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Introduction: Numerous studies have suggested an association between gut

microbiota and polycystic ovarian syndrome (PCOS). However, the causal

relationship between these two factors remains unclear.

Methods: A review of observational studies was conducted to compare

changes in gut microbiota between PCOS patients and controls. The

analysis focused on four levels of classification, namely, phylum, family,

genus, and species/genus subgroups. To further investigate the causal

relationship, Mendelian randomization (MR) was employed using genome-

wide association study (GWAS) data on gut microbiota from the MiBioGen

consortium, as well as GWAS data from a large meta-analysis of PCOS.

Additionally, a reverse MR was performed, and the results were verified

through sensitivity analyses.

Results: The present review included 18 observational studies that met the

inclusion and exclusion criteria. The abundance of 64 gut microbiota taxa

significantly differed between PCOS patients and controls. Using the MR

method, eight bacteria were identified as causally associated with PCOS.

The protective effects of the genus Sellimonas on PCOS remained significant

after applying Bonferroni correction. No significant heterogeneity or

horizontal pleiotropy was found in the instrumental variables (IVs). Reverse

MR analyses did not reveal a significant causal effect of PCOS on

gut microbiota.

Conclusion: The differences in gut microbiota between PCOS patients and

controls vary across observational studies. However, MR analyses identified
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1280983/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1280983/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1280983/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1280983/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1280983/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1280983&domain=pdf&date_stamp=2024-02-01
mailto:kzhisheng@163.com
https://doi.org/10.3389/fendo.2024.1280983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1280983
https://www.frontiersin.org/journals/endocrinology


Sun et al. 10.3389/fendo.2024.1280983

Frontiers in Endocrinology
specific gut microbiota taxa that are causally related to PCOS. Future studies

should investigate the gut microbiota that showed significant results in the MR

analyses, as well as the underlying mechanisms of this causal relationship and

its potential clinical significance.
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1 Introduction

Polycystic ovary syndrome (PCOS) is a highly prevalent

endocrine disorder in females, particularly among women of

reproductive age. It is estimated that the incidence of PCOS in

women of reproductive age ranges from 4% to 20% (1–3).

Currently, Rotterdam criteria are recommended for the diagnosis

of PCOS, which requires the presence of at least two of the following

manifestations: oligo-anovulation, hyperandrogenism, and

polycystic ovarian morphology (PCOM). However, the diagnosis

of PCOS is challenging due to the diverse and varying features

associated with this syndrome. The heterogeneity in the

presentation of PCOS is observed in various aspects, including

ultrasound assessment of ovarian morphology, overall length of the

menstrual cycle, length of follicular phase, and length of luteal

phase. Although the etiology of PCOS is not fully understood, some

scholars have proposed possible mechanisms, including ones

related to genetics, endocrinology, and metabolism (4–6).

Tremellen et al. introduced the Dysbiosis of Gut Microbiota

(DOGMA) theory in 2012, proposing that intest inal

microorganisms may contribute to the typical manifestations of

PCOS (7). Several observational studies have provided evidence

supporting the association between PCOS and gut microbiota (8–

10). For example, a significant reduction in the phylum Tenericutes

has been reported in women with PCOS (11). PCOS patients have

shown an increase in Bacteroides vulgatus, possibly influenced by a

gut microbiota/bile acid/interleukin-22 axis (12). Furthermore,

several studies have suggested that probiotic supplementation

may be effective in treating PCOS, highlighting the potential

therapeutic value of microbial treatment (13, 14). However, the

findings of observational studies on the gut microbiota and PCOS

are inconsistent, and it remains unclear whether there is a causal

relationship between PCOS and the gut microbiota, as well as a

reverse causal relationship between the two.

Investigating the causal relationship between gut microbiota

and PCOS holds potential clinical value. It is important to conduct a

comprehensive review of observational studies on the relationship

between gut microbiota and PCOS, as well as to further explore the

causal relationship between the two. Mendelian randomization
02
(MR) is an analytical approach used to determine the causal

association between an exposure or risk factor and a clinically

relevant outcome, particularly when a randomized controlled trial is

not feasible and observational studies may have biased associations

due to confounding or reverse causality (15). MR is based on three

assumptions and is considered a cost-effective and time-efficient

approach with the use of publicly accessible genome-wide

association study (GWAS) data (16, 17). MR analysis allows the

determination of the causal relationship between gut microbiota

and PCOS.

In the present study, a review of observational studies on

changes in gut microbiota in patients with PCOS was conducted.

Furthermore, two-sample MR and reverse MR analyses were

performed to explore the bidirectional causal relationship between

gut microbiota and PCOS.

2 Materials and methods

2.1 Literature search strategy and study
selection criteria

Cohort and cross-sectional studies comparing changes in the

gut microbiota of PCOS patients and controls were searched from

inception to May 10, 2023. The following search terms were used:

“gut microbiota,” “gastrointestinal microbiome,” “intestinal flora,”

“microbiome,” and “microbiota” combined with “PCOS” and

“polycystic ovary syndrome.” The inclusion criteria for the

literature were as follows: (i) cohort studies or cross-sectional

studies that compared gut microbiota changes between PCOS

patients and healthy controls, with clear definitions of the

subgroups in these studies; (ii) data included the first author, year

of publication, country, study type, diagnostic criteria, sample size,

age range, microbiota analysis technique, and statistical results

related to the gut microbiota; (iii) fecal samples were used for gut

microbiota analysis; and (iv) methods for identifying gut microbiota

were clearly described. The exclusion criteria were as follows: (i)

individual bacterial taxa not provided; (ii) any systematic analyses,

reviews, case reports, or conference reports; and (iii) original data

that could not be extracted from the literature.
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2.2 Data extraction and quality assessment

Data were obtained from the texts, tables, and figures of each

study. The following data were collected: first author, year of

publication, country, study type, diagnostic criteria, sample size,

age range, microbiota analysis technique, and statistical results

related to the gut microbiota. All outcomes from the included

studies were categorized into tables, offering a comprehensive

overview of the variations in the gut microbiota between subjects

with PCOS and control subjects. The tables provided detailed

information from the phylum level down to the species level.

Regarding the composition of the gut microbiota, a descriptive

literature synthesis was performed, considering the variations in

age, body mass index (BMI), assessment methods, small sample

sizes, limited data, and the quality of the studies included. The risk

of bias assessment tool for nonrandomized studies (RoBANS) was

used to evaluate the methodological quality and risk of bias of each

included study. The RoBANS tool contains six domains and is a

valid tool for evaluating nonrandomized controlled trials (18).
2.3 MR study design and data sources

A two-sample MR study was performed to investigate the causal

relationship between gut microbiota and PCOS. Genetic variants
Frontiers in Endocrinology 03
were used as instrumental variables (IVs) for the exposure because

they are randomly allocated and not influenced by reverse causation

or other confounding factors. The availability of publicly accessible

GWAS data on gut microbiota and PCOS allowed efficient

screening for suitable genetic IVs, making the two-sample MR

approach cost-effective and time-efficient. A positive result from the

MR analysis would provide support for a causal relationship

between gut microbiota and PCOS. Additionally, a reverse MR

was performed to examine whether PCOS also contributes to

changes in gut microbiota. Valid estimates from the MR analyses

were obtained when the following assumptions were satisfied: (i) a

correlation between the single nucleotide polymorphisms (SNPs)

and gut microbiota; (ii) SNPs influenced PCOS only through their

impact on gut microbiota; and (iii) SNPs were not influenced by any

confounding factors that may affect the relationship between gut

microbiota and PCOS. Figure 1 shows the MR analysis design that

accompanied the basic MR assumptions.

The largest known GWAS dataset for gut microbiota was

obtained from the MiBioGen consortium. The GWAS data

involved 24 cohorts, consisting of 18,340 participants, most of

whom (n = 13,266) were of European descent. The authors used

microbiota quantitative trait loci (mbQTL) mapping analysis to

identify host genetic variants related to the abundance of gut

microbiota. The V1–V2, V3–V4, and V4 variable regions of the

16S rRNA gene were used to determine microbial composition. The
FIGURE 1

MR basic assumptions and overview of MR analyses process. The red X cross means that the IVs (instrumental variables) cannot influence the
outcome throuth this path.
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GWAS data included 211 taxa from 9 phyla, 16 classes, 20 orders, 35

families, and 131 genera. Additional details about the microbiota

data have been previously reported (19), and the comprehensive

GWAS data is available at https://mibiogen.gcc.rug.nl/. GWAS data

for PCOS were obtained from a large meta-analysis conducted by

Day et al. (20), which involved 113,238 subjects, including 10,074

cases and 103,164 controls, all of whom were of European ancestry.

Taking into account the characteristics of the GWAS of gut

microbiota, MR analysis was performed at the five taxa levels

(phylum, class, order, family, and genus) of gut microbiota. The

GWAS data used in this study received ethical approval from their

respective institutions and were publicly available online.
2.4 IV extraction and statistical analysis

The selection of IVs was based on the following criteria: (i) if

P<5 × 10−8 was taken as the genome-wide significance threshold,

the number of selected IV SNPs was too small; therefore, P<1.0 ×

10−5 was taken as the threshold for screening IV in this study (21–

24); (ii) based on the Europe-based 1,000 Genome project, a

clustering distance of 10,000 kb and a threshold of r2<0.001 were

used in linkage disequilibrium (LD) analysis; and (iii) palindromic

SNPs were removed to avoid the influence of alleles.

In the present study, five high-efficiency MR analysis methods

were used, and the inverse variance weighted (IVW) method was

the main MR method. The IVW method is based on the three

assumptions of MR and the idea of a randomized experiment, and it

estimates the causality using genetic variation to explore the

causality in observational data. The key advantage of the IVW

method is its utilization of naturally occurring genetic variation as

an IV to estimate the causal effect between exposure and outcomes.

Genetic variation adheres to the principle of random distribution,

allowing it to simulate a random experiment (25). However, it is

important to note that the IVW method is not without limitations.

In addition to the IVW method, four other MR analysis methods

are commonly used as complementary methods, including the MR-

Egger, weighted median, weighted mode, and simple mode

methods. The specific principles, advantages, and disadvantages

of each method have been previously reported (16, 26, 27).

Because two-sample MR has several limitations that can

potentially impact the reliability of the MR results, effective

testing methods were utilized to verify the results in the present

study. Horizontal pleiotropy refers to when IVs have a direct impact

on PCOS through alternative pathways, bypassing the influence of

gut microbiota. MR-Pleiotropy RESidual Sum and Outlier (MR-

PRESSO) was used to examine the outliers that may indicate

pleiotropic biases. If the SNPs used as IVs had significant

heterogeneity, the results of MR may be biased. The heterogeneity

of the selected SNPs was assessed using Cochran’s Q statistic and

leave-one-out sensitivity analysis. Weak IVs refer to the SNPs that

are associated with exposure, but the strength of the association is

not high. The strength of the IVs was examined using the F-statistic,

which was calculated with the following formula F =   R
2�(N−1−K)
(1−R2)�K :

where R2 is the fraction of variance in exposure explained by IVs; K

is the number of IVs; and N is the sample size. An F-statistic greater
Frontiers in Endocrinology 04
than 10 indicates that the corresponding IV was not considered a

weak IV (28). To obtain a more stringent interpretation of causality,

Bonferroni correction based on 211 bacterial taxa was used as

follows: 0.05/211 (3.81 × 10−4).

Reverse MR analysis was conducted on the bacteria identified as

causally associated with PCOS in the forward MR analysis to

examine the reverse causality between the gut microbiota and

PCOS. The methods and settings used in reverse MR analysis

were consistent with those used in the forward MR analysis.

R software (version 4.3.0) was used for statistical analysis.
3 Results

3.1 Literature search and
basic characteristics

A total of 261 studies were identified using the search strategy.

After removing 63 duplicate studies, the remaining 198 studies were

reviewed based on the inclusion and exclusion criteria. Ultimately,

18 articles were included in the present study. The process of

literature screening is illustrated in Figure 2, and a summary of

the included studies is shown in Table 1. Four studies were cross-

sectional studies (12, 32, 33, 40), and 18 studies were cohort studies

(11, 29–31, 34–39, 41–44). Most studies used the Rotterdam criteria

for the diagnosis of PCOS, except for the study by Jobira, which

used the National Institutes of Health (NIH) criteria (35). The study

by Lüll et al. did not specify which diagnostic criteria were used (40).

In addition, 16S rRNA gene sequencing with different region

specifications was used as a microbiome assessment method in

most studies, and whole-genome shotgun sequencing was used in

the studies by Qi and Chu (12, 37). Seven studies divided

participants into PCOS and healthy controls (11, 12, 30, 32, 33,

38, 40, 44), whereas the other studies subdivided participants into

subgroups based on weight, insulin resistance, and other conditions.

The studies were conducted in the following regions: 11 studies

were conducted in East Asia (China) (12, 29, 31, 33, 34, 36, 37, 39,

41, 42, 44); four studies were conducted in Europe (11, 30, 32, 40);

one study was conducted in North America (America) (35); and

one study was conducted in Western Asia (Turkey) (38).
3.2 Summary of bacterial taxa changes in
observational studies

All studies included in the review utilized high-throughput

sequencing methods, specifically whole-genome shotgun

sequencing and 16S rRNA gene sequencing. The abundance of

gut microbiota was expressed using various parameters, including

observed operating taxonomic unit (OTU) counts, richness,

Chaos1, Shannon index, and evenness. To determine changes in

the abundance of specific gut microbiota taxa, a species was

considered to be increased or decreased if its relative abundance

differed significantly (P< 0.05) at the phylum, family, genus, or

species/genus subgroups levels.
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FIGURE 2

Flowchart of the literature selection.
TABLE 1 Characteristics of the observational studies included in the review.

First
Author

Year Country Study
Design

Definition
of PCOS

Major Microbiome Iden-
tification Method

Group Patients,
n

Age,
years

Liu (29) 2017 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing Obese PCOS 21 29.3
± 6.5

Non-obese PCOS 12 25.5
± 4.3

Obese control 6 33 ± 5.4

Non-obese control 9 32.2
± 5.9

Lindheim
(11)

2017 Austria Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 24 27 (5.9)

Healthy control 20 32 (12.0)

Insenser (30) 2018 Spain Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 15 26.7
± 7.2

Healthy control 16 27.3
± 5.2

Zeng (31) 2018 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS with
insulin resistance

9 25.1
± 4.3

PCOS without
insulin resistance

8 26.1
± 7.1

Healthy control 8 26.4
± 3.9

Torres (32) 2018 Poland Cohort
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 73 27.4
± 4.9

(Continued)
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TABLE 1 Continued

First
Author

Year Country Study
Design

Definition
of PCOS

Major Microbiome Iden-
tification Method

Group Patients,
n

Age,
years

Healthy control 48 29.4
± 4.9

PCOM Only 42 29.8
± 5.3

Qi (12) 2019 China Cohort
study

Rotterdam
criteria

Whole-genome shotgun sequencing PCOS 50 20-40

Healthy control 43 20-40

Zhang (33) 2019 China Cohort
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 38 27.6
± 3.8

Healthy control 26 26.7
± 2.0

Zhou (34) 2020 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing Obese PCOS 30 26.9
± 4.9

Non-obese PCOS 30 25.1
± 4.3

Obese control 11 25.3
± 1.6

Non-obese control 30 22.1
± 1.6

Jobira (35) 2020 America Cross-
sectional
study

NIH 16S rRNA gene sequencing Obese PCOS 37 16.1
± 0.3

Obese control 21 14.5
± 0.4

Liang (36) 2020 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing Obese PCOS 8 27.1
± 3.5

Non-obese PCOS 10 25.7
± 3.5

Healthy control 9 27.9
± 3.6

Chu (37) 2020 China Cross-
sectional
study

Rotterdam
criteria

Whole-genome shotgun sequencing Non-
overweight PCOS

7 27.14
± 4.56

Non-overweight
control group

7 30.29
± 3.90

Overweight PCOS 7 29.14
± 2.87

Overweight
control group

7 28.57
± 2.72

Eyupoglu
(38)

2020 Turkey Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 17 20
(19–22)

Healthy control 15 22
(18–27)

Chen (39) 2021 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS-LB 98 29.48
± 3.39

(Continued)
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None of the included studies reported differential gut

microbiota taxa between PCOS patients and controls at the class

and order levels. The groups for comparison were those with PCOS

and those without PCOS, with or without involved subgroups.

Three studies reported a significant increase in the abundance of the

following phyla: Proteobacteria, Actinobacteria, and Fusobacteria in

PCOS patients (35, 39, 43). Moreover, the following phyla were

decreased in PCOS patients in three studies: Bacteroidetes,

Firmicutes, Tenericutes, Proteobacteria, and Actinobacteria (11, 35,

39) . At the family taxonomic level , Lactobaci l laceae ,

Streptococcaceae, Erysipelotrichaceae, and Enterobacteriaceae were

significantly elevated in patients with PCOS in three studies (35, 43,

44), while S24-7 , Prevotellaceae , Porphyromonadaceae ,

Barnesiellaceae , Christensenellaceae , Aerococcaceae , and

Pasteurellaceae were significantly less abundant in five studies (11,

31, 35, 42, 44). Changes in the abundance of some families of gut

microbiota in PCOS patients, including Bacteroidaceae ,
Frontiers in Endocrinology 07
Ruminococcaceae, and Lachnospiraceae, were inconsistent in

different studies (29, 31, 35, 36, 38, 44). Many significant

differences were found at the genus level. The genus Bacteroides

differed in abundance between PCOS and controls in six studies,

with opposite results (12, 29, 33, 35, 37, 41). Moreover, the

following genera were significantly increased in the PCOS group:

Ruminococcaceae UCG-002, Subdoligranulum, Lactobacillus,

Oscillibacter, Catenibacterium, Kandleria, Coprococcus ,

Lactococcus, Megamonas, Eubacterium, Escherichia, Klebsiella, and

Bifidobacterium (29, 30, 33, 34, 36, 40, 41, 44). The following genera

were significantly reduced in the PCOS group: Prevotella,

Akkermansia, Faecalibacterium, Ruminococcus, Blautia,

Roseburia, Lachnospira, Fusicatenibacter, Erysipelatoclostridium,

Abiotrophi, and Haemophilus (29, 33, 37, 39, 42–44). Three

gener a , name ly , Parabac t e r o id e s , C l o s t r i d ium , and

Bifidobacterium, showed opposite abundance changes in different

studies (33, 35, 37, 40).
TABLE 1 Continued

First
Author

Year Country Study
Design

Definition
of PCOS

Major Microbiome Iden-
tification Method

Group Patients,
n

Age,
years

PCOS-HB 50 29.64
± 4.06

Healthy control 38 29.26
± 4.18

Lüll (40) 2021 Estonia Cohort
study

– 16S rRNA gene sequencing PCOS 102 46

Healthy control 201 46

Liang (41) 2021 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing Lean PCOS 10 24.13
± 2.45

Overweight PCOS 10 28.94
± 6.13

Lean
healthy control

10 25.08
± 3.59

Overweight
healthy control

10 30.12
± 5.20

Dong (42) 2021 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 37 26-35

Healthy control 45 28-35

Mammadova
(43)

2021 Turkey Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing Lean PCOS 24 19.0-22.5

Lean
healthy control

22 22.0-
24.25

Li (44) 2022 China Cross-
sectional
study

Rotterdam
criteria

16S rRNA gene sequencing PCOS 31 24.35
± 4.48

Healthy control 27 27.0
± 4.90
fron
NIH (National Institutes of Health); PCOS (polycystic ovarian syndrome); PCOM (polycystic ovarian morphology); PCOS-LB (normal body mass index (BMI) PCOS); PCOS-HB (high body
mass index (BMI) PCOS).
Age, years, mean ± standard deviation, median (range), or age lower limit–age upper limit.
“-“ indicates that the literature did not provide this information.
tiersin.org
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In addition, four studies examined changes in abundance at the

species or genus subgroup taxa level. Among them, genus

Bacteroides coprophilus, genus Bacteroides fragilis, genus

Ruminococcus gnavus, species Blautia spp., and genus Collinsella

aerofaciens had significant increases in PCOS patients (32, 33, 42).

Moreover, the significantly reduced genera or species taxa included

species Odoribacter spp., genus Ruminococcus bromii., genus

Clostridium cluster XVII, genus Clostridium sensu stricto, species

Anaerococcus spp., and species Bifidobacterium spp. (29. 30, 43).

Table 2 summarizes the gut microbiota taxa at the four levels with

significant differences among the included studies.

The dietary patterns of populations from different regions vary,

which can lead to differences in the species and abundance of gut

microbiota. To compare the changes in gut microbiota of PCOS

populations in different regions, the abundances of gut microbiota

in populations from various countries were summarized

(Supplementary Table 1).
3.3 Risk of bias assessment

The quality of the included studies was assessed using the

RoBANS tool and is summarized in Supplementary Table 2. The

included studies did not show a risk of exposure measurement bias,

and they reported complete outcome data. Six studies had a high

risk of bias in the selection of participants, and three studies

involved confounding variables. In addition, 14 studies did not

assess the risk of outcome blinding.
3.4 MR analysis results

In total, 2832 SNPs were identified as gut microbiota IVs. All

SNPs had F-statistics greater than 10 (F ranged between 11.43 and

98.47), which indicated that there were no weak IVs. Additional

information on the selected IVs is provided in Supplementary

Table 3. In the forward MR Analysis, eight gut microbiota taxa

were identified as having a significant causal relationship with

PCOS using the IVM method, including one gut microbiota

taxon at the family level and seven gut microbiota taxa at the

genus level. Among them, four taxa had protective effects on PCOS,

and four taxa were risk factors for PCOS.

The MR estimates with the IVW method showed that some

genera, including Sellimonas [odds ratio (OR) 0.69, 95% confidence

interval (CI) 0.58 - 0.84, P = 1.22 × 10-4], Coprococcus2 (OR 0.58, 95%

CI 0.41 - 0.83, P = 3.20 × 10-3), Ruminococcaceae UCG011 (OR 0.75,

95% CI 0.60 - 0.95, P = 1.62 × 10-2), and Ruminococcus (Gauvreauii

group) (OR 0.72, 95% CI 0.53 - 0.98, P = 3.78 × 10-2), had protective

effects on PCOS. IVM analysis showed that the risk gut microbiota

taxa for PCOS were genus Streptococcus (OR 1.53, 95% CI 1.13 - 2.07,

P = 5.93 × 10-3), family Streptococcaceae (OR 1.51, 95% CI 1.11 - 2.05,

P = 8.76 × 10-3), genus RuminococcaceaeUCG005 (OR 1.39, 95% CI

1.04 - 1.86, P = 2.79 × 10-2), and genus Actinomyces (OR, 1.37; 95%

CI, 1.03 - 1.82; P = 3.19 × 10-2). After Bonferroni correction, genus

Sellimonas remained significant in the MR analysis results (adjusted

P = 2.57 × 10-2). Figure 3 shows the MR analysis results of the causal
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effects of the eight gut microbiota taxa on PCOS. The results of the

MR analysis on the causal relationship between the 211 gut

microbiota taxa and PCOS are shown in Supplementary Table 4.

Cochran’s Q test did not identify significant heterogeneity in the

IVs in the forward MR Analysis (Supplementary Table 5). Visual

inspection of the scatter plots and leave-one-out plots of the IVs

revealed no potential outliers for the gut microbiota taxa (Figures 4,

5). Additionally, no horizontal pleiotropy was observed in the MR-

Egger regression intercept analysis (Supplementary Table 6), and no

significant outliers were found in the MR-PRESSO analysis (global

test, P > 0.05) (Supplementary Table 6). Therefore, there was

insufficient evidence for horizontal pleiotropy in the causal

relationship between the eight gut microbiota taxa and PCOS.

In the reverse MR analysis, a significant causal relationship was

not observed between PCOS and any of the eight gut microbiota

taxa (Supplementary Tables 7, 8). Cochran’s Q test revealed no

significant heterogeneity in the IVs of patients with PCOS

(Supplementary Table 9). In the reverse MR analysis, MR-Egger

regression did not show significant results for horizontal pleiotropy

(Supplementary Table 10).
4 Discussion

The human gut contains trillions of microbes, which have been

recognized as significant environmental factors impacting human

physiology and pathology (45). Following the discovery by Poretsky

et al. that gut microbiota disorders are closely associated with

metabolic abnormalities in PCOS patients, numerous studies have

been conducted to investigate the connection between gut

microbiota and PCOS (46–49). Regardless of the level of gut

microbiota taxa, various observational studies have arrived at

different and even opposite findings, as shown in Table 2. The

significant variations in results can be attributed to the diversity

among different observational studies, including differences in

sample sizes, grouping criteria, and microbiological identification

methods. It is important to consider that populations from different

regions have varying dietary patterns, which can contribute to the

inconsistent findings (50). Future research should prioritize the

development of more effective methods to compare the gut

microbiota composition among individuals from different

geographical locations.

Observational studies make it challenging to determine whether

these changes are a cause or consequence of PCOS. However, the

utilization of MR and publicly available GWAS data has facilitated

the identification of causal relationships between gut microbiota

and PCOS (51, 52). In the present study, the IVM analysis results

for the genus Sellimonas remained significant after applying the

Bonferroni correction. Genus Sellimonas belongs to the family

Lachnospiraceae, which is part of the phylum Firmicutes. Genus

Sellimonas is an anaerobic gram-positive microbe that has received

relatively little attention in previous research (53). Muñoz et al.

found that the genus Sellimonas may be a marker of intestinal

homeostasis, and its abundance gradually increases with the

restoration of intestinal barrier function (54, 55). Genus

Coprococcus, an important member of the phylum Firmicutes, is
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TABLE 2 Summary of representative taxa in PCOS patients compared to healthy controls in the included observational studies.

Decrease Species or Genus
Subgroups
subgsfdgdsssdffssu-
bSubgroup

Increasse Decrease

Jobira 2020 Bacteroides
coprophilus

Torres
2018

Chu 2020 Bacteroides fragilis Dong
2021

Dialister
succinatiphilus

Dong
2021

Chu 2020 Prevotella stercorea Dong
2021

Chen 2021

Porphyromonas spp. Torres
2018

Odoribacter spp. Torres 2018

Jobira 2020

Liu 2017

Zhang 2019 Faecalibacterium
prausnitzii

Torres
2018

Zhang 2019

Liu 2017 Ruminococcus bromii. Torres 2018

Ruminococcus gnavus Dong
2021
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Phylum Increasse Decrease Family Increasse Decrease Genus Increase

Bacteroidetes Jobira2020 Bacteroidaceae zeng 2018 Jobira2020 Bacteroides Liu 2017

Chen
2021

Qi 2019

Zhang
2019

Liang
2021

S24-7 Lindheim
2017

Prevotellaceae Zeng 2018 Prevotella

Li 2022

Porphyromonadaceae Jobira2020 Porphyromonas

Odoribacteraceae Odoribacter

Tannerellaceae Parabacteroides Zhang
2019

Barnesiellaceae Dong
2021

Verrucomicrobia Akkermansiaceae Akkermansia

Firmicutes Chen
2021

Ruminococcaceae Zeng 2018 Liu2017 Faecalibacterium

Eyupoglu
2020

Li 2022 Ruminococcus

RuminococcaceaeUCG002 Lüll 2021

Subdoligranulum Liang
2020

Lactobacillaceae Jobira 2020 Lactobacillus Zhang
2019
e
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TABLE 2 Continued

asee Decrease Species or Genus
Subgroups
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Increasse Decrease

Chu 2020 Clostridium
cluster XVII

Mammadova
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Clostridium
sensu stricto

Mammadova
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Zhang 2019 Blautia spp. Torres
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Mammadova
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Roseburia spp. Dong
2021

Torres 2018

Zhang 2019

2020

Anaerococcus spp. Torres 2018

2020

021

Dong 2021

Li 2022

Li 2022

(Continued)

Su
n
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
4
.12

8
0
9
8
3

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

10
Phylum Increasse Decrease Family Increasse Decrease Genus Incre

Oscillospiraceae Oscillibacter Zhan
2019

Clostridiaceae Clostridium Zhan
2019

Erysipelotrichaceae Catenibacterium Insen
2018

Kandleria Insen
2018

Lachnospiraceae Zeng 2018 Liang2020 Blautia

Roseburia

Lachnospira

Coprococcus Zhou

Peptoniphilaceae Anaerococcus

Streptococcaceae Jobira 2020 Lactococcus Zhou
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Christensenellaceae Dong
2021
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Erysipelotrichaceae Mammadova
2021
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TABLE 2 Continued
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Proteobacteria Mammadova 2021
d2021202122021 2021

Chen
2021
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Pasteurellace

Actinobacteria Jobira 2020 Chen
2021
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Coriobacteria

Verrucomicrobia Akkermansia

Fusobacteria Chen 2021
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known for its production of butyric acid (56). Zhou et al. proposed

that genus Coprococcus2 is a distinguishing gut microbiota in obese

PCOS patients (34). However, the present IVM analysis did not

support this observation, which may be attributed to the distinct

group specificity of gut microbiota (57). The genus Ruminococcus,

belonging to the family Ruminococcaceae, has a potential role in the

protective effect against PCOS. One possible explanation for this

effect is that an increase in the genus Ruminococcus (Gauvreauii

group) is strongly associated with improved insulin sensitivity in

obese patients (58). Interestingly, genera Streptococcus and

Actinomyces are significantly increased in the saliva and vagina,

but not in the intestine, of PCOS patients (59, 60). The present MR

study suggested that the observed relationship between gut

microbiota and PCOS may not necessarily be causal. One possible

explanation is that the gut microbiota, which has a causal

relationship with PCOS, may not be detected due to its low

abundance, as well as limitations in current detection and

statistical methods. Nevertheless, the findings obtained through

the MR method are noteworthy and warrant further investigation.
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The gut microbiota/bile acid/interleukin-22 axis has been

investigated as one of the possible potential mechanisms for this

causal relationship (12, 61). Transplantation of fecal microbiota

from women with PCOS or B. vulgatus-colonized recipient mice

results in various negative effects on ovarian functions, insulin

resistance, bile acid metabolism, interleukin-22 secretion, and

fertility. IL-22 improves the PCOS phenotype. Some gut

microbiota taxa are capable of inducing oxidative stress and an

inflammatory response from mononuclear cells of women with

PCOS by influencing the dietary trigger (62, 63). Oxidative stress

and inflammation also damage the structure and function of

intestinal permeability, leading to an increase in gram-negative

bacteria in the blood. This activation of the immune system

hampers the function of insulin receptors, which results in

elevated insulin levels, subsequently leading to high levels of

androgens and abnormal follicular development (64). Energy

absorption may be a mechanism of gut microbiota leading to

PCOS (65). Studies have indicated that more than half of PCOS

patients are overweight or obese (11). Researchers have confirmed
FIGURE 3

The results of MR analysis on the causal effect of the eight gut microbiota taxa on PCOS.
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that the richness and phylogenetic diversity of gut microbiota in

patients with PCOS are significantly reduced, and multiple meta-

analyses have confirmed that this reduction is closely related to the

obesity phenotype of PCOS (66, 67) Other possible mechanisms

include the lipopolysaccharide metabolic pathway, short-chain fatty

acid (SCFA) metabolic pathway, and choline pathway (68–70).

The present study of the relationship between gut microbiota

and PCOS holds potential clinical significance. Firstly, changes in

gut microbiota may serve as an indicator for the occurrence of

PCOS, suggesting that gut microbiota may potentially be used for

diagnostic purposes in PCOS. A functional predictive analysis

conducted by Zhou et al. revealed significant differences in fecal

microbes among obese PCOS patients, non-obese PCOS patients,

and healthy individuals (34), highlighting significant differences in

the gut microbiota and its predicted functions in obese and non-

obese women with PCOS. The positive bacteria identified in the
Frontiers in Endocrinology 13
present MR study have promising potential as diagnostic bacteria

for the occurrence and post-treatment effects of PCOS in the future.

Moreover, alterations in gut microbiota have been found to be

closely associated with various PCOS-related clinical parameters,

including metabolic factors, sex hormones, and mediators of the

brain-gut axis (29). Secondly, treatment of PCOS based on gut

microbiota has attracted increasing attention. Animal experiments

involving fecal microbiota transplantation (FMT) have

demonstrated significant improvements in PCOS-related

symptoms after PCOS mice receive feces from healthy mice. The

use of FMT as a potential approach to treat PCOS holds promise for

the future. Additionally, microbial agents, such as probiotics,

prebiotics, and synbiotics, have shown potential therapeutic value

in PCOS treatment (71, 72). The protective bacteria identified in the

present MR study should be considered as potential sources of

microbial agents in future studies. Moreover, studies have indicated
FIGURE 4

Scatter plots for the causal association between gut microbiota and PCOS.
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that specific drugs used for PCOS treatment may achieve their

intended effects by influencing changes in gut microbiota. These

drugs include metformin, thiazolidinediones, and lipid-lowering

drugs (73–75). Thus, the mediating role played by gut microbiota

deserves attention.
5 Limitations

In reviewing observational studies, a major challenge is the

difficulty in adjusting for potential confounding factors and other

variables due to the significant heterogeneity among the studies.

The complexity of the included population groups limited our

ability to conduct a more rigorous quantitative systematic review

of these studies. Additionally, the various gut microbiota patterns

influenced by diet habits in different regions made it challenging to
Frontiers in Endocrinology 14
interpret the summarized results using MR analysis. Moreover, the

GWAS data used in the present MR analysis was obtained from 24

cohorts in different countries. Due to the polymorphism observed

among different human populations, the outcomes of GWAS may

vary across these populations (76). Furthermore, the presence of

genetic heterogeneity within each population can also impact the

reliability of GWAS results. This limitation may affect the

interpretation of the GWAS findings. In MR Studies, it is

challenging to completely avoid LD. In addition, when using

genes as IVs, biases may arise due to weak instruments,

population stratification, and developmental compensation (77).

Bonferroni correction was used as a multiple test in the present MR

analysis. One advantage of this correction method is its effectiveness

in controlling type I errors, but it may be overly conservative, which

can increase type II error rates (78). Additionally, the strictness of

Bonferroni may filter out potentially meaningful results.
FIGURE 5

Leave-one-out plots for the causal association between gut microbiota and PCOS.
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60. Akcalı A, Bostanci N, Özçaka Ö, Öztürk-Ceyhan B, Gümüs ̧ P, Buduneli N, et al.
Association between polycystic ovary syndrome, oral microbiota and systemic antibody
responses. PloS One (2014) 9:e108074. doi: 10.1371/journal.pone.0108074

61. Lu C, Wang H, Yang J, Zhang X, Chen Y, Feng R, et al. Changes in vaginal
microbiome diversity in women with polycystic ovary syndrome. Front Cell Infect
Microbiol (2021) 11:755741. doi: 10.3389/fcimb.2021.755741

62. Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, et al. Interactive
relationships between intestinal flora and bile acids. Int J Mol Sci (2022) 23:8343.
doi: 10.3390/ijms23158343
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