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Bioinformatics identification
and experimental validation
of m6A-related diagnostic
biomarkers in the subtype
classification of blood monocytes
from postmenopausal
osteoporosis patients

Peng Zhang1,2†, Honglin Chen1,2,3†, Bin Xie1†, Wenhua Zhao1,2,
Qi Shang1,2, Jiahui He1,2, Gengyang Shen3, Xiang Yu3,
Zhida Zhang3, Guangye Zhu1, Guifeng Chen1,2, Fuyong Yu1,2,
De Liang3, Jingjing Tang3, Jianchao Cui3, Zhixiang Liu4*,
Hui Ren2,3* and Xiaobing Jiang2,3*

1Guangzhou University of Chinese Medicine, Guangzhou, China, 2Lingnan Medical Research Center
of Guangzhou University of Chinese Medicine, Guangzhou, China, 3The First Affiliated Hospital of
Guangzhou University of Chinese Medicine, Guangzhou, China, 4Affiliated Huadu Hospital, Southern
Medical University, Guangzhou, China
Background: Postmenopausal osteoporosis (PMOP) is a common bone disorder.

Existing study has confirmed the role of exosome in regulating RNA N6-

methyladenosine (m6A) methylation as therapies in osteoporosis. However, it

still stays unclear on the roles of m6A modulators derived from serum exosome

in PMOP. A comprehensive evaluation on the roles of m6A modulators in the

diagnostic biomarkers and subtype identification of PMOP on the basis of

GSE56815 and GSE2208 datasets was carried out to investigate the molecular

mechanisms of m6A modulators in PMOP.

Methods: We carried out a series of bioinformatics analyses including difference

analysis to identify significant m6A modulators, m6A model construction of

random forest, support vector machine and nomogram, m6A subtype

consensus clustering, GO and KEGG enrichment analysis of differentially

expressed genes (DEGs) between different m6A patterns, principal component

analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of

immune cell infiltration, experimental validation of significant m6A modulators by

real-time quantitative polymerase chain reaction (RT-qPCR), etc.

Results: In the current study, we authenticated 7 significant m6A modulators via

difference analysis between normal and PMOP patients from GSE56815 and

GSE2208 datasets. In order to predict the risk of PMOP, we adopted random

forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1,
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YTHDC2, HNRNPC, RBM15, RBM15B andWTAP. Then we selected the 7 diagnostic

m6A modulators to construct a nomogram model, which could provide benefit

with patients according to our subsequent decision curve analysis. We classified

PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the

significant m6A modulators via a consensus clustering approach. In addition,

principal component analysis was utilized to evaluate the m6A score of each

sample for quantification of the m6A subgroups. The m6A scores of patients in

clusterB were higher than those of patients in clusterA. Moreover, we observed

that the patients in clusterA had close correlation with immature B cell and gamma

delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim

natural killer cell, and regulatory T cell immunity, which has close connection with

osteoclast differentiation. Notably, m6Amodulators detected by RT-qPCR showed

generally consistent expression levels with the bioinformatics results.

Conclusion: In general, m6Amodulators exert integral function in the pathological

process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers

and immunotherapeutic strategies for future PMOP treatment.
KEYWORDS

postmenopausal osteoporosis, RNA N6-methyladenosine (m6A) modulators, subtype
classification, risk prediction, experimental validation
Introduction

Postmenopausal osteoporosis (PMOP) is a common bone

disorder associated with ageing occurring in postmenopausal

women, which is resulted from bone mass decrease and structural

changes in bone tissue due to estrogen deficiency, resulting in

increased bone fragility and susceptibility to fracture, as well as

pain, bone deformation, comorbidities and even death caused by

fracture (1–3). It is reported that approximately 50% of women

experience at least one PMOP-related fracture (4). Existing drugs

including vitamin D, calcium, denosumab, teriparatide, and

bisphosphonates serve as recommended therapies for the

treatment of PMOP (5), but long-term use of them trigger some

side effects causing rapid bone loss and increasing the risks of the

jaw osteonecrosis, atypical femoral fractures, and multiple rebound-

related vertebral fractures (6). Therefore, PMOP still remains

clinically not well managed (7). PMOP seriously impacts the

health and life quality of the elderly and even shortens their life

expectancy, increasing the financial and social burden on the

countries and the families (8). Therefore, it is indispensable and

critical to early identify patients at high risk of developing PMOP.

Mounting evidence on the extensive developments in PMOP

research shows that PMOP is a complicated disease of great

heterogeneity that involves genetic changes (9). Hence, early

identification and effective prevention of high-risk patients from a

genetic perspective will exert a profound influence on the

epidemiological control of PMOP.

Notably, recent studies have reported the promise of exosomes as

potential therapies in osteoporosis (10, 11). Exosomes are small

single-membrane organelles between 40 and 160 nm in diameter
02
(12), which can carry a variety of cargos, such as lipids, proteins,

glycoconjugates, and nucleic acids (13). Exosomes can transmit

signals or molecules between cells and reshape the extracellular

matrix by releasing these substances (14). Moreover, exosome can

carry circular RNAs (circRNAs) to regulate bone metabolism in

PMOP via sponging microRNAs (miRNAs), which can control

mRNA expression by regulate the interaction with m6A

methylation (15). N6-methyladenosine (m6A) is a widespread

epigenetic modification that affects the variable splicing,

translocation, translation and degradation of mRNA, as well as the

epigenetic effects of certain non-coding RNAs (16). As an essential

epigenetic modification, m6A modification needs numerous

regulatory proteins encoded by writers, erasers, and readers to

coorperate together (17). Abnormalities in m6A methylation can

lead to a variety of diseases such as obesity, glioblastoma, acute

myeloid leukaemia, type 2 diabetes, infertility, neuronal diseases,

premature ovarian failure and various malignancies (18, 19). With

the further study on m6A, researchers also found that bone marrow

mesenchymal stem cells (BMSCs), chondrocytes, osteoblasts,

osteoclasts, osteosarcoma, and adipocytes cells are all subject to

m6A modification to regulate the methylation of RNA in cells,

affecting the transduction of mRNA and/or non-coding RNA

associated genes, thus activating cellular signaling pathways and

affecting cell cycle and DNA damage repair, which in turn

determines the occurrence and development process of

musculoskeletal disorders (20–24). Recently, existing researches

have verified that m6A modifications exert vital functions on the

pathology of PMOP via modulating the expression level of m6A-

associated genes (25, 26). However, it still stays unclear on the roles of

m6A modulators derived from serum exosome in PMOP.
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In this study, we performed a comprehensive evaluation on the roles

of m6A modulators in the diagnostic biomarkers and subtype

identification of PMOP on the basis of GSE56815 and GSE2208

datasets with monocyte samples. We developed a PMOP susceptibility

prediction gene model based on seven candidate m6A modulators

including FMR1, FTO, WTAP, YTHDC2, HNRNPC, RBM15 and

RBM15B, and found that the model provided good clinical benefits for

patients. Our RT-qPCR experiments further validated these m6A

modulators, exhibiting consistent expression levels with the

bioinformatics results. Additionally, we excavated two different m6A

patterns that were closely correlated with immature B cell, gamma delta T

cell, CD56dim natural killer cell, monocyte, neutrophil and regulatory T

cell immunity, indicating that m6A patterns may be used to identify

PMOP and provide subsequent treatment strategies. Figure 1 displayed

the flowchart of study design and process.
Materials and methods

Sample retrieval

We collected monocyte samples separated from whole blood of

elderly women by retrieving the GEO database (http://www.ncbi.nlm.

nih.gov/geo/). The search terms were “BMD”, “Postmenopausal

Osteoporosis”, “Gene expression”, “Microarray”, and the datasets

were based on the following criteria: (1) each dataset includes at

least 10 samples; (2) each dataset includes at least 5 cases in the groups

of control and PMOP respectively; and (3) Both raw data and series

matrix file can be obtained from the GEO datasets. Two datasets,

GSE56815 (27) and GSE2208 (28) were eventually screened, which

fully met our criteria. We chose 5 cases of control group and 5 cases of

PMOP group from the dataset of GSE2208 as well as 20 cases of
Frontiers in Endocrinology 03
PMOP and 20 controls in GSE56815 dataset for subsequent analysis.

Table 1 showed specific information of the corresponding datasets.
Data acquisition

We downloaded the annotated R package via Bioconductor

(http://bioconductor.org/) to convert microarray probes to symbols

in R (v4.1.2) software (Statistics Department of the University of

Auckland, New Zealand). After data preparation, we carried out

consolidation of the two datasets via SVA batch difference

processing of combat and obtained the final dataset which

contained 25 controls and 25 PMOP cases. Differential m6A

madulators were identified from the dataset by difference analysis

of control and PMOP cases using the R package of Limma. The

screening thresholds to determine the significant m6A madulators

were P-Value <0.05 and |log2 fold change (FC)| >0 (29).
Model construction

We established random forest (RF) and support vector machine

(SVM) models as training models to evaluate the PMOP occurrence,

which were detected by “Reverse cumulative distribution of residual”,

receiver operating characteristic (ROC) curve, and “Boxplots of

residual”. In RF model, we used the R package of “RandomForest” to

build an RF model to screen candidate m6A modulators with

importance score (Mean Decrease Gini)>2. In SVM model, n stands

for the number of m6A modulators and every data dot is presented as a

dot in an n-dimensional space. We then selected an optimal hyperplane

that distinguishes these two groups of control and PMOP very well (30).

We then used the R package of “rms” to establish a nomogrammodel to
FIGURE 1

Flow chart of the study design.
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predict the prevalence of PMOP patients according to screened

candidate m6A modulators. We utilized the calibration curve to assess

how well our predicted values align with reality. We also carried out

decision curve analysis (DCA) to draw a clinical impact curve and assess

whether decisions based on the model produced benefit to patients (31).
Subtype classification

Consensus clustering is a resampling-based algorithm that identifies

eachmember and its subcluster number, and verifies the rationality of the

clusters (31). Using the R package of “ConsensusClusterPlus”, a

consensus clustering method was conducted to identify different m6A

patterns on the basis of significant m6A moderators (32).
Classification of differentially expressed
genes between different m6a patterns and
GO and KEGG enrichment analysis

We utilized Limma package to identify differentially expressed genes

(DEGs) between different m6A patterns with the threshold of adjusted P-

Value <0.05 and |log2 FC| >0.5. Next, we used the R package of

“clusterProfiler” to perform GO and KEGG analyses so as to

investigate the possible mechanism of the DEGs involved in PMOP (33).
Calculation of the m6A score

We utilized principal component analysis to calculate the m6A score

for each sample for quantification of the m6A patterns, with the m6A

score evaluated based on the following formula: m6A score = PC1i, where

PC1 denotes principal component 1, and i denotes significant m6A gene

expression (34).
Evaluation of immune cell infiltration

We utilized single sample gene set enrichment analysis (ssGSEA) to

evaluate the level of immune cell infiltration in the samples from PMOP
Frontiers in Endocrinology 04
groups. First, the gene expression levels in the samples were sequenced

using ssGSEA to obtain a ranking of gene expression levels. Next, we

searched for the significant m6A madulators in the input dataset and

then summed their expression levels. According to these evaluations, we

obtained the abundance of immune cells in each sample (35).
Experimental validation by RNA extraction
and real-time quantitative polymerase
chain reaction

The clinical experiments involved in this paper were authorized by

the Ethics Committee of the 1st Affiliated Hospital of GZUCM (No. K

[2019]129). In the current research, all patients who participated in this

trial provided informed consent at the beginning. Then, external

venous blood was drawn from PMOP patients (n=3) and healthy

controls (n=3) respectively. The two groups were age-matched. The

manipulation of human peripheral blood monocytes (HPBMs) was

performed as described previously (36). First, whole blood from

patients was put into a 50-mL centrifuge tube, then diluted with 10-

mL PBS and gently mixed. Afterwards, we continuously centrifuged the

initial blood specimen at 2000 rpm for 20 minutes. When

centrifugation was finished, the blood sample was stratified and the

leukocyte layer in the center of the sample containing HPBMs was

aspirated by pipette and transferred to a single fresh 15 mL centrifuge

tube in liquid with 10-15 mL of PBS. Next the solution was centrifuged

at 1500 rpm in 10 min and the supernatant was lifted to precipitate and

be the wanted HPBMs. HPBMs were inoculated in 6-well plates, and

then 1mL of TRIzol reagent was applied to each well for total RNA

extraction from the cells. Subsequently, retrotranscription of 1mg of

total RNA was done using a cDNA synthesis kit (Takara Inc.Shiga,

Japan). 20mL SYBR Green qPCR SuperMix (Takara Inc.) was used for

detection of m6A cDNAs and RT-qPCR machine (Bio-Rad, Hercules,

CA, USA). The thermal cycling conditions for the final gene

amplification were: 95°C for 30s, 40 cycles of 95°C for 5s, and a final

step of 60°C for 30s. Quantitative analysis was performed using the

2DDCT method to calculation of the relative expression of each gene. The

gene-related detection primers of m6A modulators were compounded

by Shanghai Sangon Biotechnology Co.Ltd (China), as shown

in Table 2.
TABLE 1 Information for the selected microarray datasets.

GEO Accession Total samples Selected samples Platform Source tissue

19 samples 10 samples blood monocytes

GSE2208 Sample types: GPL96 Sample types:

10 high BMD 5 PreH BMD (Control)

9 low BMD 5 postL BMD (PMOP)

80 samples 40 samples blood monocytes

GSE56815 Sample types: GPL96 Sample types:

40 high BMD 20 PreH BMD (Control)

40 low BMD 20 postL BMD (PMOP)
BMD, bone mineral density; PreH BMD: Premenopausal High BMD; postL BMD: Postmenopausal Low BMD.
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Statistical analysis

The correlations among writer, reader and eraser were evaluated

via linear regression analyses. The differences between groups were

calculated through Kruskal-Wallis tests in bioinformatics analysis,

while unpaired t-tests with Welch’s correction were utilized in RT-

qPCR data analysis. Two-tailed tests were conducted to estimate all

parametric analyses with P< 0.05 considered as statistical significance.

All results were expressed as mean ± standard deviation.
Results

Identification of the 12 m6A modulators
in PMOP

Totally 12 m6A modulators were identified based on difference

analysis between controls and PMOP cases. These modulators
Frontiers in Endocrinology 05
included one eraser (FTO), five writers (METTL3, ZC3H13,

RBM15B, WTAP, and RBM15), and six readers (YTHDC2,

ELAVL1, FMR1, YTHDF3, HNRNPC, and IGFBP3). We finally

filtrated 7 vital m6A modulators (HNRNPC, YTHDC2, FMR1,

FTO, WTAP, RBM15B, and RBM15), which were visualized by a

heat map and histogram. We observed that RBM15B expression was

decreased in PMOP cases compared to controls, while the other

significant m6A regulators displayed the opposite results (Figures 2A,

C). And we visualized the chromosomal positions of the 12 m6A

modulators via the “RCircos” package (Figure 2B).
Correlation among writers, readers and
eraser in PMOP

We utilized linear regression analyses to investigate whether gene

expression levels of writers or readers in PMOP exhibit correlation

with the gene expression level of eraser. We observed that the gene
TABLE 2 Sequences of m6A gene-specific primers used for RT-qPCR.

m6A genes
Sequence (5’->3’)

Forward primer Reverse primer

FTO ATTCTATCAGCAGTGGCAGC GGATGCGAGATACCGGAGTG

FMR1 CCTGAACTCAAGGCTTGGCA TCTCTTCCTCTGTTGGAGCTTTA

YTHDC2 ACGGGGACCAGAGAGAAATG TTGTTGAGTCGCCCACTTGT

RBM15 ATGCCTTCCCACCTTGTGAG CAACCAGTTTTGCACGGACA

WTAP GCTTCTGCCTGGAGAGGATT GTGTACTTGCCCTCCAAAGC
A

B C

FIGURE 2

Identification of the 12 m6A modulators in PMOP. (A) Expression heat map of the 12 m6A modulators in controls and PMOP cases. (B) Chromosomal positions of
the 12 m6A modulators. (C) Differential expression boxplots of the 12 m6A modulators between controls and PMOP cases. *p < 0.05, and **p < 0.01.
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expression levels of writers RBM15, WTAP, ZC3H13, and readers

FMR1, YTHDC2, and HNRNPC in PMOP cases were positively

correlated with eraser gene FTO. The other readers or writers were

not significantly linked to eraser gene FTO (Figure 3). Thus, we

demonstrated different correlations between different writers, readers

and eraser.
Establishment of the RF and SVM models

Figure 4A showed “Reverse cumulative distribution of residual”

and Figure 4B presented “Boxplots of residual”, which confirmed that

the RF model has the smallest residuals. The residuals for most of the

samples in the model are relatively small, suggesting that the RF

model is better than the SVM model. Therefore, we determined the

RF model to be the most suitable model for the prediction of PMOP

occurrence. Then, we plotted ROC curve to estimate the models, and

found that the RF model is more accurate than the SVM model

according to their AUC values of the ROC curves (Figure 4C). Finally,

we visualized these 7 significant m6A regulators after ranking them in

order of importance and selected m6A regulators with importance

score>2 as the candidate genes (Figure 4D).
Establishment of the nomogram model

We utilized the “rms” package in R to establish a nomogram model

of the seven candidate m6A modulators for the prediction of the
Frontiers in Endocrinology 06
prevalence of PMOP patients (Figure 5A). We observed that the

nomogram model exhibits high accuracy of prediction according to

calibration curves (Figure 5B). The red line in the DCA curve stayed

above the gray and black lines from 0 to 1, suggesting that decisions based

on the nomogram model may be beneficial to PMOP patients

(Figure 5C). Moreover, we noticed that the predictive power of the

nomogram model was remarkable according to the clinical impact

curve (Figure 5D).
Identification of two distinct m6A patterns

We identified two m6A patterns (clusterA and clusterB) based on

the 7 significant m6A regulators via the R package of

“ConsensusClusterPlus” (Figures 6A–D). There were 16 cases in

clusterA, and 9 cases in clusterB. Then, we plotted the heat map

and histogram, which clearly displayed the differential expression

levels of the 7 significant m6A modulators between the two clusters.

We observed that the expression levels of RBM15, WTAP, FMR1,

FTO, YTHDC2, and HNRNPC in clusterA were higher than those in

clusterB, while the expression level of RBM15B exhibited no

significant differences between the two cluster (Figures 6E, F). The

PCA results revealed that the two m6A patterns could be

distinguished by 7 significant m6A modulators (Figure 6G). We

screened totally 90 m6A-associated DEGs between the two m6A

patterns, and we carried out GO and KEGG enrichment analyses to

excavate the role of these DEGs in PMOP (Figures 6H, I). The

detailed information of GO and KEGG enrichment analysis was
A B D

E F G

I

H

J K

C

FIGURE 3

Correlation among Writers, Readers and Eraser in PMOP (A–K). Writer genes: RBM15, RBM15B, METTL3, WTAP, and ZC3H13; reader genes: ELAVL1,
FMR1, HNRNPC, IGFBP3, YTHDC2, and YTHDF3; eraser gene: FTO.
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shown in Supplementary Tables 1, 2. We observed that GO: 0031331

(positive regulation of cellular catabolic process), GO:0030055(cell-

substrate junction), GO:0005925(focal adhesion), and GO:0045296

(cadherin binding) were the mainly enriched entries. We finally got

totally 12 pathways as shown in Figure 6I. These signaling pathways

like C-type lectin receptor signaling pathway, and Relaxin signaling

pathway may exert regulatory functions on the pathological process of

PMOP. Notably, KEGG enrichment analysis showed that osteoclast

differentiation was one of the mainly enriched pathways. Specially,

several key targets were involved in the pathway of osteoclast

differentiation (e.g., RELB, SPI1, LILRA6, TGFB1).

Then, ssGSEA was performed to evaluate the immune cell

abundance in PMOP samples, and we also assessed the correlation

between immune cells and seven important m6A modulators. We

observed that FMR1 was positively correlated with many immune

cells (Figure 7A). We evaluated the differences in immune cell

infiltration between patients with high and low FMR1 expressions.

The results showed that patients with low FMR1 expression were

more likely to exhibit increased immune cell infiltration than those
Frontiers in Endocrinology 07
with high FMR1 expression (Figure 7B). We found that clusterA

was correlated with the immunity of immature B cell and gamma

delta T cell while clusterB was related to CD56dim natural killer

cell, monocyte, neutrophil and regulatory T cell immunity,

indicat ing that c lusterB may be more correlated with

PMOP (Figure 7C).
Classification of two distinct m6A gene
patterns and construction of the m6A
gene signature

To lucubrate the m6A patterns, we used a consensus clustering

approach to classify the PMOP cases into different genomic

subtypes on the basis of the 90 m6A-related DEGs. We identified

two distinct m6A gene patterns (gene clusterA and gene clusterB),

which aligned with the sectionalization of m6A patterns

(Figures 8A–D). Figure 8E displayed the expression levels of the

90 m6A-associated DEGs in gene clusterA and gene clusterB. The
A B

DC

FIGURE 4

Establishment of the RF and SVM Models. (A) Reverse cumulative distribution of residual was constructed to display the residual distribution of RF and
SVM models. (B) Boxplots of residual was construct to display the residual distribution of RF and SVM models. (C) ROC curves indicated the accuracy of
the RF and SVM models. (D) The importance score of the 7 m6A modulators on the basis of the RF model.
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differential expression levels of immune cell infiltration and the 7

significant m6A modulators between gene clusterA and gene

clusterB were also analogous to those in the m6A patterns

(Figures 8F, G). These results again verified the veracity of our

sectionalization via the consensus clustering approach. The m6A

scores for each sample between the two distinct m6A patterns or

m6A gene patterns were calculated through PCA algorithms for the

quantification of the m6A patterns. We found that the clusterB or

gene clusterB exhibited higher m6A score than clusterA or gene

clusterA (Figures 8H, I).
Role of m6A patterns in
distinguishing PMOP

We utilized a Sankey diagram to display the correlation among

m6A scores, m6A patterns, and m6A gene patterns (Figure 9A). To

lucubrate the link between m6A patterns and PMOP, we explored

the relationship between m6A patterns and RELB, SPI1, LILRA6,

and TGFB1, which were enriched in osteoclast differentiation

according to KEGG enrichment analysis. We observed that

clusterB or gene clusterB displayed higher expression levels of

RELB, SPI1, LILRA6, and TGFB1 than clusterA or gene clusterA,

indicating that clusterB or gene clusterB were closely

correlated with PMOP characterized by osteoclast differentiation

(Figures 9B, C).
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RT-qRCR validation of significant
m6A modulators

It was verified that m6A genes FTO, FMR1, YTHDC2, RBM15,

WTAP exhibited significantly higher expression levels in PMOP

cases than controls (Figure 10), which was consistent with the

bioinformatics results.
Discussion

PMOP is a widespread musculoskeletal disorder accompanied by

bone system symptoms in postmenopausal women (37). Existing

researches have confirmed that m6A modulators play an

indispensable role in numerous biological processes (38). However,

the role of m6A rmodulators in PMOP stays unclear. This present

study aimed at investigating the role of m6A modulators in PMOP.

Firstly, a total of 7 significant m6A modulators were screened

from 12 m6A modulators via differential expression analysis between

controls and PMOP cases, which were selected as diagnostic m6A

modulators (FMR1, WTAP, YTHDC2, HNRNPC, FTO, RBM15, and

RBM15B) based on an established RF model to predict the occurrence

of PMOP. Then, we established a nomogram model on the basis of

the seven candidate m6A modulators, which has been evaluated via

the DCA curve to produce benefit to PMOP patients in virtue of

decisions based on the nomogram model.
A

B DC

FIGURE 5

Establishment of the nomogram model. (A) The nomogram model was established on the basis of the 7 candidate m6A modulators. (B) The calibration
curve was utilized to evaluate the predictive accuracy of the nomogram model. (C) Decisions on the basis of this nomogram model may be beneficial to
PMOP patients. (D) The clinical impact curve was used to assess clinical impact of the nomogram model.
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FMR1 encodes an RNA-binding protein FMRP, which

maintains mRNA stability by binding to the m6A site of mRNA

(39). Existing study has confirmed that FMR1-deficiency affects

skeleton and bone microstructure, demonstrating that knock-out

(KO) of FMR1 in mice showed increased femoral cortical thickness,

reduced cortical eccentricity, decreased femoral trabecular pore

volumes, and a higher range of trabecular thickness distribution

compared to controls (40). WTAP (Wilm’s tumor 1 protein) is a

ubiquitous nuclear protein that has been reported to facilitate the

formation of m6A (41). In addition, existing evidence has confirmed

that the WTAP expression level was remarkably upregulated 7 days

after fracture (42). Moreover, the increased expression of WTAP has
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been reported to promote cellular senescence in aging-related

diseases (43). YTHDC2 belongs to the DExD/H box RNA helicase

family, which exerts important functions in regulating the

transcription of mRNA and maintaining the stability of mRNA

(44). YTHDC2 knockdown can exert a stimulative effect on the

osteogenic differentiation of human BMSCs and suppress the

adipogenic differentiation (45). As a DNA binding protein,

HNRNPC (Heterogeneous nuclear ribonucleoprotein C) plays an

essential part in RNA processing, exerting a remarkably suppressive

effect on the transcription of the vitamin D hormone,1,25-

dihydroxyvitamin D (1,25(OH)2D) (46). And HNRNPC has

properties of species-specific heterodimerization that functions as
A B D
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F G
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C

FIGURE 6

Consensus clustering of the 7 significant m6A modulators in PMOP. (A–D) Consensus matrices of the 7 significant m6A modulators for k = 2–5.
(E) Expression heat map of the 7 significant m6A modulators in clusterA and clusterB. (F) Differential expression boxplots of the 7 significant m6A
modulators in clusterA and clusterB. (G) Principal component analysis for the expression profiles of the 7 significant m6Amodulators that shows a
remarkable difference in transcriptomes between the two m6A patterns. (H, I) GO and KEGG analysis that explores the potential mechanism
underlying the effect of the 90 m6A-related DEGs on the occurrence and development of PMOP. *p < 0.05, **p < 0.01, and ***p < 0.001.
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an indispensable prerequisite for DNA binding and down-

regulation of 1,25(OH)2D-related gene transactivation in

osteoblasts (47). FTO is a primary m6A demethylase that

suppresses osteogenic differentiation by demethylating runx2

mRNA, thus accelerating the process of osteoporosis (48). It has

also been found that FTO is a regulator that determines the

differentiation of BMSCs by affecting the activation of the GDF11

signaling axis in the bone marrow, promoting Smad2/3

phosphorylation to stimulate osteoclastogenesis and inhibit

osteoblast differentiation, thus leading to the development of

osteoporosis (49–51). The RNA binding motif protein 15

(RBM15/OTT1) and its paralogue RBM15B (OTT3) belong to

SPEN family members (52). Existing studies have confirmed that

RBM15 in stress hematopoiesis have a variety of aging-related

physiologic changes, including increased DNA damage and NF-

kB activation (53), which may serve as important pathological

factors in the development of osteoporosis. In addition, study has

reported that knockdown of RBM15 and RBM15B impairs XIST-

mediated gene silencing (52), which influences osteoblast

differentiation in osteoporosis (54). Therefore, to our knowledge,

the seven candidate m6A modulators may play an important part in
Frontiers in Endocrinology 10
the occurrence and development of osteoporosis according to

previous studies.

Existing researches reveal that the dysfunction of T and B

ymphocytes may play an essential role in the pathogenesis of

PMOP (55). We found that clusterA was correlated with the

immunity of immature B cell and gamma delta T cell while

clusterB was related to CD56dim natural killer cell, monocyte,

neutrophil and regulatory T cell immunity, indicating that clusterB

may be more correlated with PMOP (Figure 7C). Regulatory T cell

(Treg) exerts an essential regulatory function in maintaining immune

homeostasis and inhibiting the evolution of PMOP (56). Treg cells

negatively regulate osteoclasts in bone metabolism, inhibiting

osteoclast formation and differentiation and reducing osteoclast

activity (57). The immune and skeletal systems share many

regulatory factors, such as transforming growth factor-b (TGFB1),

which inhibits osteoclast function of bone resorption and regulates

new bone formation in bone resorption region (58). Bozec et al (59)

found that Treg cells can regulate osteoclastogenesis by secreting

cytokines such as TGFB1, IL-10 and IL-4. In this study, we identified

two distinct m6A patterns (clusterA and clusterB) on the basis of the 7

significant m6A modulators as well as two distinct m6A gene patterns
A B

C

FIGURE 7

Single sample gene set enrichment analysis. (A) Correlation between immune cell infiltration and the 7 significant m6A modulators. (B) Difference in the
abundance of infiltrating immune cells between high and low FMR1 protein expression groups. (C) Differential immune cell infiltration between clusterA
and clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.
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(gene clusterA and gene clusterB) based on the 90 m6A-associated

DEGs. RELB, SPI1, LILRA6, and TGFB1 were enriched in the

pathway of osteoclast differentiation according to KEGG

enrichment analysis of the 90 m6A-associated DEGs. ClusterB was

closely correlated with the regulatory T cell (Treg) immunity and

displayed higher expression levels of RELB, SPI1, LILRA6, and

TGFB1, suggesting that clusterB may be linked to osteoclast

differentiation. Moreover, the m6A scores for each sample between

the two distinct m6A patterns or m6A gene patterns were calculated

through PCA algorithms for the quantification of the m6A patterns.

We found that the clusterB or gene clusterB exhibited higher m6A

score than clusterA or gene clusterA.

Our RT-qPCR experiments verified that m6A genes FTO, FMR1,

YTHDC2, RBM15, WTAP exhibited significantly higher expression

levels in PMOP cases than controls (Figure 10), which was consistent

with the bioinformatics results and previous studies. Our results

confirm the involvement of these m6A regulators in PMOP and

provide new clues to their role in the pathogenesis of PMOP, which
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further verified the possibility that m6A modulators may play an

important role in the development of PMOP. To the best of our

knowledge, this study is the first time to report m6A-related

diagnostic biomarkers of PMOP in the subtype classification of

blood monocytes.

However, there remain some limitations in our study. This study

analyzed the relationship between m6A regulators and immune cell

infiltration and briefly validated the expression of key m6A regulators

in the samples from PMOP patients, but the underlying regulatory

mechanisms in the progression of PMOP have not yet been fully

elucidated. In the future, more in vivo, in vitro and clinical

experiments are needed to verify the bioinformatics results.
Conclusion

In general, our present study screened seven diagnostic m6A

modulators and constructed a nomogram model providing accurate
A B D
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FIGURE 8

Consensus clustering of the 90 m6A-associated DEGs in PMOP. (A–D) Consensus matrices of the 90 m6A-associated DEGs for k = 2–5. (E) Expression
heat map of the 90 m6A-associated DEGs in gene clusterA and gene clusterB. (F) Differential expression boxplots of the 7 significant m6A modulators in
gene clusterA and gene clusterB. (G) Differential immune cell infiltration between gene clusterA and gene clusterB. (H) Differences in m6A score
between clusterA and clusterB. (I) Differences in m6A score between gene clusterA and gene clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 9

Role of m6A patterns in distinguishing PMOP. (A) Sankey diagram showing the relationship between m6A patterns, m6A gene patterns, and m6A scores.
(B) Differential expression levels of osteoclast differentiation-related genes between clusterA and clusterB. (C) Differential expression levels of osteoclast
differentiation-related genes between gene clusterA and gene clusterB. **p < 0.01, and ***p < 0.001.
A B D EC

FIGURE 10

RT-qPCR experimental validation of significant m6A modulators. (A–E) Relative mRNA expressions of 5 key m6A modulators including FTO, FMR1, YTHDC2,
RBM15 and WTAP between the two groups. All results were expressed as mean ± standard deviation. *p < 0.05, **p < 0.01, and ***p < 0.001.
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prediction for the prevalence of PMOP. Then, we authenticatd two

m6A patterns based on the 7 m6Amodulator, and found that clusterB

may be more correlated with PMOP. To our knowledge, this study is

the first to report m6A-related diagnostic biomarkers of PMOP in the

subtype classification of blood monocytes.
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