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The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the

quality of gametes in oocytes and sperm. Thus, advanced research aims to

highlight the parameter in assessing these qualities – DNA fragmentation in

sperm and oocyte development capacity (ODC) via evaluation of

microenvironments involving its maturation process. Regarding oocytes, most

evidence reveals the role of cumulus cells as non-invasive methods in assessing

their development competency, mainly via gene expression evaluation. Our

review aims to consolidate the evidence of GDF-9 derivatives, the HAS2,

GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in

relevant publications and tailored to current IVF outcomes. In addition to that, we

also added the bioinformatic analysis in our review to strengthen the evidence

aiming for a better understanding of the pathways and cluster of the genes of

interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current

non-invasive method can be used in exploring various causes of infertility that

may affect these gene expressions at the cumulus cell level. Nevertheless, this

method can also be used in assessing the ODC in various cohorts of women or as

an improvement of markers following targeted tools or procedures by evaluating

the advancement of these gene expressions following the targeted intervention.
KEYWORDS
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1 Introduction

The success of in-vitro fertilisation (IVF) depends mainly on the

quality of gametes, specifically the DNA quality of sperm and the

overall quality of the oocytes (1). Most research focuses on enhancing

oocyte quality to improve IVF outcomes. Clinically, various control

ovarian stimulation protocols are used, targeting different

gonadotrophin receptors, and timely oocyte collection is performed,

with or without intracytoplasmic sperm injection, aiming for

optimum fertilisation and high success rates per cycle (2). However,

the developmental potential of oocytes following ovarian stimulation

varies amongst women, leading to inconclusive overall IVF outcomes.

In addition to research on oocyte quality, the culture media and IVF

laboratory protocols evolved. Efforts have been exerted to improve

media substances with targeted concentration to minimise stress in

cultured embryos and promote better progression, leading to the

production of good-quality embryos (3, 4). Despite these strategies, the

current worldwide IVF success rate remains at approximately 35%–

45% (5–7). To address this issue, researchers are exploring the

development of oocyte quality. Various factors have been

established to contribute to a better quality of the oocytes – mainly

the level of hormones, such as growth hormone (GH) with insulin-like

growth factor-1 (IGF-1). A recent study reported that higher follicular

fluid levels of GH and IGF1 appear to be associated with better oocyte

competency. Otherwise, the same study also reported no association of

levels of TSH, fT3, fT4, 25OHD, or antithyroid antibodies in follicular

fluid for oocyte quality (8). These hormonal levels can be altered due

to dietary habits and the women’s body mass index (BMI). In obese

women, ovarian inflammation leads to the production of pro-

inflammatory cytokines and activation of cell death mechanism,

resulting in ovarian tissue damage, microenvironment alteration via

the releasing of oxidation stress, and alteration of microbiome

metabolism. Not surprisingly, all these factors negatively impact

both meiotic and cytoplasmic oocyte maturation – leading to poor

oocyte quality (9). In addition to that, hyperinsulinemia also altered

the endogenous pathway of steroidogenesis, which may have

contributed to the imbalance of the intrinsic pathway in

folliculogenesis, leading to suboptimal oocyte development, thus

affecting its quality (10).

At the molecular level, the study of oocyte competency aims to

predict embryo outcomes more effectively through the use of

various biomarkers and signalling pathways (11). A promising

non-invasive method involves analysing the cumulus cells (CC),

because they can reflect the competency of developing oocytes.

Apart from offering mechanical protection, CC plays a crucial role

in providing paracrine signalling, metabolism pathways and overall

gene regulation that promote oocyte development and maturation

competency (12, 13). The CC differentiation, proliferation and

expansion will lead to a better oocytes’ developmental regulation

– the signaling pathway influence the oocytes quality (Figure 1).

Therefore, promising evidence utilise cumulus-expressed genes as

markers for assessing oocyte development competency, because

they reflect the fundamental processes in the molecular

environment (12–15). To date, several genes have been identified

to coordinate the maturation of granulosa cells, leading to specific

signalling pathways that contribute to CC expansion and promote
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oocyte development and maturation, primarily through growth

differentiation factor 9 (GDF9) (16, 17). As established, GDF-9 is

an oocyte-derived growth factor in the transforming growth factor

b (TGF-b) superfamily. It plays a critical role in coordinating the

expression of several genes that potentially contribute to oocyte and

subsequent embryo quality (18, 19). These genes include

Hyaluronan synthase 2 (HAS2), Prostaglandin-endoperoxide

synthase 2 (PTGS2), Gremlin 1 (GREM1) and steroidogenic acute

regulator protein (STAR) (20, 21). Distinctively, the available

evidence strongly supports HAS2 and GREM1 as potential

markers for CC in predicting oocyte competence compared with

other genes. Additionally, oocyte nuclear maturation correlates with

PTGS2, STAR, amphiregulin (AREG) and stearoyl-co-enzyme A

desaturase 1 and 5 (SCD1 and SCD5), leading to a good CC

expansion and development (22, 23). However, conflicting

evidence reports that CC increases the expression of Pentraxin-

related protein - PTX3, also known as TNF-inducible gene 14

protein (TSG-14), which is ultimately essential to correlate with

oocyte maturation and influence its quality (24, 25). Regarding this

matter, various genes and pathways are responsible for CC

expansion, supporting oocyte development in animal and human

models. However, the most established evidence suggests that

specific GDF9 target genes, particularly HAS2, GREM1 and

PTGS2, are closely correlated with the microenvironment in

human oocytes (11, 12, 16, 23).

Understanding the molecular mechanisms underlying the

microenvironment of oocyte development competency is crucial to

address the variability in IVF success rates amongst women. Extensive

efforts have been made to identify key genes and signaling pathways

involved in CC expansion and maturation. Notably, HAS2, a critical

enzyme responsible for hyaluronan synthesis, has been associated with

increased cumulus expansion, indicating its potential as a biomarker

for oocyte quality (26). Similarly, GREM1, an antagonist of bone

morphogenetic proteins, plays a vital role in modulating the

transforming growth factor-beta (TGF-b) pathway, thereby

influencing CC function and oocyte developmental competence (12,

27). Additionally, PTGS2, an enzyme involved in prostaglandin

synthesis, has been implicated in regulating ovulation, CC

expansion and embryo implantation. Unravelling the interplay

between these genes and their regulatory pathways provides

valuable insights into the complex molecular environment

surrounding oocyte development and may hold the key to

accurately predict IVF success (28). In recent years, advancements

in molecular techniques have provided researchers with the ability to

explore gene expression patterns in CC with great precision and

sensitivity (14, 23). Through analysing the gene expression profile of

CC, researchers aim to identify novel biomarkers that can reliably

predict oocyte developmental competence, potentially revolutionising

current IVF practices. Additionally, studying the relationship between

CC gene expression and oocyte developmental potential offers a non-

invasive approach to assess oocyte quality before fertilisation. This

approach spares patients from unnecessary invasive procedures and

minimises the risk of embryo wastage. Moreover, gaining insights into

the molecular basis of oocyte competence may pave the way for the

development of personalised IVF treatment strategies, tailored to each

individual’s specific molecular profile.
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Therefore, in this review, we have compiled published data to

elucidate the role of gene expressions of Hyaluronan synthase 2

(HAS2), Gremlin 1 (GREM1) and Prostaglandin-endoperoxide

synthase 2 (PTGS2) in CC and their association with human

oocyte development competency, particularly in terms of

fertilisation and embryo development capacity (11, 13, 25, 27).

Additionally, we will explore the involvement of these genes in

relevant pathways using integrated bioinformatic analysis. By

examining the constellation of these gene expressions and their

correlated importance, we aim to consolidate the evidence

supporting CC as an excellent biomarker that reflects oocyte

competency. This approach will provide a better understanding of

oocyte development competency at the molecular level.
2 Material and methods

2.1 Protocol registration

This systematic review adhered to the standard guideline

protocol based on the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA) (29). It was registered in the

international database of prospectively registered systematic

reviews known as PROSPERO with the registration number

CRD42023413686 (30).
2.2 Information source and search strategy

The publications within 20 years (2003-2023) were searched

using keywords in PubMed and ScienceDirect [All Fields]: ‘In vitro
Frontiers in Endocrinology 03
fertilization’ OR IVF OR ‘in vitro maturation’ OR IVM AND ‘gene

expression’ ANDHAS2 OR ‘hyaluronan synthase 2’OR PTGS2 OR

‘prostaglandin-endoperoxide synthase 2’ OR COX2 OR GREM1

OR ‘gremlin 1’ AND ‘cumulus cell’ AND ‘oocytes development

competency’ OR fertilization OR blastulation OR biochemical OR

‘clinical pregnancy’ OR ‘live birth’ OR ‘oocyte quality’ OR ‘embryo

quality.’ Whereas in SCOPUS, the keywords used – [All Fields]: ‘in

vitro fertilization’; OR ivf OR ‘in vitro maturation’ OR ‘ivm’ AND

[All Fields]: gene AND expression AND [All Fields]: has2 OR

‘hyaluronan synthase 2’; OR ptgs2 OR ‘prostaglandin-endoperoxide

synthase 2’; OR cox2 OR grem1 OR ‘gremlin 1’ AND [All Fields]:

‘cumulus cell’ AND [All Fields]: ‘oocytes development competency’

OR fertilization OR blastulation OR biochemical OR & ‘clinical

pregnancy’; OR AND ‘live birth’ OR ‘oocyte quality’; OR ‘embryo

quality’ AND [All Fields]: ‘infertile women’. Subsequently, all the

included studies references were screened for duplication using

EndNote® version 20.0.1. The search was improved by manual

search using the reference lists from selected articles.
2.3 Study selection, data extraction and
risk of bias assessment

Based on an initial search, fives authors (A.M.F, A.M.A, M.H.I,

M.J.N and A.K.A.K.) screened all titles and abstracts of potential

manuscripts. The selection criteria included manuscripts published in

English from January 2012 to December 2022, evaluating the expression

of three specific genes of interest - Hyaluronan synthase 2 (HAS2),

Gremlin 1 (GREM1) and Prostaglandin-endoperoxide synthase 2

(PTGS2) - in CC of human oocytes. Following the title and abstract

screening, full-text screening was conducted, excludingmanuscripts that
FIGURE 1

The signaling pathway with genes of interest expression and oocytes quality.
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used different genes, non-CC as experimental material, non-English

language, case reports and review articles involving non-human

subjects. The remaining potential manuscripts were then

independently reviewed. The final selected manuscripts provided a

detailed study design, focusing on the expression of all three genes of

interest - Hyaluronan synthase 2 (HAS2), Gremlin 1 (GREM1) and

Prostaglandin-endoperoxide synthase 2 (PTGS2) - in human CC and

correlated these gene expressions with oocyte development competency

as the primary outcome. The conflicts in selection amongst authors

were resolved through detailed discussions and opinions provided by

the fifth, sixth and seventh authors (S.S.E, N.S. and A.A.Z). Additionally,

the National Institutes of Health (N.I.H.) tool for observational studies

was employed to assess the quality of the selected manuscripts. This

evaluation was based on 14 variables, with a scoring system of 1 for ‘yes,’

0 for ‘no,’ or ‘non-applicable’ for N.A. The manuscripts were then

categorised as poor (0–5), fair (6–9) or good (10–14) based on their total

scores (Table 1). Overall, the included studies in our review achieved a

minimum fair to good score. Subsequently, the final data were extracted

and organised based on the authors’ last names, year of publication,

country, study design, type of cohort and number of samples (if

applicable). Additionally, each study’s gene expression and its

correlation with oocyte development competency were tabulated as

the main outcome (Table 1).
2.4 Integrated bioinformatic analysis

To identify the possible pathways related to HAS2, GREM1 and

PTGS2, all the proteins interaction with these gene product were

identified. The predicted functional partners for HAS2, GREM1 and

PTGS2 were identified separately using the STRING software (https://

string-db.org/). Subsequently, all the proteins interacting with HAS2,

GREM1, and PTGS2 were gathered, and their protein-protein

interactions were once again identified using the STRING software.

The results from STRING were then exported to the Cytoscape

software (http://www.cytoscape.org/) to visualise the molecular

interaction networks and integrate gene-expression profiles of the

included genes. To analyse the target network and identify protein

clusters, the MCODE plug-in was utilised with the following settings:

degree cut-off = 2, node density cut-off = 0.1, node score cut-off = 0.2,

K-score = 2, and max depth = 100). All the clusters were analysed

using the Database for Annotation, Visualisation and Integrated

Discovery (DAVID) to explore the gene ontology with significant

functional-annotation enrichment related to oocyte development (35).

Subsequently, the Kyoto Encyclopaedia of Genes and Genomes

(KEGG) pathway was employed to reveal the involvement of genes

in pathways associated with oocyte development (36) (Figure 2).
3 Results

3.1 Search sequence and
quality assessment

A total of 108 studies were retrieved during the primary search

(Figure 3). After removing 34 duplicates, the remaining 74 articles
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were thoroughly screened based on our inclusion criteria. Amongst

them, 27 articles were excluded, leaving 47 for full-text evaluation.

After a detailed evaluation, 43 articles were further discarded: 24

were deemed unsuitable, and 19 were poster presentations or

conference abstracts without detailed results. Subsequently, four

studies that focused on oocyte development capacity parameters

were selected for this review. To ensure quality and minimize bias,

all selected articles were evaluated using the National Institutes of

Health (N.I.H.) tool for observational studies. Notably, all four

articles obtained a good score, indicating a low risk of bias

(Supplementary Table 1).
3.2 Studies characteristics

This review included a total of 210 infertility women who

underwent IVF, with studies using at least three genes of interest

- HAS2, GREM1 and PTGS2 - to correlate with oocyte development

competency (ODC) outcomes. The ODC parameters, mainly oocyte

maturation rate, fertilisation rate and embryo developmental rate

(at least at the 7-cell stage on Day 3 or blastocyst formation

following sperm injection), were recorded in all the included

studies. The quality of the embryos was assessed based on the

degree of fragmentation rates, if applicable, and the excellent quality

of embryos was also considered the main outcome. Amongst the

included studies, two focused on standard infertility women cohorts

undergoing IVF, whilst one focused on decreased ovarian reserve

women (31–33). Additionally, one study focused on ODC in an in-

vitro maturation (IVM) cohort, comparing the expression of genes

of interest in in-vivo and in-vitro maturation settings (34). All the

relevant information from the included studies has been

summarized in Table 1.
3.3 Main outcomes

3.3.1 Oocytes maturation rates
One study agreed that GREM1 higher expression was correlated

with better oocyte maturation compared to the other two genes,

with sensitivity and specificity for oocyte maturity at 63% and 93%,

respectively (32). The same study found that HAS2 also

significantly predicts oocyte maturation (32). However, in the

IVM cohort, the HAS2 expression was reduced in CC in hCG-

primed IVF cycles (34). Otherwise, PTGS2 expressions were

comparable in all the studies for oocyte maturation rate (OMR),

except for the IVM cohort, which showed a reduction in IVM-GV

and IVM-MII CC (31, 34). The expression of HAS2, PTGS2, and

GREM1 was low and similar in both follicular-phase-derived and

luteal-phase-derived oocytes treated with double stimulation, and

there was no association with the outcome in all parameters of

interest - OMR, FR, EDR, and GQE (33).

3.3.2 Fertilisation rates
Similarly, for FR, only one study concurred that GREM1 and

PTGS2 expression was correlated with better FR compared with the

two other genes, with sensitivity and specificity for fertilisation at
frontiersin.org
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72% and 78%, respectively (32). However, one study found a

significant correlation between HAS2 expression and 2PN (two

pronuclei) fertilisation outcome (31). Meanwhile, a similar

expression of HAS2, PTGS2 and GREM1 was found in both

follicular-phase-derived and luteal-phase-derived oocytes treated

with double stimulation for FR (33).

3.3.3 Embryo development rates
Regarding EDR, one study revealed that an increase in 5.2-fold

relative expression of GREM1 predicted good embryo quality

development, with sensitivity and specificity of 83% and 81%,

respectively. Additionally, higher PTGS2 expression also

significantly predicts good embryo development, similar to

GREM1 (32). However, all studies revealed low expression levels

of HAS2 that does not correlate with EDR. Conversely, a similar

expression of HAS2, PTGS2 and GREM1 was found in both groups

follicular-phase-derived and luteal-phase-derived oocytes treated

with double stimulation for EDR (33). As for the degree of

fragmentation, only one study included it in their outcome, where

they found that the degree of fragmentation does not correlate with

HAS2, PTGS2 and GREM1 expression in CC (31).

3.3.4 Proportion of good quality of embryo
The genes of interest were tabulated based on their fold

expression correlating with the proportion of good-grade embryos

(GQE). GREM1 exhibited the highest expression fold, being 15-fold

higher, whilst PTGS2 and HAS2 showed at least six-fold higher
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expression in good-grade embryos (32). Furthermore, similar

expression of HAS2, PTGS2 and GREM1 was found in both

groups follicular-phase-derived and luteal-phase-derived oocytes

treated with double stimulation for GQE (33). However, one

study found no correlation between all genes of interest - HAS2,

PTGS2 and GREM1 - with GQE (31).
3.4 Pathways analysis via protein–protein
interaction network and modular analysis.

In the bioinformatic analysis, a total of 30 predicted functional

partner proteins associated with HAS2, GREM1 and PTGS2 were

identified. These genes were then subjected to a protein-protein

interaction (PPI) network analysis, resulting in a complex network

containing 32 nodes and 139 edges. The PPI network showed a highly

significant enrichment with a p-value of <1.0e−16 and an average local

clustering coefficient of 0.707. To visualise the molecular interactions,

the network data from STRING was transferred to Cytoscape

software. Additionally, using the molecular complex detection

algorithm (MCODE), two significant modules were identified

within the PPI network complex (Figure 2). Functional-annotation

clustering revealed that cluster 1 comprised 10 nodes and 25 edges

(score = 10), whilst cluster 2 consisted of 18 nodes and 59 edges (score

= 6.941). The clustering of all the genes in is based on the gene’s

cellular location, biological functions, pathways and molecular

functions (Figure 4).
FIGURE 2

The Integrated Bioinformatic Analysis and Work Flow.
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3.5 Gene ontology and pathway
enrichment of the clusters

The GO and pathway enrichment analyses revealed that GREM1

is clustered in cluster 1. GREM1 and its functional partner proteins

are localised at the cell surface (GO:0009986) and in the extracellular

space (GO:0005615). These proteins were found to be involved in the

TGF-beta signalling pathway (hsa04350), which includes the bone

morphogenic protein (BMP) signalling pathway (GO:0030509),

Hippo signalling pathway (hsa04390) and cytokine–cytokine

receptor interaction (hsa04060) through BMP binding

(GO:0036122). Additionally, the proteins in cluster 1 are also

involved in positive regulation of transcription from RNA

polymerase II promoter (GO:0045944). HAS2 and PTGS2 are

clustered in cluster 2. These proteins and their functional partners

are mostly localised at the endoplasmic reticulum membrane

(GO:0005789). PTGS2 is involved in arachidonic acid metabolism
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(hsa00590) and participates in prostaglandin biosynthetic process

(GO:0001516). Meanwhile, HAS2 is involved in positive regulation of

cell migration (GO:0030335) and response to inflammation through

the cyclooxygenase pathway (GO:0019371) and cellular response to

interleukin-1 (GO:0071347). Table 2 displays the Functional

annotation clustering for clusters 1 and 2, focusing on GREM1,

HAS2 and PTGS2 (Table 2).
4 Discussion

As established, the critical development of oocyte maturation

occurs in the cumulus oocyte complex (37) during the follicular

phase (38). Optimal expansion of CC is crucial to ensure better

oocyte quality. Therefore, the oocyte developmental competency

(ODC) can be assessed at the CC level based on gene expression (12,

13). Numerous studies have utilised GDF-9 derivatives such as
FIGURE 4

The Protein-protein interaction and clustering of HAS2, GREM1, PTGS2 and their functional partners.
FIGURE 3

The PRISMA Flow Chart.
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Prostaglandin-endoperoxide synthase 2 (PTGS2), gremlin1

(GREM1), hyaluronic acid synthase 2 (HAS2) and pentraxin 3

(PTX3) as markers for ODC, as they reflect the immediate ODC

during CC expansion (11, 18, 19). In this review, we found that

GREM1 expression is an important marker for oocyte maturation

rates (OMR) compared to both HAS2 and PTGS2 (32). Healthy

oocytes tend to increase the expression of GREM1 in their CC,

promoting folliculogenesis and enhancing spindle activities,

ultimately leading to oocyte maturation (39, 40). The majority of

the evidence aligns with these findings, consolidating the

importance of GREM1 in OMR (12, 13, 17). Our review found

that following rescue IVM, PTGS2 expression is reduced, indicating

that proper IVM should not be preceded by hCG injection because

it may interfere with oocyte maturation rates (34). Therefore, recent

evidence recommends pre-IVM culture, as well as standard IVM

procedures without hCG, to improve the microenvironment at the

CC expansion level, aiming for a better OMR following IVM culture

(41). Furthermore, our review revealed that GREM1 is also

considered a predictor of good fertilisation rates (FR) and EDR

(32). With optimum GREM1 expression following maturation,

meiosis II (MII) oocytes can fertilise following insemination by

sperm and subsequently undergo embryo development (42). The

gathered evidence suggests that a reduction in GREM1 does affect

the fertilisation rates and EDR, particularly in suboptimal cohorts,
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such as decrease ovarian reserved (DOR), or in cases of poor oocyte

quality in women with endometriosis or polycystic ovarian

syndrome (13, 43, 44).

Besides that, the expression of HAS2 in CC was associated with

higher 2PN fertilisation (31). Most evidence postulates that an

increase in the fold of HAS2 expression significantly correlates with

better oocyte quality, leading to an increase in fertilisation (11, 16,

27, 32). Moreover, the unique expression of HAS2 is synergistically

influenced by hCG or LH as maturation triggers (26). Therefore,

standard IVM cycles without hCG will incorporate LH in the

culture media to enhance HAS2 expression, aiming for better

oocyte quality, fertilisation rates (FR) and EDR. Furthermore, our

review agrees that the proportion of good quality of embryo (GQE)

is influenced by all GDF-9 derivative gene expressions (32, 33).

However, a higher fold of GREM1 expression is associated with an

increase in the GQE cohort (32). In exploring the GDF-9

derivatives, most publications strongly support the importance of

these three genes - HAS2, PTGS2 and GREM1 - in modulating

embryo development (45, 46). Numerous pieces of evidence

demonstrate that higher median expression of GDF-9

downstream predicts better quality embryo outcomes (11, 15, 19,

27, 40). The regulation of human follicles through GDF-9 has been

well-established for decades. Any deviation or mutation in its

molecular regulation can lead to possible subfertility, mainly due
TABLE 2 Functional annotation clustering of HAS2, GREM1, PTGS2 and their functional partners.

Cluster Term Description Genes
p-

value

1 CC_GO:0005615 extracellular space GREM1, BMP4, BMP2, BMPR2, HFE2, BMP7
6.83
X10-4

CC_GO:0009986 cell surface GREM1, BMP2, BMPR2, HFE2, RGMA
1.01
X10-4

hsa04350 TGF-beta signaling pathway
GREM1, BMP4, BMP2, BMPR2, BAMBI, HFE2, BMPR1B, BMP7,

BMPR1A, RGMA
2.54
X10-8

BP_
GO:0045944

positive regulation of transcription from RNA
polymerase II promoter

GREM1, BMP4, BMP2, BMPR2, HFE2, BMPR1B, BMP7,
BMPR1A, RGMA

1.86
X10-9

BP_
GO:0008284

positive regulation of cell proliferation GREM1, BMP4, BMP2, BAMBI
1.68
X10-3

MF_
GO:0036122

BMP binding GREM1, BMPR2, HFE2, BMPR1B, BMPR1A
1.14X10-

10

2
CC_

GO:0005789
endoplasmic reticulum membrane PTGIS, TBXAS1, HAS2, PTGS2, PTGES 0.011

hsa01100 Metabolic pathways
PTGIS, PTGES2, ALOX5, HYAL2, PTGES3, TBXAS1, ALOX15,

PTGS2, SPAM1, PTGES
9.79X10-

5

hsa00590 Arachidonic acid metabolism
PTGIS, PTGES2, ALOX5, PTGES3, TBXAS1, ALOX15,

PTGS2, PTGES
1.46X10-

12

BP_
GO:0001516

prostaglandin biosynthetic process PTGIS, PTGES2, PTGES3, TBXAS1, PTGS2, PTGES
3.16X10-

12

BP_GO:0030335 positive regulation of cell migration TNFAIP6, STAT3, KDR, HAS2
1.45X10-

3

BP_
GO:0019371

cyclooxygenase pathway PTGIS, PTGES2, PTGES3, TBXAS1, PTGS2
5.11X10-

11

BP_
GO:0071347

cellular response to interleukin-1 PTGIS, HYAL2, HAS2
2.42X10-

3

fron
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to a blockage of the early follicular phase, resulting in disruption of

the meiosis process. Additionally, subsequent evidence suggests that

GDF-9 also influences the later stages of oocyte development (47).

Therefore, by dissecting the mechanisms of their regulation, a better

understanding of the maturation of ongoing dominant follicles can

be achieved. CC expansion is initiated by the secretion of GDF-9,

with HAS2 playing a crucial role in promoting expansion through

the production of hyaluronic acid. Subsequently, PTGS2 further

promotes expansion by secreting prostaglandin E2. Both

mechanisms are considered crucial for maturation and ovulation.

Defects in these mechanisms, as observed in animal models, result

in defects in ovulation, fertilisation, embryo quality and

implantation (48). As for GREM1, it acts by inhibiting the

signalling for BMP rather than GDF-9. During cumulus

expansion, GREM1 promotes mural granulosa cell luteinisation,

mostly during the oocyte maturation phase (22). Therefore, all three

of these genes influence CC expansion, thus reflecting the ODC in

the human reproductive field (49).

From the bioinformatic analysis, GREM1 is clustered in cluster 1,

whilst HAS2 and PTGS2 are separated in cluster 2. GREM1, along

with its functional partner proteins, such as BMPR2, BMP2 and

HFE2, is located in the extracellular space and cell surface, indicating

its involvement in interactions with the cellular environment and

adjacent cells. Communication is crucial for oocyte development. The

cumulus-oocyte complex’s development is primarily driven by short-

distance communication through extensive local cell-to-cell

interactions, often involving members of the transforming growth

factor-beta (TGF-b) family, such as inhibin, activin, anti-Müllerian

hormone and growth and differentiation factor 9 (GDF9) (50).

GREM1, being a downstream target protein of GDF9, plays a

pivotal role in regulating the crosstalk between GDF9 signalling

and BMP signalling pathways. It selectively inhibits the differential

effect of the BMP signal whilst preserving the GDF9 signal. This

unique regulation may promote luteinisation of ovarian granulosa

cells whilst supporting CC expansion in the ovarian follicle (51). The

proteins in cluster 1 also have roles in positive regulation of

transcription from RNA polymerase II promoter and positive

regulation of cell proliferation. GREM1, BMP4, BMP2 and BAMBI

are associated with promoting cell proliferation, suggesting their

potential roles in follicular development and CC expansion.

In contrast to GREM1, the proteins HAS2 and PTGS2 in cluster

2 are localised within the endoplasmic reticulum membrane. This

cellular localisation suggests their involvement in cellular

compartmentalisation and localisation processes within the

oocyte. Both HAS2 and PTGS2 are integral components of key

metabolic pathways. In particular, they play crucial roles in the

arachidonic acid metabolism pathway, which is important for the

production of bioactive lipid mediators, including prostaglandins.

The prostaglandin biosynthetic process, enriched by HAS2 and

PTGS2, is of particular significance because prostaglandins

influence in vitro maturation of oocytes (52). PTGS2’s

involvement in the cyclooxygenase pathway further emphasises

its significance in prostaglandin synthesis, contributing to various

reproductive processes. Moreover, the gene ontology terms

associated with HAS2, such as positive regulation of cell

migration, indicate its potential involvement in CC expansion, a
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critical process for successful oocyte maturation. Moreover, the

enrichment of cellular response to interleukin-1 by HAS2 suggests

its possible role in responding to inflammatory signals during

oocyte development. Notably, exposure to high levels of IL-10

and IL-1b has been reported to decrease CC expression of

GREM1, indicating that inflammation in the follicular fluid,

particularly amongst obese women, could impact the cumulus

oocyte complex and alter its microenvironment, significantly

influencing GREM1 gene expression (44). Overall, the CC have

demonstrated that GDF9 upregulates the expression of essential

genes, including HAS2, PTGS2, GREM1 and STAR, whilst

concurrently downregulating luteinising hormone receptor, a

crucial factor for follicle development and cumulus expansion.

The regulation of GDF9 and its downstream factors in CC

presents a promising potential as an indicator of oocyte quality

(12). Understanding these intricate molecular interactions offers

valuable insights into oocyte development and maturation, which

could lead to significant advancements in reproductive medicine

and fertility treatments.
5 Conclusion

Our review summarizes the gene expression results of GDF-9

derivatives in CC, which can be reliable predictors in IVF, primarily

in OMR, FR, EDR, and GQE. However, CC predictors are

constellations of evidence rather than individuals, as different

gene expressions represent different IVF parameters based on our

review. Our analysis of the literature and bioinformatics provides

evidence of a potential link between the expression levels of

GREM1, PTGS2, and HAS2 in cumulus cells and the maturation

of the oocyte and subsequent fertilization rates and embryo

development. However, the link has yet to be consistently

confirmed across all studies. Further research is necessary to

verify the relevance of this connection. Our study has certain

limitations, as the included papers did not correlate the outcomes

with live birth rates. Hence, the molecular conclusions are limited to

gene expression alone. Nonetheless, these candidate genes’

expression levels can be a valuable indicator correlated with IVF

outcomes, predicting good embryo development and quality. These

findings can help improve overall IVF outcomes.
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