with PCOS.
Insulin resistance and SGLT2 inhibition
in PCOS

While not part of the diagnostic criteria for PCOS, insulin

resistance is frequently present in lean and obese women with

PCOS (16, 59). In PCOS patients using the sequential euglycemic

insulin clamp technique, insulin infusion leads to elevations in

testosterone (60). Mechanistically, insulin and insulin-like growth

factors synergize with luteinizing hormone to increase androgen

synthesis in ovarian theca cells (61). Furthermore, insulin decreases

circulating sex hormone-binding globulin (SHBG) by decreasing its

hepatic synthesis, leading to increased circulating free testosterone

(61), which can bind and activate the androgen receptor. Moreover,

testosterone can be reduced to 5a-dihydrotestosterone (DHT) in

peripheral tissues to become the most potent endogenous agonist of

the androgen receptor (62). However, short-term androgen

administration in women also decreases insulin sensitivity, as

demonstrated by both hyperg lycemic and euglycemic

hyperinsul inemic clamps (63) . Furthermore, androgen

administration in female rats leads to insulin resistance (64, 65).

Thus, it is still unclear if insulin resistance causes androgen excess in

women with PCOS or whether androgen excess leads to the

constellation of cardiometabolic dysfunctions, including insulin

resistance, in women with PCOS.

To ameliorate insulin resistance in PCOS, the first-line therapy

for T2DM, metformin, is often used off-label (66, 67). However, there

is an ongoing debate whether or not metformin is beneficial for

insulin resistance in PCOS patients, as a recent meta-analysis showed

that metformin had no impact on fasting blood glucose or insulin in

overweight women with PCOS (68, 69). Small short-term clinical

trials have shown that the FDA-approved anti-obesity glucagon-like

peptide-1 receptor agonists (GLP-1 RAs) improve insulin resistance

in PCOS patients (70) and may be superior to metformin (71).

Therefore, there is a great need for new therapeutics targeting

insulin resistance and T2DM in PCOS.

We previously demonstrated that hyperandrogenic female (HAF)

experimental PCOS model generated with female Sprague Dawley

rats chronically implanted with subcutaneous DHT pellets (7.5 mg/90

days) exhibit similar cardiometabolic complications to those in

women with PCOS. The HAF rats exhibit increased food intake,

obesity with an expansion of both subcutaneous and visceral fat
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depots, insulin resistance, and elevated blood pressure, that closely

mimic the cardiometabolic complications in women with PCOS (65,

72). This review will focus on the HAF cardiometabolic

complications; however, there are multiple animal experimental

models of PCOS, each one with pros and cons to model the human

disease as summarized in recent reviews (73, 74).

We recently demonstrated that SGLT2 inhibition did not improve

insulin resistance in the HAF rats, but it did improve adiposity and

elevated blood pressure, suggesting that this agent could exhibit

cardioprotective effects in women with PCOS. Whether SGLT2

inhibitors could be used to prevent the progression of insulin

resistance to diabetes in women with PCOS remains unknown.
Hypertension and SGLT2 inhibition in
PCOS

The systemic renin-angiotensin system

Multiple studies have demonstrated an increased prevalence of

hypertension in women with PCOS (17, 18). Moreover, blood

pressure could be only mildly elevated as demonstrated in 24-hour

ambulatory blood pressure measurements in women with PCOS (75).

Obesity is associated with hypertension, but women with PCOS, even

with normal weight, can have elevated blood pressure (76). The

specific mechanism(s) that lead to elevated blood pressure or

hypertension in PCOS remain a matter of debate.

One promising mechanism is dysregulation of the renin-

angiotensin system (77, 78). The RAS plays a significant role in

long-term blood pressure control, and it may lead to hypertension

when inappropriately activated (79). The systemic RAS begins with

the macula densa in the distal portion of the nephron (80). When it

senses low sodium, the macula densa releases the enzyme renin from

juxtaglomerular cells. Renin will then cleave angiotensinogen,

released mainly from the liver, into angiotensin I (Ang I).

Angiotensin-converting enzyme (ACE), which is expressed

primarily in the lung, will then convert Ang I into angiotensin II

(Ang II). Then, Ang II can bind to the Ang II Type 1 Receptor (AT1R)

or the Ang II Type 2 Receptor (AT2R) (80, 81). Through AT1R, Ang

II constricts the efferent arteriole, causing an increase in glomerular

filtration rate to increase sodium delivery to the macula densa.

Furthermore, Ang II stimulates aldosterone release by the adrenal

gland via AT1R, which will increase sodium reabsorption by principal

cells of the collecting duct of the nephron. Alternatively, via AT2R,

Ang II causes vasodilation to decrease blood pressure. Furthermore,
TABLE 1 Clinical trials of SGLT2 inhibitors in PCOS.

Trial SGLT2 Inhibitor Number of Participants Duration of Trial Findings

Javed et al.
2019 (55)

Empagliflozin 39 12 weeks ↓ Body weight, BMI, and fat mass

Elkind-Hirsch et al.
2021 (56)

Dapagliflozin 92 24 weeks Additive effect in ↓ body weight and fat mass with GLP-1RA

Tan et al.
2021 (57)

Licogliflozin 20 2 weeks ↓ Insulin Resistance and DHEAS
↓, decrease.
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Ang II can be converted by angiotensin-converting enzyme 2 (ACE2)

into the heptapeptide angiotensin (1–7) that reduces blood pressure

and insulin resistance via the Mas receptor (81, 82).
The intrarenal renin-angiotensin system

In addition to the systemic RAS, several tissue-specific renin-

angiotensin systems exist, such as in the kidneys, heart, and adipose

tissue (83). We will focus on the intrarenal RAS for this review as

SGLT2, an essential player in this work, is predominantly expressed in

the kidney but not in the heart or the adipose tissue (84). In the

nephron, AT1R lines the lumen of the proximal tubule, distal tubule,

and collecting duct (85) and can stimulate angiotensinogen synthesis

in the proximal tubule with Ang II-activation (86). Renin is produced

in the proximal tubule (87, 88), distal tubule (89), and principal cells

of the collecting duct (89), allowing for angiotensin I to be produced

within the nephron. Meanwhile, ACE is expressed along the brush

border of the proximal tubule (90) and within cells of the collecting

duct (91), allowing for Ang I to be produced within the nephron.

When Ang II binds to the AT1R of the principal cells of the collecting

duct, it increases the activity of epithelial sodium channels, which can

further increase blood pressure (86, 91, 92). The detailed mechanism

of the regulation of blood pressure by epithelial sodium channels can

be found elsewhere (93). Thus, the intrarenal RAS appears to have a

positive feedback loop where intratubular Ang II can lead to the

formation of more intratubular Ang II, which can lead to increases in

blood pressure (86).
Hypertension in PCOS: Targeting the renin-
angiotensin system

The RAS, a central regulator of blood pressure, is modulated by

androgens. Women with PCOS have dysregulation of the RAS with

high circulating levels of renin (77, 94), the rate-limiting enzyme of

the RAS (95). Plasma ACE2, which converts Ang II into the

vasodilator angiotensin (1–7), is also decreased in women with

PCOS (94). In a case series of four women with PCOS, treatment

with telmisartan, an AT1R blocker, normalized blood pressure,

reduced androgen levels, and improved the menstrual cycle (78). In

a preclinical hyperandrogenemic female (HAF) rat model of PCOS,

mRNA expression of renal angiotensinogen and ACE is increased

(65). Furthermore, the ACE inhibitor enalapril reduces blood

pressure in aged HAF rats more than in controls (96). However,

compensatory alterations in the RAS have been shown in PCOS, as

circulating angiotensinogen is decreased in women with PCOS (94).

Moreover, intrarenal ACE2 is upregulated while intrarenal renin is

downregulated in HAF rat model of PCOS (97). The upregulation of

the ACE2 could be a protective mechanism to counteract the

activation of the classical arm of the RAS; however, this hypothesis

needs to be tested. Altogether, these data implicate the RAS is at least

partially responsible for the increased blood pressure observed in

PCOS. ACE inhibitors or AT1R blockers are widely used as

antihypertensive drugs in the general population. However, due to

their potential teratogenic, fetotoxic, and miscarriage-associated risks

during pregnancy, ACE inhibitors and AT1R blockers are rarely used
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in the clinic in PCOS women of reproductive age (98–100). Thereby,

agents that impact the RAS safely and effectively are needed to treat

hypertension in women with PCOS.
SGLT2 and the renin-angiotensin system

RAS blockers are part of the standard of care for chronic kidney

disease (both with and without diabetes mellitus) and heart failure. In

landmark clinical trials showing cardiovascular and renal protection

by SGLT2 inhibition, most patients were on some form of RAS

blocker at baseline (43, 45–47, 49–52). In other words, the benefit of

SGLT2 inhibition in clinical trials typically occurred on a background

of RAS blockade. How might RAS blockade be working with SGLT2

inhibition, though?

As SGLT2 inhibition decreases sodium reabsorption in the

proximal tubule, one would expect that there would be increased

sodium delivery to the macula densa, thus reducing renin release and

RAS activation. However, what has been found experimentally is

more complex. Concerning the first part of the systemic RAS cascade,

in a retrospective analysis of patients with hypertension and T2DM,

no significant change was observed in plasma renin activity (PRA)

with SGLT2 inhibition (101). Meanwhile, diabetic male mice treated

with empagliflozin had decreased PRA; however, empagliflozin

caused no change in PRA in control mice (102). Furthermore, a

small observational study showed in diabetic patients that PRA was

initially increased after one month of SGLT2 inhibition but returned

to normal after three months of treatment (103). The variability

observed in PRA with SGLT2 inhibition could be partly due to

volume contraction from SGLT2 inhibition. The glucosuria from

SGLT2 inhibition causes osmotic diuresis, which may decrease

extracellular volume to trigger the release of renin (53). However,

with time, the elevated antidiuretic hormone can compensate for the

decrease in volume from SGLT2 inhibition (104), which may restore

renin levels to normal.

Renin is far from the only component of the RAS reported to

respond to SGLT2 inhibition, and the results are equally as mixed as

those of renin. In a mouse model of T2DM, Woods et al. found that

renal cortex angiotensinogen mRNA and protein expression was

decreased by SGLT2 inhibition; however, renal ACE and AT1R

mRNA expression was unchanged (105). Meanwhile, in a rat model

of T2DM, Shin et al. found that AT1R protein expression was

decreased in the renal cortex with SGLT2 inhibition (106).

Furthermore, in diabetic Dahl salt-sensitive rats, SGLT2 inhibition

was shown to work synergistically, instead of additively, with ACE

inhibition to reduce blood pressure (107). Meanwhile, Bautista et al.

found in male rats that Ang II increases renal SGLT2 independent of

blood pressure changes and that inhibiting Ang II formation or AT1R

decreases renal SGLT2 (108). Therefore, at least in male rodents,

SGLT2 inhibitors and RAS blockade may work together

synergistically, which may translate to the importance of patients

having both types of pharmacotherapies to treat their

cardiometabolic disease.

Recently, we reported that SGLT2 inhibition in HAF rats

downregulates intrarenal ACE and AT1R mRNA, which was

accompanied by a slight decrease in mean arterial pressure (97).

However, intrarenal ACE2 mRNA, which is part of the vasodilatory
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arm of the RAS, was also downregulated by SGLT2 inhibition in HAF

rats (97). If the upregulation of the ACE2 in the kidney is a

compensatory mechanism to combat the androgen deleterious

effect, one can speculate that due to the beneficial effect of SGLT2

inhibitors, this is not further needed. These data suggest that SGLT2

inhibition could work synergistically with RAS blockers to reduce

blood pressure in HAF rats, similar as in male rodents (107).
Sympathetic nervous system and SGLT2 in
PCOS

Another possible mechanism for hypertension in women with

PCOS is an activation of the SNS. Using heart rate variability to

measure autonomic dysfunction, women with PCOS matched with

controls for body mass index and blood pressure have increased SNS

activity and decreased parasympathetic activity (109). Furthermore,

adrenergic blockade with terazocin and propranolol in young HAF

rats effectively decreases blood pressure (110). Renal denervation,

which reduces sympathetic activity in the kidney, also reduces blood

pressure in HAF rats and in women with PCOS (110, 111). The SNS

may be activated in PCOS women and HAF rats because of elevations

in the adipokine leptin in the circulation (65, 112). Leptin secretion by

the adipose tissue is upregulated in obesity. When leptin is chronically

elevated, it increases blood pressure by stimulating the sympathetic

nervous system via melanocortin 4 receptor (MC4R) in pro-

opiomelanocortin (POMC) neurons (113). Activation of the renal

SNS can also activate the RAS (113) and promote sodium retention,

actions that, if sustained over time, can increase blood pressure.

Consequently, it is possible to speculate that adrenergic blockade

could reduce RAS activation in PCOS. The detailed mechanism by

which MC4R regulates blood pressure has been recently

reviewed (114).

Adrenergic blockade is part of the standard of care in particular

clinical conditions such as heart failure with reduced ejection fraction

(115). To the best of our knowledge, randomized clinical trials with

adrenergic blockade have not been yet performed in women with

PCOS. However, while used to treat some individuals with essential

hypertension, adrenergic blockade is not the gold standard, with some

studies showing a lack of cardiovascular protection with this drug

class (116, 117). Therefore, while the SNS appears to be upregulated in

overweight or obese women with PCOS, whether or not direct

adrenergic blockade would be beneficial in attenuating their

hypertension is still unclear.

There are some evidence that SGLT2 inhibitors could target the

SNS to exhibit their cardioprotective effects. Activation of the SNS

leads to vasoconstriction and an increase in heart rate, leading to an

increase in blood pressure (80). With the potential volume

contraction from the osmotic diuresis caused by SGLT2 inhibition,

one would not be surprised to observe a compensatory increase in

heart rate. However, data from phase II/III clinical trials in patients

with T2DM show that SGLT2 inhibition is associated with a decrease

in heart rate (118, 119). Why might that be? A study by Herat and

colleagues recently demonstrated in Schlager mice, a model of

neurogenic hypertension with sympathetic activation, that SGLT2

inhibition decreases SNS innervation of the kidney, accompanied by a
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reduction of renal norepinephrine (120). However, precisely how

SGLT2 regulates renal SNS is uncertain. A recent meta-analysis in

patients with T2DM demonstrated that SGLT2 inhibition was

associated with decreased circulating leptin (121), and we recently

found that SGLT2 inhibition decreases plasma leptin in HAF rats

(97). As leptin is known to stimulate the renal SNS, reduced

circulating leptin may contribute to how SGLT2 regulates the

renal SNS.
Mitochondrial dysfunction and SGLT2
inhibitors in PCOS

The mitochondrion is an essential organelle for eukaryotic

organisms. It is known as “the powerhouse of the cell” because it

conducts oxidative phosphorylation, a process necessary to generate

enough energy for complex organisms to function (80).

Mitochondrial dysfunction can be defined as when mitochondria

cannot provide ATP for the cell while minimizing an overflow of

naturally formed reactive oxygen species (ROS) from damaging the

rest of the cell (122, 123). Methods to measure ROS in humans or

animals include assessing total antioxidant capacity in serum or

measuring markers of oxidative damage, such as lipid peroxidation,

through 2-thiobarbituric acid reactive substances assay (124).

Mitochondrial dysfunction has been linked to diabetes (122, 125),

metabolic syndrome (125), heart failure (126), chronic kidney disease

(127), and PCOS (128).

Women with PCOS have decreased mitochondrial DNA, a marker

of mitochondrial content or volume, in circulating leukocytes (129,

130). Decreased inner mitochondrial membrane potential, altered

mitochondrial structure, and increased ROS have also been

demonstrated in the oocytes of a PCOS mouse model (131).

Furthermore, lean women with PCOS have decreased circulating

total antioxidant capacity and increased malondialdehyde, indicating

increased oxidative stress (59). The mitochondrion is an organizing

center for cellular metabolism (80), so there are significant implications

for insulin resistance and obesity in PCOS. Additionally, excess

oxidative stress can lead to inflammation, further worsening insulin

resistance, obesity, and blood pressure in PCOS (132, 133). Therefore,

targeting mitochondrial dysfunction may be a promising therapeutic

avenue in patients with PCOS. Yilmaz et al. demonstrated in lean

women with PCOS that rosiglitazone, a peroxisome proliferator-

activated receptor-g (PPARg) agonist that stimulates mitochondrial

biogenesis (41), increases circulating total antioxidant capacity,

decreases circulating malondialdehyde, and decreases insulin

resistance (59). However, PPARg has multiple functions outside of

stimulating mitochondrial biogenesis (134), so it is uncertain if

specifically increasing mitochondrial content improves these

parameters in women with PCOS. Furthermore, body mass index

increases with the thiazolidinedione rosiglitazone in women with

PCOS (59). However, there are concerns about thiazolidinediones

and cardiovascular risk (42), limiting excitement for using PPARg
agonists in women with PCOS. Exploring the potential role of other

pharmacotherapeutics that improve mitochondrial function, such as

SGLT2 inhibitors (105, 135–138), is a promising new direction in

the field.
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SGLT2 inhibition has been found to improve mitochondrial

function in various ways. In the heart of male rodents with T2DM,

SGLT2 inhibition decreases ROS production (135) and also increases

the expression of nuclear respiratory factor 1 (NRF1) and PPARg
coactivator 1-a (PGC1a) (136), which positively regulate

mitochondrial biogenesis (134). SGLT2 inhibition also decreases

markers of oxidative stress in the blood while increasing the activity

of the antioxidant enzyme superoxide dismutase (136). Meanwhile, in

the kidney of male rodents with T2DM, SGLT2 inhibition normalizes

mitochondrial morphology (preventing mitochondria from becoming

excessively round or fragmented) while decreasing urinary 8-

isoprostane and 8-hydroxydeoxyguanosine, which are markers of

oxidative stress (105, 137). In white adipose tissue of male rodents

with T2DM, SGLT2 inhibition similarly increased the expression of

NRF1 and PGC1a as it did in the heart, which was associated with an

increase in mitochondrial DNA, a marker of mitochondrial content

(136, 138). The diseases currently indicated for SGLT2 inhibitor use,

such as T2DM, heart failure, and chronic kidney disease, have been

linked to mitochondrial dysfunction (125–127), so improving

mitochondrial function may be an essential pathway for the

beneficial effects seen in patients on SGLT2 inhibitors. However,

more studies are needed to explore the therapeutic potential of SGLT2

inhibition on mitochondrial dysfunction in women, especially those

with PCOS. We recently demonstrated that hyperandrogenemia in

the HAF rat model of PCOS causes the expansion of white adipose

tissue, which is associated with decreases in mitochondrial content

and function in both subcutaneous and visceral adipose tissue (139).

Treatment with SGLT2 inhibitors increased the frequency of small

adipocytes in visceral adipose tissue without affecting mitochondrial

dysfunction in white adipose tissue, oxidative stress, or insulin

resistance in the HAF rat model (139). Our study suggests that

targeting mitochondrial dysfunction in PCOS may be necessary to

improve insulin resistance and that hyperandrogenemia blunts the

beneficial effect of SGLT2 inhibitors in the HAF rat model of PCOS.
Perspective and clinical implications

PCOS is the most common endocrine disorder in reproductive-

age women (1–3). Patients with PCOS have an increased incidence of

major adverse cardiovascular events (24), likely driven by the

increased incidence of cardiovascular risk factors in this population,

such as hypertension, insulin resistance, renal injury, and obesity (16–

19) (Figure 2). Unfortunately, there is a lack of effective, evidence-

based pharmacotherapeutics targeted at cardiometabolic disease (25).

Meanwhile, SGLT2 inhibitors have been rapidly expanding their

clinical indications because of their cardiovascular protection in

patients with and without T2DM (43, 47, 51, 52). However,

whether and exactly how SGLT2 inhibitors confer cardiovascular

protection in PCOS women, with and without diabetes remains to be

elucidated pending high quality large clinical trials. Limited clinical

data have suggested that women with PCOS have renal and cardiac

target organ injury (140). Moreover, a recent study has shown that
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women with PCOS have a higher risk of preeclampsia/eclampsia,

peripartum cardiomyopathy, and heart failure during hospitalizations

for delivery (141). Women with PCOS who have increased

cardiovascular risk factors as the conditions mentioned above could

benefit from SGLT2 inhibitors, pending confirmation with clinical

trials. The numerous mechanistic hypotheses for cardiovascular

protection include deactivation of the RAS and/or the SNS as well

as improvement in mitochondrial function, all of which are abnormal

in women with PCOS. Data from recent small clinical trials and basic

research show promise for SGLT2 inhibitors in treating some of the

cardiometabolic complications in PCOS.
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