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Separating the effects of life
course adiposity on diabetic
nephropathy: a comprehensive
multivariable Mendelian
randomization study
Han Zhang, QingYa Zhang, YiJue Song, LiJun Wang,
MinChao Cai, JinFang Bao and Qing Yu*

Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
Aims: Previous Mendelian randomization (MR) of obesity and diabetic

nephropathy (DN) risk used small sample sizes or focused on a single adiposity

metric. We explored the independent causal connection between obesity-

related factors and DN risk using the most extensive GWAS summary data

available, considering the distribution of adiposity across childhood

and adulthood.

Methods: To evaluate the overall effect of each obesity-related exposure on DN

(Ncase = 3,676, Ncontrol = 283,456), a two-sample univariate MR (UVMR)

analysis was performed. The independent causal influence of each obesity-

related feature on DN was estimated using multivariable MR (MVMR) when

accounting for confounding variables. It was also used to examine the

independent effects of adult and pediatric obesity, adjusting for their

interrelationships. We used data from genome-wide association studies,

including overall general (body mass index, BMI) and abdominal obesity (waist-

to-hip ratio with and without adjustment for BMI, i.e., WHR and WHRadjBMI),

along with childhood obesity (childhood BMI).

Results: UVMR revealed a significant association between adult BMI (OR=1.24,

95%CI=1.03-1.49, P=2.06×10-2) and pediatric BMI (OR=1.97, 95%CI=1.59-2.45,

P=8.55×10-10) with DN risk. At the same time, adult WHR showed a marginally

significant increase in DN (OR =1.27, 95%CI = 1.01-1.60, P=3.80×10-2). However,

the outcomes were adverse when the influence of BMI was taken out of theWHR

(WHRadjBMI). After adjusting for childhood BMI, the causal effects of adult BMI

and adult abdominal obesity (WHR) on DN were significantly attenuated and

became nonsignificant in MVMR models. In contrast, childhood BMI had a

constant and robust independent effect on DN risk(adjusted for adult BMI: IVW,

OR=1.90, 95% CI=1.60-2.25, P=2.03×10-13; LASSO, OR=1.91, 95% CI=1.65-2.21,

P=3.80×10-18; adjusted for adult WHR: IVW, OR=1.80, 95% CI=1.40-2.31,

P=4.20×10-6; LASSO, OR=1.90, 95% CI=1.56-2.32, P=2.76×10-10).

Interpretation: Our comprehensive analysis illustrated the hazard effect of

obesity-related exposures for DN. In addition, we showed that childhood

obesity plays a separate function in influencing the risk of DN and that the
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adverse effects of adult obesity (adult BMI and adult WHR) can be substantially

attributed to it. Thus, several obesity-related traits deserve more attention and

may become a new target for the prevention and treatment of DN and warrant

further clinical investigation, especially in childhood obesity.
KEYWORDS

Mendelian randomization, diabetic nephropathy, life course adiposity, childhood
obesity, obesity
1 Introduction

Diabetic nephropathy (DN), a severe microvascular complication

associated with diabetes, is characterized by a decline in estimated

glomerular filtration rate (eGFR) or the presence of albuminuria. DN

is widely recognized as the primary factor behind end-stage renal

disease (ESRD) globally (1), exacerbating the occurrence and

progression of cardiovascular disease and mortality (2). Around

30% to 40% of people with diabetes will eventually develop DN (3).

Furthermore, the financial load of DN and ESKD is immense (4).

Therefore, it is vital to identify the potential causative factor for the

prevention and management of DN.

It is well-known that obesity poses a unique risk for the onset and

progression of DN (5). Themain subtypes of obesity are general obesity

and abdominal obesity. Consistent findings from conventional

epidemiologic research have consistently shown an increased

likelihood of DN associated with adult BMI (a measure of overall

adiposity in adults). In contrast, the results for adult WHR (a measure

of abdominal adiposity in adults) have been inconclusive (6–8).

In addition, while childhood obesity has been a concern for

decades, it is now an undeniable public health crisis (9), with evidence

from observational studies linking early-life obesity to a greater risk of

chronic conditions such as type 2 diabetic mellitus (10–13). DN has a

more extended latency period, and obese children are more likely

than children with a standard bodymass index (BMI) to develop end-

stage renal disease (ESRD) or chronic kidney disease (CKD) (14).

Hence, it is reasonable to suggest that the early stages of life, including

childhood and adolescence, play a significant role in shaping adults’

susceptibility to DN through adiposity. Because of the inconsistent

findings in observational research regarding the link between

abdominal obesity and DN, as well as the lack of sufficient

evidence regarding the connection between early-life adiposity and

the risk of DN. Due to the complexity of these relationships, it is

essential to understand how different obesity-related characteristics

interact to increase the risk of DN.

Mendelian randomization (MR) employs genetic variations in the

reproductive cell line as substitutes to enable causal deduction between a

specific exposure and a result (15). Due to the random distribution and

stable characteristics of genetic variations, In comparison to

conventional observational analysis, MR analyses are anticipated to be

less susceptible to conventional confounding and reverse causality (16).
02
Furthermore, multivariable MR enables the evaluation of distinct

impacts of various exposures (e.g., childhood and adult BMI) on health

outcomes (17–19). Univariable MR can estimate the general impact of

body size in early life on DN (20, 21). However, independent of adult

body size, multivariable MR can assess the precise impact of childhood

obesity on DN risk. This approach has recently been used to investigate

whether body size in childhood influences the risk of developing

diseases like breast and colorectal cancer later in life. It also explores

if adult body size impacts this influence (22, 23).

There have been limited publications on the relationship

between obesity and DN using Mendelian randomization due to

the absence of genome-wide association study (GWAS) data on DN

in type 2 diabetes. Only one obesity-related measure, BMI, has been

evaluated for a causal relationship with DN (24). In addition, MR

studies of abdominal obesity and childhood obesity remain empty.

The intrinsic link between obesity and DN has been better

understood because of earlier MR investigations, but there are still a

lot of unanswered questions. Furthermore, due to the increasing

sample size of genome-wide association studies (GWAS) and the

continuous accumulation of data, it is crucial to thoroughly research

the relationship between obesity and DN utilizing an MR approach.

In this study, we utilized an extensively expanded collection of IVs

derived from the most comprehensive exposure and outcome GWAS

conducted to date (25) to (1) assess the overall influence of characteristics

related to obesity (general and abdominal obesity, adult and childhood

obesity) on DN; (2) Determine the separate causal influence of each

characteristic related to obesity while accounting for the confounding

influences of glycemic traits, hypertension, and three other noteworthy

risk factors; (3) To assess the separate influence of obesity in adulthood

and during childhood on DN, while considering their correlation.
2 Materials and methods

2.1 Data sources and selection of
genetic instruments

2.1.1 Genetic variables associated with each
obesity-related exposure

The Genetic Investigation of Anthropometric Traits (GIANT)

consortium and the UK Biobank (UKBB) worked together to
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conduct the largest GWAS study of adults with general body

obesity (BMI) and abdominal obesity (WHR and WHRadjBMI) in

2019. It included an estimated 700,000 people of European

ancestry (25). Standard techniques were used to measure

anthropometric information such as height, weight, waist, and

hip circumference. By dividing the circumferences of the hips and

the waist, the Waist-to-Hip Ratio (WHR) was calculated. In

contrast, Body Mass Index (BMI) was computed by dividing

weight by the square of height. Regressing WHR on BMI and

adding BMI as a second independent variable led to the creation of

WHRadjBMI. The most recent and comprehensive genome-wide

association study (GWAS) on childhood BMI was carried out in

2020 by the Early Growth Genetics (EGG) consortium (26). This

study included a combined dataset from 41 studies, comprising

39,620 children between the ages of 6 and 10, all of

European ancestry.

2.1.2 GWAS summary data for outcome
(diabetic nephropathy)

For DN, we defined the outcome as the presence of glomerular

damage in patients with diabetes mellitus based on the ICD-10

criterion (code: N08.3*). To obtain the necessary summary

statistics, we used data from the FinnGen biobank, which

included 3,676 cases and 283,456 controls of European

ancestry (27).

2.1.3 Other GWAS(s) of five risk factors
Our MR study now includes five key risk factors: fasting insulin,

Homeostasis Model Assessment of Insulin Resistance (HOMA-IR),

high blood pressure, circulating CRP levels, and smoking. This

inclusion provides a more comprehensive perspective. The

summary-level data for glycemic traits, specifically fasting insulin

(N=153,525) and HOMA-IR (N=37,037), were sourced from the

Meta-analyses of Glucose and Insulin-related Traits Consortium

(MAGIC) (28, 29). We obtained the GWAS summary statistics

from the IEU Open GWAS project download for high blood

pressure, including 124,227 European cases and 337,653

European controls. We used information from a massive GWAS

meta-analysis of 88 studies (involving 204,402 individuals) (30) to

determine levels of circulating CRP. This GWAS meta-analysis

identified 58 significant genetic loci across the entire genome for

circulating CRP levels, accounting for up to 7.0% of the variation in

circulating CRP levels (30). To analyze smoking, we utilized

information released in 2019 by the GSCAN (GWAS &

Sequencing Consortium of Alcohol and Nicotine), involving

1,232,091 individuals of European descent, explicitly focusing on

smoking initiation (31).
2.2 Selection of genetic IVs

We extracted IVs from exposed GWAS that reached genome-

wide significance. A total of 85109 SNPs were shown to be

independently associated with BMI, 39709 with WHR, 54367 with

WHRadjBMI, and 1353 with pediatric BMI (all P value< 5×10-8).
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After conducting the clumping process (R2<0.001, window

size=10,000kb), the instrumental variables were disentangled from

linkage disequilibrium (LD) to ensure their autonomy. Besides, to

meet the exclusivity assumption in Mendelian Randomization, we

rigorously excluded SNP data with strong associations (P<5×10-5)

to diabetic nephropathy. This ensures the integrity of our

instrumental variable selection. In addition, performing

F-statistics to validate significant effects for all IV-SNPs (overall

F-statistic value>10) was necessary for the validity of the results.

These SNPs were carefully matched up with the results of the

GWAS for DN. See Supplementary Table 2 for details. We used

the following equation F = ( N−K−1
K )( R2

1�R2 ) to figure out the

strength of the device (Table 1). The F-statistic of an instrument

is considered to be strong enough if it is greater than 10 (32). R2

shows the phenotypic diversity that can be explained by genetic

tools. These tools are based on raw GWAS data or can be

calculated using the genetic association of an SNP with an

exposure (b) and the minor allele frequency (MAF). The

following equation R2 =o2� b̂
2 �MAF � (1 −MAF) was used

to figure out R2.
2.3 Statistical analysis

To assess the potential causal relationship between obesity-

related exposures (BMI, WHR, WHRadjBMI, childhood BMI) and

DN, we conducted a comprehensive two-sample (MR) analysis. In

Figure 1, a schematic diagram is shown to illustrate the method of

MR analysis.

2.3.1 Univariable Mendelian
randomization analysis

We used UVMR as our primary analysis method to examine the

overall impact of each obesity-related characteristic on DN. We first

applied the inverse variance weighted (IVW) approach in a random

effects model. Regressing the outcome coefficient on the exposure

coefficient in this manner yields an estimate of the causal effect

without including an intercept term (33). We supplemented the

IVW analysis with MR-Egger regression to account for potential

bias due to horizontal pleiotropy (34).

MR-Egger regression is similar to IVW but includes an

intercept term in the regression model to capture the presence of

directional pleiotropy, thereby providing insight into potential bias

due to pleiotropic effects. In addition, we used the weighted median

approach (35), which is known to be more robust to the inclusion of

invalid instruments than IVW and MR-Egger regression.

Furthermore, after locating and eliminating all discovered

outlying SNPs, we further employed MR-PRESSO to determine

whether horizontal pleiotropy existed and to re-estimate the causal

effect (36). By detecting and removing outlying SNPs, we aimed to

obtain a more reliable causal effect estimate while accounting for

potential horizontal pleiotropy.

We carried out various sensitivity analyses to ensure our results’

robustness. First, we conducted an analysis with IVs that excluded

palindromic SNPs with strand ambiguity. The analysis was done to
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address potential issues related to ambiguous strand orientation

that could introduce bias into the analysis. In order to determine if a

single SNP had a significant impact on the MR estimate, we also

conducted a leave-one-out study. In this analysis, we sequentially

left out one SNP at a time and assessed the effect on the results. This

approach helped us to identify potential sources of heterogeneity

and assess the robustness of the MR estimate. In addition, we also
Frontiers in Endocrinology 04
performed Steiger filtering to ensure the directionality of the

association between obesity and DN (37).

2.3.2 Multivariable Mendelian
randomization analysis

To investigate the independence of the causative effects of

childhood and adult obesity on DN, we used a multivariable MR
FIGURE 1

Overview of the MR design assumptions and study methodology. Assumption 1 states that the genetic variants proposed as instrumental variables
should be strongly associated with the relevant risk factor; assumption 2 states that the genetic variants used should not be associated with potential
confounders; and assumption 3 states that the selected genetic variants should only influence outcome risk through the relevant risk factor and not
through other possible pathways. BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index;
UVMR, Univariable Mendelian randomization analysis; MVMR, Multivariable Mendelian randomization analysis.
TABLE 1 A detailed description of the GWAS data involved in our study.

Phenotype IV Sample size Ethnicity Consortium Quotation

BMI 510 806,834 European Genetic Investigation of ANthropometric Traits (GIANT)
and UK BioBank

Pulit, 2019 (25)

WHR 330 697,734 European Genetic Investigation of ANthropometric Traits (GIANT)
and UK BioBank

Pulit, 2019 (25)

WHRadjBMI 308 694,649 European Genetic Investigation of ANthropometric Traits (GIANT)
and UK BioBank

Pulit, 2019 (25)

childhood BMI 16 39,620 European Early Growth Genetics (EGG) Vogelezang, 2020 (26)

DN 170 3676 cases /
283456 controls

European FinnGen biobank Kristiansson K, 2022 (27)

fasting insulin 46 151,013 European Meta-Analysis of Glucose and Insulin-related traits
Consortium (MAGIC)

Chen, 2021 (28)

HOMA-IR 30 37,037 European Meta-Analysis of Glucose and Insulin-related traits
Consortium (MAGIC)

Manning AK, 2012 (29)

high
blood pressure

185 461,880 European MRC-IEU https://gwas.mrcieu.ac.uk/
datasets/ukb-b-14177/

Smoking 83 607,291 European GWAS & Sequencing Consortium of Alcohol and
Nicotine (GSCAN)

https://gwas.mrcieu.ac.uk/
datasets/ieu-b-4877/

circulating
CRP levels

53 204,402 European GWAS meta-analysis Ligthart, 2018 (30)
GWAS, genome-wide association study; IV, instrumental variable; BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; DN, diabetic
nephropathy; HOMA-IR, homeostasis model of insulin resistance;
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analysis. By adopting this approach, we were able to investigate

whether the causal effects of childhood and adult obesity on diabetic

nephropathy (DN) are distinct from each other. This provided vital

insights into the development of DN in relation to obesity during

different life stages.

We included childhood BMI as an additional component to

each adult obesity trait (BMI, WHR, and WHRadjBMI) to account

for the intercorrelation between adult and childhood obesity in

order to assess the independent effects of each adult obesity

characteristic on DN. To create composite instrumental variables

(IVs), we used linkage disequilibrium clustering with an R2

threshold greater than 0.001 (38). Three sets of SNPs were used

to create composite IVs: 510 SNPs for BMI and childhood BMI, 327

SNPs for WHR and childhood BMI, and 266 SNPs for WHRadjBMI

and childhood BMI. These composite IVs allowed us to calculate

the direct effect of childhood adiposity on DN while accounting for

the effect of adult BMI or vice versa. In our multivariable MR

analysis, we implemented IVW, MR-LASSO, andWeighted Median

methods to address instrumental variable collinearity and

integrated MR-PRESSO to control pleiotropic biases, thereby

enhancing our study’s accuracy and interpretability.

In addition, to further explore the independent association

between childhood obesity and DN, five risk factors (fasting

insulin, HOMA-IR, hypertension, circulating CRP levels, and

smoking) considered as important confounders were included.

After taking into account the confounding factors, one at a time

as well as concurrently to calculate the independent impact of

childhood obesity on DN. Odds ratios (ORs) and their 95%

confidence intervals (CIs) are used to present the results, which

provide a relative risk estimate of DN produced by each increase in

standard deviation (SD) of each obesity-related trait examined in

this study. P-values were changed into q-values in our MR analysis

to take the false discovery rate (FDR) in multiple testing into

consideration. FDR-adjusted P-values less than 0.05 were used to

define robust statistical significance, and crude P-values less than

0.05 and FDR-adjusted P-values greater than 0.05 were used to
Frontiers in Endocrinology 05
define marginal significance. All statistical analyses use R v4.0.0 and

the “TwoSampleMR” package (39).
3 Results

3.1 Univariable Mendelian
randomization results

Employing UVMR, genetically predicted BMI showed a

statistically significant association with an elevated risk of DN

(OR=1.24, 95%CI=1.03-1.49, P=2.06×10-2), as shown in Figure 2,

which also survived FDR correction. Adult WHR showed a

marginally significant increase in DN (OR=1.27, 95%CI=1.01-1.60,

P=3.80×10-2). When the effect of BMI was removed from WHR

(WHRadjBMI), the results were negative. Regarding childhood BMI,

there is convincing evidence that it has a statistically significant

hazard effect on DN (OR=1.97, 95%CI= 1.59-2.45, P=8.55×10-10).

The weighted median method and MR-Egger regression provided

additional support for the results of IVW as mentioned above, with

estimates that were all in the same general direction.

In contrast to childhood BMI, the Q statistics of the SNP

instruments for the other lifelong adiposity measures (BMI,

WHR, WHRadjBMI) were all less than 0.05, indicating significant

heterogeneity among the genetic instruments. To account for this

heterogeneity and ensure our results’ robustness, we used a random

effects model for these adiposity measures in the analysis.

In addition, MR-Egger regression analysis revealed an intercept

centered at zero, indicating no strong evidence for substantial

horizontal pleiotropy (MR-Egger intercept>0.05). This suggests that

asymmetric pleiotropic effects were less likely to influence the causal

estimates generated. However, the significant global test p-value 0.05

of theMR-PRESSO study demonstrated pleiotropy for adult BMI and

WHR. Notably, the results remained statistically significant after

outlier-corrected filtering, demonstrating the robustness of our

findings even after accounting for potential pleiotropic effects.
FIGURE 2

Estimation of the total effect of life course adiposity on the risk of DN using univariable Mendelian randomization. Boxes denote the point estimates
of causal effects, and error bars denote 95% confidence intervals. Asterisks (※) denote statistical significance survived false discovery rate (FDR)
correction (PFDR <0.05). BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; No. of SNP,
number of instrumental variables; OR, odds ratio; 95%CI, 95% confidence interval.
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The funnel plot of the life course adiposity instruments showed

a proportional distribution of effect estimates, indicating no

significant publication bias. Leave-one-out histogram analysis also

failed to identify any specific SNP that had a disproportionate effect

on the association between the risk of DN and the overall

association. These results demonstrate that the reported

associations are legitimate and robust and that the influence of

the genetic tools, rather than any particular SNP, is responsible for

the overall results. Furthermore, Steiger filtering did not reveal a

causal effect of DN on any of the obesity exposures, further assuring

directionality (Supplementary Table 2).
3.2 Multivariable Mendelian
randomization results

Although previous evidence has shown that both childhood and

adult obesity are associated with an increased risk of DN, it is still

uncertain whether their effects are independent of each other. To

address this question, we performed a series of MVMR analyses

(Table 2). Of note, the causal effects of adult BMI and adult

abdominal obesity (WHR) on DN were significantly attenuated.

They became nonsignificant in MVMR models after accounting for

childhood BMI as a covariate. It suggests that the presence of

childhood obesity influences the effect of adult general and

abdominal obesity on DN. These results imply that childhood

obesity may mediate the association between adult obesity and

the risk of DN.

In contrast, a constant and robust independent effect of

childhood BMI on the risk of DN was found even after

controlling for each adult adiposity characteristic. The effect of

childhood BMI was still substantial and high after adjusting for

adult BMI[IVW, OR=1.90, 95% CI =1.60-2.25, P=2.03×10-13;

LASSO, OR=1.91, 95% CI =1.65-2.21, P=3.80×10-18], the

independent effect of childhood BMI on DN persisted after

adjustment for adult WHR [IVW, OR=1.80, 95% CI=1.40-2.31,

P=4.20×10-6; LASSO, OR=1.90, 95% CI =1.56-2.32, P=2.76×10-10].

These consistent findings across both IVW and MR-Lasso analyses,

with p-values significantly less than 0.001, reinforce the

independent and substantial impact of childhood BMI on the risk

of DN. Furthermore, the implementation of MR-PRESSO,

especially after outlier correction, highlighted significant

differences, affirming that the exposure effects on DN outcomes

are statistically meaningful and robust even when adjusting for

pleiotropy. This underscores the reliability and strength of

our conclusions.

Lastly, in our MVMR analysis, adjustments for confounders

such as fasting insulin, HOMA-IR, high blood pressure, circulating

CRP levels, and smoking were meticulously made. These

adjustments are crucial for accurately assessing the link between

childhood obesity and DN, considering the potential modifying

effects of various risk factors. After controlling for covariates, the

magnitude and direction of the impact of childhood obesity on DN

were all sustained across repeated testing corrections (Figure 3).
Frontiers in Endocrinology 06
4 Discussion

4.1 Main study findings

Using data from the biggest GWAS(s) carried out to date for

each variable, our MR investigation evaluated the causative

involvement of numerous obesity-related features in the

development of DN. We successfully identified the significant

deleterious effects of genetically predicted adult BMI, adult WHR,

and childhood BMI on DN. Integrating these obesity-related traits,

we observed that the impact of adult BMI on DN was mainly

mediated by childhood BMI, which also held true for adult WHR.

On the contrary, when compared to adult measures, childhood BMI

consistently exhibited a distinct and independent risk factor for DN.
4.2 Relationship between adult obesity and
diabetic nephropathy

Multiple studies have employed an MR method to identify links

between genetic susceptibility to overall obesity and DN (24, 40). We

additionally investigated the utilization of MVMR to regulate the

impact of childhood BMI and discovered a moderation in the impact

of adult BMI, indicating that the presumed causal association

between adult BMI and DN is primarily due to elevated childhood

BMI. When considering these traits collectively, these findings

indicate an intricate interaction that underlies various obesity-

related characteristics throughout one’s lifetime, emphasizing the

significance of simultaneously taking these traits into account.
4.3 Relationship between adult abdominal
obesity and diabetic nephropathy

A meta-analysis of 14 cross-sectional studies indicated that

abdominal obesity parameters were associated with increased

odds of DN (6), While Man et al. (8) found that people with
TABLE 2 Independent effect of adult obesity and childhood obesity on
the risk of DN using MVMR.

OR (95% CI) P-value

Model 1

adult BMI 1.15 (0.96-1.37) 0.140

childhood BMI 1.90 (1.60-2.25) <0.001※

Model 2

adult WHR 1.03 (0.81-1.31) 0.796

childhood BMI 1.80 (1.40-2.31) <0.001※
fro
Model 1: independent effect of adult BMI and childhood BMI on DN; Model 2: independent
effect of adult WHR and childhood BMI on DN; Asterisks (※) denote statistical significance
survived false discovery rate (FDR) correction (PFDR<0.05).
BMI, body mass index; WHR, waist-to-hip ratio; DN, diabetic nephropathy; OR, odds ratio;
95%CI, 95% confidence interval.
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abdominal obesity did not have DN in T2DM. Despite the above

discrepancies, there is no MR study on the association between

abdominal obesity and DN.

Our UVMR revealed a significant detrimental effect of DN using

an enlarged collection of IVs that included 330WHR-associated SNPs.

After accounting for childhood BMI, our MVMR also noticed that this

protective impact of WHR practically vanished, suggesting that the

established putative causality of adult WHR and DN is mainly due to

high childhood BMI. There are several possible interpretations of this

discrepancy: First, these studies were limited by their observational

nature and lack of randomization, prospective design, and blinding.

They primarily consisted of observational studies or meta-analyses

based on observational data. The discrepancies in the results could be

attributed to the inherent limitations of the non-randomized

comparative study design itself (41). Second, the association between

abdominal obesity and DN identified in observational studies may be

due to insidious confounding variables. Despite adjusting for various

confounders such as age and diabetes mellitus in numerous studies,

there may still be underlying confounders that remain unaccounted for.

Hence, further research is warranted to investigate the genetic link

between DN and abdominal obesity.
4.4 Childhood obesity is a causal risk
factor for diabetic nephropathy

Moreover, our research emphasizes the critical contribution of

childhood BMI to DN. Based on the findings from our UVMR

analysis, it was evident that childhood obesity posed a significant

threat to the development of DN. Conversely, our MVMR results

offered robust evidence supporting a direct link between childhood

obesity and DN, which remained unaffected by adult metrics or

other variables.

In recent times, multiple systematic reviews and meta-analyses

have consistently demonstrated a significant association between high

childhood BMI and an elevated risk of developing adult diabetes, with

indications of its potential persistence into adulthood (42–44).

Therefore, DN, one of the most common microvascular

complications of diabetes, may have potential mechanisms, including

long-term childhood obesity status, that directly affect renal function by

altering intrarenal hemodynamics, causing oxidative stress, and
Frontiers in Endocrinology 07
increasing pro-inflammatory adipokines and cytokines (8), such as

insulin resistance, hypertension, and impaired glucose and lipid

metabolism, which damage the kidney. Unfortunately, there was not

enough data from observational studies to prove the significant

association between childhood obesity and DN; therefore, additional

experimental studies are necessary to elucidate the precise molecular

mechanism behind this discovery.
4.5 Strengths and limitations

The current study has several advantages, as we utilized extensive

MR to creatively evaluate the distinct impact of various interconnected

obesity characteristics on DN. Notably, our findings indicate that

childhood obesity has a detrimental effect on DN later in life.

However, we also need to acknowledge several limitations. Initially,

the presence of pleiotropy caused by undetected confounders may

introduce bias to the causal estimates. Nevertheless, we made every

effort to minimize such prejudice. We applied the MR-Steiger filtering

method separately in UVMR to eliminate SNPs that might suggest

reverse causality during the research process. Furthermore, we

conducted MVMR analysis by incorporating exposure with

confounders individually to prevent pleiotropy. In addition, due to

the linear assumption underlying the two-sample MR approach, it was

not possible for us to investigate the non-linear relationship between

obesity and DN using GWAS summary statistics. Therefore, it may be

necessary to conduct future one-sample MR studies utilizing

semiparametric methods (45) to address this issue. Given the

restricted sample size of DN, it may be necessary to have a more

extensive GWAS database for DN to further confirm causality.

In conclusion, we have clarified the increasing correlation between

obesity and the risk of DN. Additionally, we discovered that childhood

obesity was substantially responsible for the overall impact of adult

general obesity and adult abdominal obesity on DN. Finally, we showed

that childhood BMI has a largely independent influence on DN,

independent of adult measurements. Our findings highlight the

importance of childhood obesity in the development of DN and

underscore the need to consider the complex interactions that underlie

related exposures. Further observational studies or pathophysiological

mechanisms of childhood obesity are needed in the future to provide

new targets for the prevention and treatment of DN.
FIGURE 3

After correcting for each confounder separately and applying MVMR, the effects of genetically predicted childhood obesity on the risk of DN are
independent. The y-axis details the genetically predicted confounder(s) for which adjustment was made, and the x-axis details the ORs and 95%Cls
per 1-standard deviation (SD) increase in exposure. Asterisks (※) denote statistical significance survived false discovery rate (FDR) correction
(PFDR<0.05). BMI, body mass index; DN, Diabetic nephropathy; CRP, circulating CRP levels; IVW, Inverse-variance weighted approach; NO.SNP,
number of instrumental variables; OR, odds ratio; 95%CI, 95% confidence interval.
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