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Introduction: Exposure to Bisphenol A (BPA) during early development

particularly in-utero has been linked to a wide range of pathology. Over the

last two decades the importance of vitamin D in maternal and child health has

been highlighted. The aim of this pilot study was to examine the relationship of

BPA and its naturally occurring metabolite BPA-glucuronide (BPA-g) with 25-

hydoxy vitamin D (25OHD) levels in South African mother-child pairs.

Methods: Third-trimester serum maternal samples and matching cord blood

samples were analyzed for BPA and BPA-g using liquid chromatography tandem

mass spectrometry (LC-MS/MS) and 25OHD3 and 25OHD2 using high

performance liquid chromatography. A total of 58 maternal and child pairs

were analyzed.

Results:More than fifty percent of maternal-child pairs were noted to be vitamin

D deficient or insufficient using the Endocrine Society Practice guidelines cut-off

of 50 nmol/L. Spearman rank correlation and Kruskal Wallis analysis did not show

statistically significant relationship between cord 25OHD (total) andmaternal and

cord BPA-g concentrations. Analysis of covariance after controlling for

confounders showed a significant relationship between cord BPA-g levels and

cord 25OHD levels (p=0.03) as well as between maternal BPA-g levels (p=0.04)

and cord total 25OHD levels (p=0.04).

Discussion: The findings of the current study indicate a possible relationship with

BPA/BPA-g and fetal/early infant Vitamin D levels that needs to be further

investigated in this population.
KEYWORDS
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1 Introduction

Vitamin D is a cholesterol derived prohormone that is available

in two common storage forms, the plant derived, ergo-

cholecalciferol (25 hydroxy vitamin D2) and the animal derived

cholecalciferol (25 hydroxy vitamin D3) (1, 2). In humans, vitamin

D3 is converted to the active form 1,25 hydroxy vitamin D which

acts via vitamin D binding receptors in various tissues (2–5).

Classically vitamin D has long been associated with bone and

skeletal health, including calcium and phosphate metabolism (2).

There are numerous studies that support the importance of vitamin

D in other aspects of health including the development and

maintenance of the immune system, neurodevelopment and

development of reproductive organs. Inadequate levels of Vitamin

D have been associated with tumorigenesis, abnormalities in

glucose metabolism, cardiovascular disease, obesity and

development of autoimmune disease (6, 7)

Vitamin D levels during the intrauterine and neonatal period

are largely dependent on maternal vitamin D levels (8–10).

Maternal vitamin D deficiency (VDD) can result in neonatal

hypocalcemia. In addition, maternal VDD has been associated

with other gestational pathologies including poor placentation

and maintenance of the pregnancy, maternal obstetric

complications such as preeclampsia, preterm birth as well as

deleterious effect on fetal immune, neural and metabolic

development. Maternal VDD may also negatively affect the

anthropometric parameters in the neonate and increase the risk

for asthma and type 1 diabetes in later life (11–14). Recent literature

from different regions have reported significant proportions of

neonates with insufficient 25 hydroxy-vitamin D (25OHD) levels

and a similar prevalence in the mothers (15–22). However, the issue

of VDD is clouded by lack of consensus for optimal cut offs to

denote deficiency in young infancy and the possibility of different

cut offs based on racial groups. Limited data is available on maternal

and neonatal vitamin D status in the African continent and

associated deleterious effects. A study performed in a Kenyan

pregnant cohort reported a 51% Vitamin D insufficiency and a

21% deficiency (using Endocrine Society Guidelines) (23).

However, a study in a Zimbabwean cohort did not show similarly

high levels of deficiency/insufficiency (24).

The intra-uterine period is highly susceptible to the effect of

endocrine disruptors on fetal health. Bisphenol A (BPA), an

environmental chemical and endocrine disruptor, is found in a

vast array of plastic consumer products including lining of tin cans,

food and water containers, medical devices and toys (25, 26).

Exposure to BPA has been linked to prenatal and postnatal

adverse effects on multiple tissues, including the reproductive

system and neurodevelopment. BPA effects are typically

attributed to its estrogenic or anti-estrogenic action, however this

action can not completely account for the adverse effects of low

potency BPA at the low-dose exposures that are commonly seen

(25, 27). BPA has also been reported to interact with other steroid

hormone receptors including androgens and glucocorticoids (28).
Abbreviations: BPA, Bisphenol-A; BPA-g, Bisphenol glucuronide; 25OHD, 25

hydroxy vitamin D.
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The structural homology of vitamin D with sex steroid hormones

like estradiol and testosterone, make it possible that BPA may also

disrupt the actions of Vitamin D as well.

A 2016 report from the US National Health and Nutrition

Examination Survey (NHANES) examined the relationship

between urinary BPA (uBPA) and 25OHD levels in a large cohort

of pregnant women. Their findings showed an inverse association

with uBPA and total 25OHD levels. BPA was significantly

associated with a 20% increase in the odds of VDD at 26 weeks

gestation in the women (29).

BPA-glucuronide (BPA-g) is a major metabolite of BPA

metabolism. Levels in cord blood remain steady and are thought to

reflect the cumulative does of BPA received during late pregnancy

(30). BPA-g, was widely thought of inert however recent evidence in

animal studies suggest that it may deconjugate to expose the fetus to

BPA even though adequate conjugation of BPA has occurred after

maternal intake (31). In context of the short half-life of BPA, BPA-g

acts as a surrogate marker of BPA exposure (31).

In a previously published study, we reported BPA was

detectable in more than 25% of maternal and cord blood samples

in a South African cohort. We demonstrated significant positive

correlation between maternal and child BPA and BPA-g levels with

correlation coefficients of 0.892 and 0.744, respectively (32). As part

of a larger study examining the effect of BPA on maternal and child-

pairs we examined the relationship between BPA and BPA-g levels

on 25-hydroxy Vitamin D levels in maternal and child pairs. As a

secondary objective in this pilot study we also examined the

relationship between 25 OH Vitamin D levels and birth parameters.
2 Methods

2.1 Population and study samples

A subset of blood samples and data collected as part of the

Mother and Child in the environment (MACE) birth cohort study

were utilized for this study. The MACE study population consists of

“healthy” pregnant females recruited from antenatal clinics in

industrially dense south Durban, South Africa and other clinics in

the north Durban area. The south Durban is an area where large

communities are located within heavily polluted large-scale

industrial enterprises. The north communities, although of similar

socio-economic profile, are less industrially active. Mothers were

recruited during the third trimester of pregnancy. The overall

objective of the MACE study was to describe birth outcomes

among pregnant mothers in communities exposed to industrial

pollution compared to communities without such exposure. Details

regarding pregnancy outcome, smoking status and anthropometric

measurements for participants were also collected during the course

of the MACE study (33). Venous blood samples were taken during

the third trimester (between 27 completed to 40 weeks of gestation)

from the pregnant individuals. Cord bloods were taken at delivery.

Bloods were collected from maternal participants at one of their

regularly scheduled ante-natal appointments. Maternal and cord

bloods collected in serum polypropylene vacutainer tubes were later

analyzed for BPA and BPA-g. These samples were centrifuged,
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separated and serum stored at -80 degrees Celsius until analysis.

Maternal/cord paired samples with sufficient serum volumes were

utilized for the current study. Opportunistic sampling from the

larger MACE cohort was performed. A total of 58 maternal- child

pairs were included in this study. These samples were selected as

serum blood samples were available for both maternal third

trimester and cord blood, as well as the required demographic

and clinical information. Inclusion and exclusion criteria were as

per MACE study and are detailed briefly below. Inclusion criteria:

pregnant females >18 years in third trimester of pregnancy

attending one of the antenatal clinics as described earlier.

Exclusion criteria: presence of any of the following clinical

conditions pre-eclampsia, hypertension, placenta praevia,

diabetes, genital tract infection and multiple pregnancies (32).

Vitamin D measurement and supplementation in pregnancy is

not part of routine practice guidelines in the South African public

health care system.
2.2 Bisphenol A and Bisphenol
glucuronide analysis

The methods used for determination of BPA and BPA-g levels

has been previously described in detail (32). Briefly BPA and BPA-g

levels were carried out using the AB Sciex 4500 triple quadrupole

mass spectrometer equipped with an Agilent 1260 Ultra high-

performance liquid chromatography (uHPLC) system. Analytes of

interest were separated on a Phenomenex C18 column (2.1 x 50 mm,

1.6 um). A 3-minute linear gradient was used from 10-100% of

acetonitrile in water followed by a hold for 1 minute at a flow rate of

0.4 ml/min. Serum samples were prepared using 50 µl of serum

mixed with 100 µl acetonitrile containing the internal standards

deuterated 5 ng/mL BPA (d6BPA, Cambridge Isotope Laboratories,

Andover, MA) and 5 ng/ml 13C12 BPA-g (Sigma-Aldrich Gmbh,

Munich, Germany. Electrospray ionization in negative modes was

used for the measurement of each analyte. Qualifier and quantifier

single reaction monitoring (SRM) transitions were used for both BPA

and BPA-g. The limit of detection (LOD) and limit of quantification

(LOQ) for BPA and BPA-g were calculated based on signal-to-noise

(S/N) ratios of 3:1 and 10:1, respectively, The LOD and LOQ for both

BPA and BPA were 0.12 ng/mL and 0.4 ng/mL respectively.
2.3 Determination of 25 hydroxy vitamin
D levels

Following BPA and BPA-g analysis, the fifty-eight sample

pairs were analyzed for Vitamin D. 25 OHD3 and 25 OHD2 were

measured in maternal and cord serum by high performance liquid

chromatography using a commercial kit, ClinRep (Recipe,

Munich, Germany). Total25 OHD is the sum of the measured

D3 and D2. The intra assay CV for 25OHD3 and D2 ranged from

0.9–4.9% and the inter-assay CV ranged from 3.0– 4.9%. The limit

of detection was 2.5 nmol/l for 25(OH)D3 and 7.5 nmol/L for 25

(OH)D2. Further details on this method have been previously

published (34). Total Vitamin D levels of < 50 nmol/L were
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deficient and values between 50 and 75 nmol/l were classified as

insufficient as defined by Endocrine Society practice guidelines

(35). (Refer to Table 1).
2.4 Statistical analysis

Univariate analyses were performed for maternal and newborn

characteristics, including means and standard deviations or median

and range for continuous variables. Data was assessed for normality

using the Shapiro-Wilk test. Non-parametric tests Kruskal Wallis

test, Spearman’s correlation or Wilcoxon signed rank test for

performed for the univariate analysis. Kruskal-Wallis analysis (or

one way ANOVA for parametric data) was performed to determine

if any statistically significant difference could be identified between

the two sexes for cord blood BPA, BPA-g and total 25OHD levels. A

p value of <0.05 was considered significant. Analysis of covariance

(ANCOVA) was used to assess for confounding variables (maternal

BMI, infant mass and sex, gestational, seasonal variation), with the

dependent continuous variable being total 25OHD levels and

independent variable either maternal or cord BPA-g levels.

Continuous variables with values below detectable limits were

excluded from further data analysis or treated as categorical data.

Statistical analysis was performed on Medcalc statistical software

program version 18.11(Medcalc, Belgium).
2.5 Ethical approval

The research has complied with all the relevant national

regulations, institutional policies and in accordance the tenets of

the Helsinki Declaration and has been approved by the authors’

institutional review board or equivalent committee. Ethical

clearance for this study was obtained from the Biomedical

Research and Ethics Committee (BREC) of the University of

KwaZulu-Natal (Ethics Clearance Certificate BE 597/16).
3 Results

A total of 58 maternal-cord pairs were analyzed for 25OHD.

Table 2 summarizes the demographic data, associated 25OHD

levels and other baseline characteristics of the cohort. The 58

maternal participants, described in this study were all self-

declared non- smokers. There was no statistically significant sex

difference for any of the parameters presented.
TABLE 1 Endocrine Society Practice guidelines classification of vitamin
D status in relation to 25(OH)D levels.

25(OH) Vitamin D Concentration
(nmol/L)

Classification

<50 nmol/L Deficient

>50 -<75 nmol/L Insufficient

≥ 75 nmol/L Sufficient
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3.1 BPA and BPA-g findings

BPAwasdetected in 17of the 58maternal samples (median0.8ng/

mL; range 0.4-6.4) and 15 cord blood samples (median 0.91 ng/mL;

range 0.4-8.0). The remainder of samples did not have detectable levels

of BPA and these were not included in any continuous variable

analyses. These findings are in keeping with the previously published

data for the larger cohort where more than 70% of both maternal and

cord samples had lower than detectable BPA concentrations (32).

BPA-g was present at detectable concentrations in all 58 maternal-

child pairs. This canbe explainedby the significantly shorter half-life of

BPA in comparison to BPA-g. BPA-g in serum reflects the cumulative

dose of BPA exposure over time (30).

3.2 Maternal and cord total 25OHD levels

Only four (2 pairs) of the 116 serum samples had detectable

25OHD2 levels. Thus, analysis performed examined total 25OHD

levels. Maternal total 25OHD levels ranged from 29.5 to 94.4 nmol/

L and cord levels from less than the LOD to100.6 nmol/L. Thirty

four percent (n=20) of maternal samples and 50% (n=29) of cord
Frontiers in Endocrinology 04
blood samples had deficient (i.e < 50 nmol/L) and insufficient

25OHD levels. Twenty one percent (n=12) of maternal-child

pairs were 25OHD deficient and 33% of the pairs were

considered insufficient (>50 - 75 nmol/L). Table 3 below provides

further information regarding the categorization of 25OHD levels

across the maternal-child pairs.

3.3 Relationship between maternal, cord
blood BPA/BPA-g and vitamin D levels

Spearman’s rank correlation showed a positive correlation of cord

blood andmaternal BPA-g levels (r=0.74 p <0.001) aswell as with cord

bloodandmaternalBPA levels (p=0.008).BPAlevelsweredetected ina

smaller percentage of the cohort as compared to BPA-g (maternal

n=17; cord n=15). Cord blood 25OHD directly correlated with

maternal 25OHD levels (Spearman’s correlation coefficient

(r=0.5 p=0.002)

On rank correlation maternal BPA (slope=-1; p=0.18) and cord

BPA (slope =-1,2 p=0.4) showed a negative but not statistically

significant relationship with cord total 25OHD levels. Due to the

small number of samples with detectable BPA levels further analysis
TABLE 2 Baseline characteristics of cohort*.

Maternal
(n=58)

Child
(n=58)

Characteristic Characteristic ALL Male
(n=36)

Female
(n=22)

p
value

Age (years) 25.0 (17-40) Gestation (weeks) 38 (33-41) 38 (32-41) 38 (33-41) p=0.87

BMI (kg/m2) 32.8 (9.4) Birth weight (grams) 2695 (541) 2588 (502) 287 (569) p=0.06

Gestation when samples takenc(weeks) 30 (3) Length (cm) 49 (33-56) 49 (40-53) 49 (33-56) p=0.78

Head circumference (cm) 33.5 (27-47) 34 (27-44) 33 (30-47) p=0.95

Total 25OHD levels (nmol/L) 55.7 (12.9) Cord blood Total 25 OHD levels (nmol/L) 54.7 (19.1) 56.6 (19.8) 51.5 (18.0) p=0.34

BPA (ng/mL) 0.8 (0.4-6.4) Cord blood BPA (ng/mL) 0.91 (0.4-8.0) 0.7 (0.4-7.9) 1.3 (0.4-6.9) p=0.60

BPA-g (ng/mL) 3.9 (0.15-21.8) Cord blood BPA-g (ng/mL) 4.1 (0.34-26) 3.7 (0.34-26.0) 4.3 (0.65-21.3) p=0.74
front
*Note data reported as mean (SD) values for normally distributed parameters and as median (range) values for non- normally distributed parameters. P values refer to the difference between male
and female children.
TABLE 3 Categorization of 25OHD levels (based on Endocrine Society Practice Guidelines) across the maternal-child pairs (n=58 pairs).

Both maternal
and cord blood
samples deficient
(<50 nmol/L)

Both maternal
and cord blood
samples
insufficient
(<75 nmol/L)

Only maternal
sample deficient
(<50 nmol/L)

Only cord
sample deficient
(< 50 nmol/L)

Both maternal
and cord blood
sufficient (≥ 75
nmol/L)

N (%) 12 (21%) 19 (33%) 8(14%) 17 (29%) 2 (3%)

Serum BPA-g levels per 25OHD categorization

Deficient Insufficient Sufficient p value

Maternal
BPA-g
(ng/mL)

4.58
(1.03-11.7)
(n=20)

3.29
(0.15-21.8)
(n=29)

3.5
(3.23-6.35)

(n=9)

p=0.075

Cord BPA-g
(ng/mL)

4.14
(0.357-26)
(n=29)

3.91
(0.34-9.85)
(n=23)

2.62
(2.15-3.4)
(n=6)

p=0.036
Note data reported as median (range).
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was not performed. Spearman rank correlation also showed a slight

negative relationship between cord total 25OHD levels and

maternal (slope -0.2 p=0.6) and cord BPA- g (slope -0.3 p=0.6)

levels but these were not statistically significant. Kruskal Wallis

analysis of maternal and cord BPA-g levels across total 25OHD

categories was performed (refer Figure 1). This showed no statistical

difference of BPA-g median levels (for maternal BPA-g p=0.75 and

cord levels p=0.36) between study participants classed as having

deficient, insufficient or sufficient vitamin D.

Notably a trend for higher BPA-g levels was observed in both

maternal and cord bloods for those with deficient and insufficient

25OHD. (see Table 3) Analysis of covariance was performed to

determine the effect of other confounders on this relationship. We

wished to examine for any significant association with the presence

of BPA or its metabolite on cord or maternal total 25OHD levels

(continuous variable) when controlling for these confounders. Of

note cord (p=0.033) and maternal BPA-g (p=0.04) levels showed

statistically significant associations with cord total 25OHD levels.

Maternal BMI, gestational age of infant, and infant sex did not show

any statistically significant relationship with cord total 25OHD

levels on ANCOVA analysis. On ANCOVA analysis maternal

total 25OHD levels showed no significant relationship with BMI

(p=0.9), age (p=0.7), weeks of gestation when sample taken (p=0.9)

or maternal BPA-g levels (p=0.8)
3.4 Infant anthropometric parameters and
vitamin D levels

On Spearman’s rank correlation neither head circumference

nor length were significantly correlated with either maternal

(p=0.24 and p=0.40 respectively) or cord blood (p=0.7 and p=0.2

respectively) total 25OHD levels. Whilst on ANCOVA analysis

birth weight showed a statistically significant association with cord
Frontiers in Endocrinology 05
total 25OHD levels (p=0.05), Spearman’s rank correlation was not

significant (p=0.15).
3.5 Influence of seasonal variation

Based on the month samples were taken, data was classified

with regards to season (winter, summer, spring and autumn). There

were 24 maternal-cord pairs taken in winter, 20 pairs in summer, 9

pairs in spring and 5 pair taken in autumn. Mean values for samples

taken in autumn were trending higher for both cord and maternal

total 25OHD versus the other seasons, with levels 15-30% higher.

Seasonal variation lacked statistical significance on one way

ANOVA analysis with regards to association with cord blood

vitamin D levels (p=0.07) and maternal vitamin D levels (p=0.06).

The lack of significance may be attributed to the small sample

numbers for each seasonal category.
4 Discussion

The most striking finding in this pilot study was the association

(after correction for confounders) between a known endocrine

disruptor (BPA metabolite BPA-g) and cord total 25OHD levels.

Two previous studies have described a significant negative

relationship with urine BPA metabolites and 25OHD in women,

pregnant women and cord blood (29, 36). These studies did not

examine serum BPA or BPA-g levels in their cohorts. Cord BPA-g

reflects the cumulative dose of exposure of the fetus to maternal

BPA in late pregnancy (30) and as such is more likely a better

surrogate of in-utero exposure than maternal urinary BPA.

However, no studies to date have reported on the relationship of

serum BPA metabolites including BPA-g on total 25OHD levels.

Furthermore, the relationship between maternal and cord levels
FIGURE 1

Box and whiskers plot- showing BPA-g levels per total 25OHD category as found in cord blood samples (1: deficient n=29; 2: insufficient n=23; 3:
sufficient n=6).
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supports the evidence for antenatal BPA exposure being transferred

to the newborn (32), while maternal 25OHD levels influence that of

the growing infant (11–14).

The significant role 25OHD plays in maternal, fetal and childhood

health and beyond, has been previously described (2–10). An inverse

relationship between vitamin D and serum BPA has been reported,

across both adult males and females, in a single study (37). However,

BPA-g levels were also not measured in this instance. BPA-g, which is

the major metabolite of BPA was widely thought of inert as it is unable

to bind to steroid receptors however recent evidence in animal studies

suggest that it may deconjugate to expose the fetus to BPA even though

adequate conjugation of BPA has occurred after maternal intake (31).

Animal studies have shown that whilst BPA-g levels in maternal serum

may be highly variable, levels in cord serum remain steady reflect the

cumulative dose of BPA received by the fetus during late pregnancy

and thus acts as a surrogate of exposure (30). This may partly explain

the presence of a significant association with cord total 25 OHD levels

but an absence of this finding with maternal 25OHD.

The presence of BPA in the environment is ubiquitous. There has

been much research on how the intrauterine environment and

exposure of individuals preconception and pregnant females during

the gestational period affect eventual infant outcomes and disease

occurrence throughout life (25). This pilot study demonstrated lower

median levels of maternal BPA (0.80 ng/mL) which have also been

reported in previous studies performed in industrialized nations.

Padmanabhan et al. reported values of serum maternal BPA ranging

from undetectable (<0.5 ng/mL) to 22.3 ng/mL with a mean value of

5.9 ng/mL in a US cohort (38). A larger study of 300 participants in

South Korea reported BPA concentrations from non-detectable to

66.48 ng/mL in pregnant women and from non-detectable to 8.86 ng/

mL in umbilical cord blood (39). In this current pilot study the

majority of maternal serum (71%) and cord blood samples (74%) had

BPA levels lower than the detectable limit of the assay. Detection rates

in other studies ranged from 14 to 17% above lower limit of detection

for serum maternal BPA (40, 41). One study reported a mean

maternal serum BPA-g of 0.36 ng/mL and mean cord BPA-g of

0.09 ng/mL, whilst another reported third trimester maternal BPA-g

values of 6.77 ng/mL (42, 43). Both studies used study participants

from developed nations. Differences in maternal diet as well as

environmental exposure may play a role in the variability of

findings with regards to BPA and BPA-g concentrations in

different populations.

There is sparse data arising from the limited mechanistic studies

examining the effect of BPA on the vitamin D endocrine system.

Animal studies have demonstrated that BPA can disturb calcium

metabolism by influencing the expression of vitamin D – dependent

calcium binding protein (44–46). The study by Otsuka et al. also

showed an inverse relationship with serum calcium levels and BPA

in pregnant mice (45). Another possible mechanism of BPA on

Vitamin D metabolism is via an effect on metabolizing enzymes;

either by changing the expression of cytochrome P450 enzymes

responsible for steroid metabolism or affecting messenger RNA

(mRNA) expression (46, 47). A recent study examining the effect of

BPA exposure on male and female rats beginning from post-natal

day 9, for 91 days demonstrated that BPA increased urinary

excretion of 25OHD3 thus decreasing vitamin D levels in serum
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(48). This is further suggestive of mechanistic effect of BPA on

vitamin D metabolism.

The findings of this study demonstrated that a significant

proportion of pregnant women and neonates have suboptimal

25OHD levels. More than 50% of the maternal and cord blood

samples were either deficient or had insufficient levels of total

25OHD. Whilst there was a direct and significant correlation

between maternal and cord blood total 25 OHD levels, the

correlation was moderate (R=0.5 p=0.002) in this study as

compared to some previous studies. Jacquemyn et al. reported a

correlation of R=0.91 in a multi-ethnic cohort from Belgium (49).

One possibility to be considered to explain the moderate correlation

in this study is the effect of BPA exposure on the cohort.

This pilot study utilized the Endocrine Society practice

guidelines for determination of cut-offs for interpretation of

Vitamin D levels in the maternal cord pairs (35). There is

currently no consensus with regards optimal cut-offs in pregnant

women or infants and various cut -offs recommended by the

various authorities and societies. The Institute of Medicine (IOM)

guidelines stipulate values ≥ 50 nmol/L as being sufficient (2). Using

this cut off: 31% (n=18/58) of mothers and 41% of new-borns

(n=24/58) would be vitamin D insufficient. However, these cut

points are based solely on sufficiency for adequate bone health and

not for the other aspects of health and physiological functions that

have been linked to vitamin D status (50). These functions include

neurodevelopment, immune, cardio-metabolic, reproductive

function and protection against cancer (50–53).

BPA exposure has itself been linked to negative sequelae affecting

the same physiological systems as well as in the development of

malignancy (25, 54). These guidelines have also been largely

developed in European/North American populations and have not

been verified in other populations with randomized controlled trials

(50). Seasonal variation was also noted with significantly higher mean

values noted in autumn. This is in keeping with previous reports in

southern hemisphere cohorts (34, 55).

One of the strengths of this study is the use of the specific and

sensitive HPLC methodology to measure the 25 hydroxy vitamin D2

and D3 levels. Many of the previous studies examining the relationship

between maternal and cord Vitamin D utilized immunoassay-based

techniques. Immunoassay is more susceptible to interferences from

compounds of similar structure and from heterophile antibodies (56).

Race has been reported as a significant confounder on Vitamin D levels

(57). This pilot study cohort was homogenous with regards to race as

all participants were Black African.

There are limitations to the current study. This includes the

cross-sectional nature of the study and the small sample size. As

BPA and BPA-g levels were not followed over time during the

course of the pregnancy we cannot be certain to what degree the

measured maternal serum and cord blood BPA/BPA-g levels reflect

the actual exposure throughout pregnancy. A further limitation is

that the majority of sample- pairs did not have detectable serum

BPA levels. However, all sample pairs had detectable BPA-g levels

which has been demonstrated to be a more reliable surrogate

marker of BPA exposure. The current study did not take into

consideration the possible confounding effect of dietary food intake

and use of sunscreen on the maternal vitamin D levels. However, in
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this population cohort due to low socio-economic status use of both

sunscreen and vitamin D supplementation is unlikely. Additionally,

the almost absence of detectable 25OHD2 levels amongst this study

population is an indication that vitamin D supplementation did not

occur during pregnancy.

This is the first study to the authors’ knowledge to examine the

relationship between serum BPA as well as BPA-g with 25 hydroxy

vitamin D levels in maternal-child pairs. Our findings suggest a

relationship between BPA exposure and Vitamin D levels in the

intra-uterine period. Follow up is requited to understand causality

or associations with development of disease in the BPA exposed

infants. Further studies are required to examine the mechanistic

relationship of exposure to endocrine disruptors like BPA and its

effect on Vitamin D – to better evaluate and understand the health

consequences in humans.
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