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Background: The contribution of gut microbiota to the pathogenesis of

polycystic ovary syndrome (PCOS) is controversial. The causal relationship to

this question is worth an in-depth comprehensive of known single nucleotide

polymorphisms associated with gut microbiota.

Methods: We conducted bidirectional Mendelian randomization (MR) utilizing

instrumental variables associated with gut microbiota (N = 18,340) from MiBioGen

GWAS to assess their impact on PCOS risk in the FinnGenGWAS (27,943 PCOS cases

and 162,936 controls). Two-sample MR using inverse variance weighting (IVW) was

undertaken, followed by the weighted median, weighted mode, and MR-Egger

regression. In a subsample, we replicated our findings using themeta-analysis PCOS

consortium (10,074 cases and 103,164 controls) from European ancestry.

Results: IVWMR results suggested that six gut microbiota were causally

associated with PCOS features. After adjusting BMI, SHBG, fasting insulin,

testosterone, and alcohol intake frequency, the effect sizes were significantly

reduced. Reverse MR analysis revealed that the effects of PCOS features on 13

gut microbiota no longer remained significant after sensitivity analysis and

Bonferroni corrections. MR replication analysis was consistent and the results

suggest that gut microbiota was likely not an independent cause of PCOS.

Conclusion: Our findings did not support the causal relationships between the

gut microbiota and PCOS features at the genetic level. More comprehensive

genome-wide association studies of the gut microbiota and PCOS are warranted

to confirm their genetic relationship.
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1 Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine disorder

impacting reproduction and metabolism in women of reproductive age.

Although PCOS is a heterogeneous and multi-phenotype syndrome, it is

mostly characterized by hyperandrogenism, anovulation, and polycystic

ovary morphology (1, 2). PCOS affects 5–18% of reproductive-aged

women (3, 4), with severe health conditions, leading to infertility,

miscarriage, and various pregnancy complications, as well as increased

risk of endometrial cancer, cardiovascular disease, type 2 diabetes,

depression, and anxiety (5–11). However, the complex pathogenic

mechanisms, such as heredity, hypothalamic and ovarian dysfunction,

and insulin resistance, result in unclear etiology, suboptimal treatment

outcomes, and healthcare-related economic burdens (3, 12).

Emerging studies have implicated gut microbiota in the

pathogenesis of PCOS (13–15). The gut microbiota is a complex

ecosystem of archaea, bacteria, fungi, viruses, and protozoa (16). It

plays essential functions for the human body in metabolism,

immunity, and nervous system (17). For instance, the gut

microbiota is involved in developing cardiovascular disease, type

2 diabetes, and neurodegenerative diseases (18–20). Previous

studies show that the gut microbiota may impact the onset and

progression of PCOS through the endotoxemia pathway (21), the

gut-brain axis (22), the gut microbiota-bile acid-interleukin-22 axis

(23), and other pathways (24). Furthermore, the treatment of

utilizing fecal microbiota transplants of healthy rats to the PCOS

ones resulted in reduced androgen biosynthesis and normalized

ovarian morphology (15).

Most studies on the association between the gut microbiota

and PCOS are observational, with results susceptible to

confounding bias (e.g., region, diet). In contrast, Mendelian

randomization (MR) is an efficient approach to avoid

confounding bias by utilizing genetic variants related to

exposure factors as instrumental variables for evaluating the

association of exposure factors with disease (25). MR analysis

has been extensively conducted to investigate causal relationships

between gut microbiota and diseases, such as the associations

between gut microbiota and systemic lupus erythematosus,

depression, and cardiometabolic disease (26–28).

In the present study, we undertook a bidirectional two-sample

MR research utilizing summary statistics of genome-wide
02
association studies (GWAS) to explore genetic associations

between gut microbiota and PCOS features.
2 Materials and methods

We complied with the Strengthening Reporting of Observational

Studies in Epidemiology Using Mendelian Randomization Methods

(STROBE-MR) to implement this study (29), as shown in

Supplementary Table 1. We first assessed the genetic correlation

between exposure and outcome. Second, we conducted a

bidirectional two-sample MR analysis. Third, we coordinated

potential risk factors for multivariate MR analysis. In addition, we

performed replication analyses using another PCOS database. The flow

chart of the study is in Figure 1.
2.1 Study population

Genetic variations of the gut microbiota abundance were

obtained from the MiBioGen, the enormous-scale and multi-

ethnic study of human gut microbiota genetics to date (30). The

research included genome-wide genotype and 16S fecal microbiota

data analyzed for 18,340 participants in 24 cohorts, most from

Europe (N = 13,266). There are 211 taxa in the human gut

microbiota, including 12 unknown genera and three unknown

families. Thus, we analyzed 196 known taxa.

Extracted outcome PCOS GWAS statistics from FinnGen

Consortium R8 release data (31). This research analyzed

20,175,454 variants from 342,499 individuals. A total of 27,943

PCOS cases and 162,936 controls were included in the analysis after

adjusting for sex, age, and the first ten principal components. The

diagnosis of PCOS was according to the International Classification

of Diseases (ICD) 8th Revision, ICD 9 and ICD 10. Patients

presented primarily with hyperandrogenemia and ovarian

dysfunction. The replication analyses of the PCOS were derived

from 10,074 cases and 103,164 controls of European ancestry, with

diagnoses based on National Institutes of Health (NIH), or

Rotterdam criteria, or self-report (32).

As the gut microbiota-disease relationships were influenced by

major confounders (33) as well as obesity, hyperandrogenism, and
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insulin resistance were associated with the onset and progression of

PCOS (3). Prior research suggested that gut microbiota may

influence the development of PCOS through sex hormone

regulation (34). We undertook multivariable MR analyses with

obesity, sex hormone-binding globulin (SHBG), alcohol intake

frequency, fasting insulin, and total testosterone as confounders.

A body mass index (BMI) of 30 kg/m2 or more is considered obesity

(35). We obtained genetic variations associated with BMI (N =

461,460), alcohol intake frequency (N = 462,346), and total

testosterone(N = 199,569) from MRC-IEU. Genetic variations

related to SHBG (N = 214,989) were extracted from the UK

Biobank. In addition, We extracted genetic variation associated

with fasting insulin from the Meta-Analyses of Glucose and Insulin-

related Traits Consortium (MAGIC). The sample population

information in this study is presented in Supplementary Table 2.
2.2 Genetic instrumental variables

Single nucleotide polymorphisms (SNPs) are used as

instrumental variables (IVs) in MR analysis. To ensure the

robustness of the results, we selected the optimal IVs to analyze

according to the following steps. First, we extracted SNPs related to

gut microbiota based on genome-wide significance (P < 5 × 10-8).

Since the number of qualified SNPs was too small, we extended the

threshold to P < 1 × 10-5 for more comprehensive causalities.

Second, we analyzed the linkage disequilibrium (LD) between SNPs

(r2 < 0.001, clumping distance = 10,000kb) and excluded

unqualified SNPs. We also examined the selected IVs on

PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk) and

manually removed SNPs associated with potentially confounding

factors. Finally, we harmonized exposure and outcome SNPs and
Frontiers in Endocrinology 03
deleted the palindromic SNPs to maintain the consistency of

effect alleles.

To assess the strength of IVs, we calculated the F statistic of each

SNP by using the formula: F = b2/s2 (b and s represent the effect

estimate and standard deviation (SD) of the exposure SNP,

respectively). The IV was considered strong enough (F statistic >

10) to avoid the effects of weak instrumental bias in the results of the

MR analyses (36). In addition, we calculated R2 to indicate the

proportion of variance explained by the association between the

SNP and the exposure variable. This was calculated as R2 = 2 × (1 –

EAF) × EAF × b2, where EAF is the effective allele frequency.
2.3 Statistical analysis

We conducted all statistical analyses in R software (version

4.2.2) using the packages “MendelianRandomization,”

“TwoSampleMR,” “MVMR,” and “GenomicSE”. The odds ratio

(OR) with a 95% confidence interval (CI) indicated estimates,

with P < 0.05 regarded as a statistically significant result. We

applied the Bonferroni multiple testing correction adjusted

threshold of P < 2.55 × 10-4 (0.05/196) to identify statistically

significant causal relationships (37).

2.3.1 MR analysis
We performed cross-trait linkage disequilibrium score (LDSC)

regression to compute the genetic correlation between gut

microbiota and PCOS (38). The inverse variance weighted (IVW)

test with the random effects was performed as the main MR method

to calculate the causal effect of gut microbiota and PCOS (39). The

effect values of individual SNP were computed by the Wald ratio

method. Accounting for pleiotropy, we applied three additional MR
FIGURE 1

The flow chart of the study.
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models: weighted median (40), weighted mode (41), and MR-Egger

regression (42). The weighted median approach contributed to data

analysis with 50% of the genetic variation from invalid IVs and still

provided a consistent causal effect estimate. The MR-Egger relies on

the genetic instrument strength independence of direct effects

(InSIDE) assumption and the NO measurement error (NOME)

assumption. We considered the results robust when the causal

effects of the four MR methods were consistent. Subsequently, we

performed a replication analysis of the data from another PCOS

sample to ensure the reliability of the results.

2.3.2 Sensitivity analysis
We conducted Cochran’s Q test for heterogeneity analysis, and

a P less than 0.05 was considered heterogeneity (43). The MR-Egger

intercept test and Randomization Pleiotropy Residual Sum and

Outlier (MR-PRESSO) global test were performed to detect

horizontal pleiotropy (42, 44). To evaluate the direction of

potential causalities, we used the MR Steiger filtering method

(45). In addition, we used the “leave-one-out” analysis to examine

the stability of our results.

Since studies on relationships between gut microbiota and

disease could be influenced by confounding factors such as

lifestyle, there is a risk of false-positive causality (33). Obesity

(BMI), alcohol intake frequency, SHBG, total testosterone, and

fasting insulin levels affect the host’s gut microbiota and are also

associated with the risk of PCOS. Therefore, we conducted a

multivariate MR analysis with them as covariates to minimize the

effect of confounders on the results.

2.3.3 Reverse MR analysis
To investigate the causal effect of PCOS features on gut

microbiota, we performed reverse MR using PCOS as the

exposure factor and gut microbiota as the outcome.
3 Results

3.1 Genetic instrumental variables

A total of 2,037 SNPs were screened for IV (P < 1 × 10-5) based

on rigorous criteria, including nine phyla (103 SNPs), 15 classes

(180 SNPs), 20 orders (218 SNPs), 30 families (341 SNPs), and 122

genera (1195 SNPs). Each SNP showed sufficient strength as all F

statistics were greater than 10 (from 16.83 to 88.83). The R2 for the

proportion of variance explained by the association between each

SNP and exposure variable ranged from 0.07% to 1.01%. Details of

all SNPs are displayed in Supplementary Data S1.

According to the genome-wide significance threshold of P < 5 ×

10-8, only 21 SNPs were significantly associated with gut microbiota.

These included one phylum (1 SNP), one class (1 SNP), two orders (1

SNP), four families (5 SNPs), and ten genera (11 SNPs). There were

no weak instrumental variables (F statistics from 29.51 to 88.83). The

R2 for each SNP ranged from 0.18% to 1.01%. Information on all

SNPs is provided in Supplementary Data S2.
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3.2 MR analysis (locus-wide significance,
P<1×10-5)

We conducted MR analysis on the association of 196 gut

microbial abundances and PCOS features (detailed results in

Supplementary Data S4), and one class and five genera passed the

significance threshold of 0.05 (Figure 2; Supplementary Table 4).

We queried the SNPs used for the above statistically significant

causality analyses on Phenoscanner, which revealed no SNPs with

confounding effects (Supplementary Data S5). LDSC regression

analysis for statistically significant causal associations between six

gut microbiota taxa and PCOS suggested that only genus

Anaerofilum was genetically correlated with PCOS (rg = 0.724, P

= 0.024). In contrast, the rest were not (Supplementary Table 3).

IVW result suggested that an increased SD in class Mollicutes

abundance was causally associated with the risk of some PCOS

features (OR = 1.118, 95% CI = 1.030–1.215, P = 0.008). For the gut

microbiota genus classification, one SD higher in Anaerofilum (OR

= 1.090; 95% CI = 1.025–1.160; P = 0.006), Coprococcus2 (OR =

1.119; 95% CI = 1.06–1.244; P = 0.039), Ruminiclostridium5 (OR =

1.168; 95% CI = 1.049–1.302; P = 0.005) increased the risk of certain

PCOS features. We identified positive, potentially causal

associations between Enterorhabdus (OR = 0.867; 95% CI =

0.786–0.957; P = 0.005), Streptococcus (OR = 0.887; 95% CI =

0.800–0.982; P = 0.021) and some PCOS features. The results were

consistent across all MR analysis methods (Figures 3, 4). However,

none of the gut microbiota was related to PCOS features after

Bonferroni correction (P < 2.55 × 10-4).
3.3 Sensitivity analysis

There were no horizontal pleiotropy, heterogeneity, or outliers

according to MR-Egger regression, Cochran’s Q test, and MR-

PRESSO global test for significant causality of IVW results

(Supplementary Table 5). MR Steiger filtering test for the

direction of causality (gut microbiota as the exposure, PCOS as

the outcome) was correct. In addition, the “leave-one-out” test

confirmed the stability of the results (Figure 5).

We conducted multivariable MR analyses of potential causality,

with BMI, alcohol intake frequency, SHBG, total testosterone, and

fasting insulin included as confounders. After correcting these

confounders, the results indicated that all causal effects were

reduced to varying degrees (Figure 6, Supplementary Data S6).

For example, the causal effect of Mollicutes (OR = 1.015; P = 0.580)

and Enterorhabdus (OR = 1.013; P = 0.564) on PCOS features

approached null when BMI was included in the analysis. Especially

Streptococcus was not causally associated with PCOS after adjusting

for the above confounders separately. In addition, the causal effect

of Coprococcus2 on PCOS features reduced to null (OR = 1.008; P =

0.844) after adding SHBG as a covariate, and after adding alcohol

intake frequency, the causal effect of Anaerofilum decreased to

invalid (OR = 1.035; P = 0.184).
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3.4 MR analysis (genome-wide
significance, P<1×10-8)

We extracted SNPs significantly associated with gut microbiota

for MR analysis (Supplementary Data S7). The results showed that

elevated phylum Actinobacteria and class Actinobacteria reduced

the risk of some PCOS features (Supplementary Table 4). However,

sensitivity analyses could not be performed (only one SNP), and

these results should be considered cautiously due to the possibility

of spurious associations cannot be excluded.
3.5 Reverse MR analysis

A total of 31 SNPs (P < 1×10-5) associated with PCOS features

were used for reverse MR analysis (Supplementary Data S3).

Supplementary Data S8 presented all MR results for associations

of PCOS features on gut microbiota. Thirteen causal associations

passed the nominal p-value significance threshold 0.05, but the

PCOS features were not associated with any gut microbiota after

multiple testing corrections (Supplementary Table 6). Sensitivity

analysis suggested certain heterogeneity, horizontal pleiotropy, and

outliers. Steiger filtering test for the direction of causality was

correct (Supplementary Table 7).
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According to the SNP selection threshold (P < 5×10-8), only

rs74485684 was the effective IV. Reverse MR analysis suggested that

13 causal relationships were statistically significant (Supplementary

Data S9). However, PCOS features were not associated with gut

microbiota after Bonferroni correction. The number of IVs was too

insufficient for sensitivity analyses.
3.6 Replication MR analysis

In the forward replication analysis, 21 SNPs were included with

a threshold of P < 5×10-8. The Wald ratio method suggested no

causal relationship between gut microbiota and PCOS features. We

extracted 92 qualified SNPs (P < 1×10-5) for MR analysis. The

results indicated protective causalities between 6 gut microbiota and

PCOS features; two gut microbiota were risk factors for PCOS

features. However, none of them were statistically significant after

the Bonferroni correction (P < 2.55×10-4) (Supplementary Table 8).

In reverse replication analysis, no SNPs were extracted with a

threshold of P < 5×10-8. We analyzed 14 eligible SNPs (P < 1×10-5)

for MR analysis. The results indicated that PCOS was causally

associated with five gut microbiota taxa but not after Bonferroni

correction (Supplementary Table 9).
FIGURE 2

Forest plot of the causal relationship between gut microbiota and PCOS (locus-wide significance, P<1×10-5).
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4 Discussion

We assessed causal associations between 196 gut microbiota

taxa and PCOS features using bidirectional two-sample MR. With

the SNP selection threshold at the level of P < 1×10-5, we found

evidence of causal associations between 6 microbiota taxa and

certain PCOS features. However, the causal effect did not reach

statistical significance after the Bonferroni correction. Furthermore,

the causal effects decreased considerably after including obesity

(BMI), alcohol intake frequency, SHBG, hyperandrogenemia, and

fasting insulin in the multivariable MR analysis. Reverse MR and

analyses based on extracted SNP thresholds of P < 5×10-8 revealed
Frontiers in Endocrinology 06
no causal associations between gut microbiota and PCOS features

due to the limited SNPs and unsupported sensitivity analysis. The

results of the present study suggest that the earlier reported

associations between them could be caused by biases such as

confounders or reverse causation. Gut microbiota is likely not an

independent cause of PCOS. Instead, the effect is mediated by

multiple factors (i.e., BMI, SHBG, testosterone, and alcohol

intake frequency).

A prospective cohort study including 102 PCOS and 201

controls matched for age and BMI suggested that gut microbial

profiles did not differ significantly between PCOS and non-PCOS

women (46). Another previous work suggested that no clear
B C

D E F

A

FIGURE 3

Scatter plot of the univariable MR analysis of gut microbiota and PCOS (locus-wide significance, P<1×10-5). (A) Class Mollicutes. (B) Genus
Anaerofilum. (C) Genus Coprococcus2. (D) Genus Ruminiclostridium5. (E) Genus Enterorhabdus. (F) Genus Streptococcus.
FIGURE 4

Heatmap for MR analysis of gut microbiota and PCOS (causality estimates (SD or log(OR)) per 1-SD increment in gut microbiota features).
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evidence of difference in gut microbiota between PCOS patients and

healthy controls was retrieved after clinical practice (47). These

findings were consistent with our study.

However, a cohort study supported the association of gut

microbiota with PCOS (48). Notably, the outcomes likely reflect

the smaller sample size (37 PCOS; 21 controls) and for specific

subjects (obese adolescents). Therefore, it merits some caution in

interpretation. The causal relationship between gut microbiota and

PCOS was proposed by a recent MR study (49). In contrast, our

study does not support this causal relationship. Above all, this

previous data was analyzed by extracting gut microbiota-associated

SNPs at the threshold of P < 1×10-5. This could potentially

contradict the MR assumption that IVs must be strongly

correlated with exposure. Secondly, the variance was not

thoroughly evaluated, which could explain the stronger effects

observed. In our MR analysis showed that SNPs explain only a

minor portion of gut microbiota traits (R2: 0.89%–1.91%).

Furthermore, the bias of results and conclusions may be the

consequence of un-corrected confounders (e.g., body mass index,

alcohol consumption). Thus there could be spurious causal

associations between gut microbiota and PCOS.

Since gut microbiota is susceptible to individual diet, sex, BMI,

alcohol and drug intake. Earlier studies have shown that higher BMI

is strongly associated with altered gut microbiota, and obesity is

associated with elevated androgens and insulin resistance in PCOS

(50, 51). Therefore, gut microbiota could influence the progression
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of PCOS through obesity and related mediators. Gu and colleagues

showed significantly greater efficacy for weight control and lifestyle

modifications in subjects with PCOS experiencing metabolic

dysfunction and reproductive disorders in a meta-analysis

including ten randomized controlled trials (52). Some studies may

overestimate the effect size when the confounding factors were not

undertaken in the calculation. These confounding factors could

affect the veracity and robustness of the results.

The strengths of our study include the use of the largest GWAS

dataset for bidirectional two-sample MR analysis. We extracted

exposure-associated SNPs from two different threshold levels for

analysis to obtain comprehensive and potentially causal

relationships between gut microbiota and PCOS features. In

addition, multiple sensitivity analyses are conducted to ensure the

stability of the results.

However, our study has several limitations. We analyzed the

genetic database based on European ancestry, which may not adapt

to other ancestry populations. Further studies with other

populations are required to confirm the generalizability of the

results. The LDSC analyses reported a weak genetic correlation

between gut microbiota on PCOS and small variance estimates.

Furthermore, PCOS is a complex endocrine disease with diverse

clinical features (e.g., obesity, hyperandrogenemia, infertility, and

type 2 diabetes mellitus). We could not access the clinical

phenotypes of individuals to perform subgroup analyses to

investigate the association of the gut microbiota with different
frontiersin.or
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FIGURE 5

Leave-one-out plots for the causal association between gut microbiota and PCOS. (locus-wide significance, P<1×10-5). (A) Class Mollicutes. (B)
Genus Anaerofilum. (C) Genus Coprococcus2. (D) Genus Ruminiclostridium5. (E) Genus Enterorhabdus. (F) Genus Streptococcus.
g
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phenotypes of PCOS in GWAS databases. Thus, we explored the

genetic association of gut microbiota with the PCOS features

provided in databases. More precise and comprehensive genome-

wide data on PCOS are warranted to explore the association of gut

microbiota with different PCOS phenotypes.
5 Conclusions

Our MR analyses did not support the causal relationships

between the gut microbiota and PCOS features at the genetic

level. SNPs of the gut microbiota only explain a small

portion of the pathogenesis of PCOS features. Large-scale gut

microbiota and PCOS GWAS studies are warranted to clarify the

genetic association.
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