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As the incidence of type 2 diabetes mellitus (T2DM) is increasing rapidly and its

consequences are severe, effective intervention and prevention, including sleep-

related interventions, are urgently needed. As a component of sleep architecture,

naps, alone or in combination with nocturnal sleep, may influence the onset and

progression of T2DM. Overall, napping is associated with an increased risk of

T2DM in women, especially in postmenopausal White women. Our study showed

that napping >30 minutes (min) increased the risk of T2DM by 8-21%. In addition,

non-optimal nighttime sleep increases T2DM risk, and this effect combines with

the effect of napping. For nondiabetic patients, napping >30 min could increase

the risks of high HbA1c levels and impaired fasting glucose (IFG), which would

increase the risk of developing T2DM later on. For diabetic patients, prolonged

napping may further impair glycemic control and increase the risk of developing

diabetic complications (e.g., diabetic nephropathy) in the distant future. The

following three mechanisms are suggested as interpretations for the association

between napping and T2DM. First, napping >30 min increases the levels of

important inflammatory factors, including interleukin 6 and C-reactive protein,

elevating the risks of inflammation, associated adiposity and T2DM. Second, the

interaction between postmenopausal hormonal changes and napping further

increases insulin resistance. Third, prolonged napping may also affect melatonin

secretion by interfering with nighttime sleep, leading to circadian rhythm

disruption and further increasing the risk of T2DM. This review summarizes the

existing evidence on the effect of napping on T2DM and provides detailed

information for future T2DM intervention and prevention strategies that

address napping.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is the most common form of

diabetes and accounts for more than 90% of diabetes cases worldwide

(1). During the past few decades, the incidence and prevalence of

T2DM have risen alarmingly and become an ongoing global public

health issue. According to the 10th edition of the International Diabetes

Federation (IDF) Diabetes Atlas, 537 million adults aged 20-79 years

had diabetes worldwide in 2021, and this number is predicted to rise to

783 million by 2045 (2). When poorly controlled, T2DM can lead to

many serious complications, including diabetic nephropathy, diabetic

peripheral neuropathy, and diabetic retinopathy (3). Therefore, there is

an urgent need to propose effective treatment and prevention strategies

for T2DM and its complications.

Population-based studies have reported a U-shaped association

between nighttime sleep duration and T2DM (4, 5). Compared with a

sleep duration of 7-8 hours (h), both short sleep duration (<5-6 h)

and long sleep duration (>8-9 h) increased the risk of impaired

fasting glucose (IFG) and the incidence of T2DM. In addition, the

number of night shifts worked per month appeared to have a dose-

dependent relationship with the risk of T2DM (6). Interestingly, an

association between chronotype and T2DM risk was also observed in

shift workers (7). That is, the risk of T2DMwas further increased by a

long history of shift work among people with morning chronotypes,

whereas people with evening chronotypes had a lower risk (7).

Furthermore, participants with poor sleep quality had a higher risk

of T2DM than those with good sleep quality (8–10). Thus, current

evidence suggests that sleep is strongly associated with the incidence

of T2DM. However, because other aspects of sleep, such as napping,

have seldom been studied, research has not yielded a full, integrative

understanding of how sleep affects T2DM.

As a key component of sleep architecture, napping act

independently or in conjunction with nocturnal sleep to affect

T2DM. Emerging evidence suggests that extended napping may

increase the risk of T2DM (11, 12). Previous meta-analyses

investigated the association between napping and T2DM, but these

studies primarily focused on simplistic dichotomous classifications of

either napping or no napping, or nap duration ≥1 hour/<1 hour (13–

15). A recent meta-analysis examining specific nap durations (<30

minutes, 30-60 minutes, >60 minutes) revealed that naps exceeding

30 minutes were significantly associated with an increased risk of

developing T2DM (16). However, these studies failed to provide a

robust argument for the influence of nap duration on T2DM risk. In

addition, none of these systematic investigations have explored

potential variations in the relationship between napping and

T2DM based on ethnicity or menopausal status among women,

nor have they investigated the combined impact of napping and

nighttime sleep on T2DM. Therefore, this review conducted an

extensive search across PubMed, Embase, and Web of Science

databases to identify relevant studies concerning the association

between napping and T2DM. The impact of napping on glycemic

traits as well as its role in T2DM development and complications was

thoroughly investigated while carefully analyzing potential

influencing factors. These findings may contribute to elucidating

the comprehensive effect of napping on T2DM.
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2 Basic concepts of napping

2.1 Definition, types, and duration
of napping

Napping typically refers to a brief period of sleep in the early

afternoon, ranging from a few minutes to several hours in duration.

There is currently no standard classification system for napping. In

previous studies, napping habits have been classified differently

because of the different purposes of the studies. Broadly, some

studies divide napping behavior qualitatively into 2 groups

(napping and no napping or habitual napping and occasional

napping) (12, 17, 18), while others use quantitative strategies to

investigate the frequency of napping (19–21) or directly inquire

about the duration of naps. For the latter, napping types may be

divided into 3 groups [0, ≤1-30 and >30 minutes (min) (22); 0, ≤1

and >1 h (11, 18, 23–25)], 4 groups [0, 1-30, 31-90 and >90 min

(26); 0, 1-30, 31-60, and >60 min (27, 28); 5-30, 31-60, 61-90 and

>90 min (29)], or even 5 groups [0, 1-30, 31-60, 61-90 and >90 min

(30–33)] using different cutoff time intervals. Notably, the definition

of napping varies from that of excessive daytime sleepiness. The

term “excessive daytime sleepiness” refers to an overwhelming

sensation of somnolence, a persistent inclination for

uninterrupted sleep or the incapacity to remain alert during

daylight hours. This condition is evaluated using the Epworth

Sleepiness, where a score of 10 or higher indicates excessive

daytime sleepiness and may indicate the presence of a sleep

disorder, medical issue, or other contributing factors (34).

Conversely, Daytime napping is a purposeful and brief period of

restorative slumber that typically provides revitalization

and rejuvenation.
2.2 The relationship between napping and
nighttime sleep

As humans are a diurnal species, nighttime sleep accounts for

the majority of human sleep, while napping is used as a supplement.

However, with changes in lifestyles and increasing shift work, the

relationship between napping and nighttime sleep is becoming

more complicated. It is commonly assumed that daytime naps,

especially long naps in the late afternoon, may interfere with

nighttime sleep (35, 36). However, there is conflicting

information regarding their effect on health in interaction with

other factors (37, 38). This is because the effect of napping may vary

depending on the duration of night sleep. Naps, especially long

naps, may be harmful for a variety of health conditions in people

who sleep too long at night, while napping may have a protective

effect for those who have inadequate night sleep. Concordantly, a

study of self-reports from 1,166 community-dwelling participants

aged 75-94 years (y) (83.4 ± 5.3) showed that regular napping

significantly increased the risk of death in long sleepers (>9 h per

night) but decreased mortality in short sleepers (<7 h per night)

(39). Another study confirmed that if people who slept <5 h at night

did not nap, they were often sleepier during the day (40). These
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observations indicate that proper napping is considered desirable to

compensate for the negative health effects of sleep deprivation

during the night. Although seldom studied, the quality of night

sleep could also contribute to the interaction. Therefore, the effect of

napping on health should not be evaluated only in isolation; instead,

it would be more reasonable for further studies to consider the joint

effect of napping and nocturnal sleep.
2.3 General effects of napping on people

Napping poses both benefits and risks to health, and existing

studies have reported inconsistent results due to different napping

characteristics. Generally, the utilization of brief napping periods (<30

minutes) can contribute to the enhancement of alertness and

concentration, thereby tasks (40–42). Moreover, various studies have

demonstrated that taking a nap has been proven to enhance cognitive

performance, facilitate the processing and storage of information, as

well as improve learning outcomes and productivity (43–45). Napping

can also alleviate feelings of fatigue and enhance mood states, thereby

ameliorating symptoms of anxiety and depression, particularly in the

midst of a demanding day or following inadequate sleep the previous

night, invigorate you, diminish tension, and enhance your overall sense

of well-being (46). The act of napping also serves to stimulate creativity

and foster innovative thinking within the brain. Resting allows for brain

recuperation and enhanced clarity ideas and effective problem-solving

(44). On the contrary, late napping or longed naps can result in

difficulties initiating sleep or experiencing shallow sleep during the

night (47, 48). Additionally, they can foster indolence and

procrastination, squandering valuable time and impeding the

accomplishment of daily tasks and responsibilities. The

overindulgence in napping may induce a phenomenon known as

“sleep inertia” (44). The impact of sleep inertia can indeed be more

severe than that of a night of sleep loss (49). The findings of a study

indicate that brief naps lasting less than 15 minutes have the potential

to mitigate sleep inertia (50). Overall, only proper napping duration

can cause positive effects (Figure 1).
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3 Factors influencing the association
between napping and T2DM

3.1 Association between napping and
T2DM in different races/ethnicities

Napping habits vary among different geographical locations,

social circumstances, cultures, and populations. Daytime naps,

especially shortly after lunch, are more commonly observed in

countries with a napping culture, such as China. For them, midday

naps are considered a healthy lifestyle practice, and most schools in

China offer napping opportunities for children and adolescents

(51). Statistically, approximately 20.3% of Chinese adults aged 30-

79 y regularly take naps (52), and the percentage prevalence of

habitual napping also increases with age (12, 23). In contrast,

countries such as the US, UK, Germany and Finland do not

practice habitual napping. Most European and American

populations are more likely to nap unintentionally due to their

current levels of exhaustion.

Racial differences in the relationship between nighttime sleep

duration and T2DM do exist (53–55). Compared with White

people, Black people have increased rates of short or long

nighttime sleep durations and an accompanying increase in their

risk of developing T2DM (56, 57). However, few studies focus on

racial differences in the association between napping and T2DM. In

a study of postmenopausal White, Filipina, and Black women aged

50-86 y (n = 1,658), daytime nap duration was associated with

T2DM only in White women (22). After adjustment for covariates

including nighttime sleep duration, White women who napped ≥30

min per day still had increased odds of developing T2DM (22). In

contrast, the Sister Study, which included 39,071 eligible women

from 2003 to 2009 (mean age 54.8 ± 8.8 y, with 87% self-identifying

as White, 8% Black, and 5% Hispanic/Latina), showed that frequent

napping (≥3 times/week) was associated with an overall 1.19-fold

increase in the risk of T2DM (19). More specifically, for Black and

Hispanic/Latina women, all sleep traits were significantly associated
FIGURE 1

The positive and negative health outcomes of napping.
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with T2DM risk after controlling for waist-to-hip ratio (WHR),

body mass index (BMI) and other adiposity measures; but for White

women, only napping frequency was significantly associated with

T2DM risk (19). However, when within-race comparisons were

made, only White women who napped frequently (≥3 times/week)

had an increased T2DM risk (1.20-fold) (19).
3.2 Association between napping and
T2DM in different ages and genders

Factors such as age, gender, and female menopausal status may

also contribute to inconsistencies in the various associations

between napping and T2DM. Thus far, most cross-sectional

studies have not observed a significant association between

napping and T2DM in men (23, 24, 27, 32, 33). A cohort study

including 53,916 Chinese participants (22,573 men, 31,343 women,

mean baseline age was 52.0 ± 9.9 y) showed that male habitual

nappers indeed had an increased risk of T2DM [OR (95% CI), 1.45

(1.20–1.74)] (12). The same phenomenon was also noted in the

studies conducted by Leng et al. [1.55 (1.12, 2.16)] (17) and Xu et al.

[1.35 (1.24, 1.25)] (18) (Figure 2). In contrast, most studies have

observed significant associations between napping and an altered

risk of T2DM in women. However, the results of a Japanese cohort

study (N=20,318) indicated an insignificant correlation between

napping and T2DM in women [1.20 (0.92, 1.58)] (58) (Figure 2).

Among female participants, the relationship again varies

depending on menopausal status. A study including 6,178 eligible

women (aged 40 y or older) showed that for premenopausal

women, napping >1 h as opposed to not habitually napping at all

was associated with an increased risk of T2DM in both unadjusted

and exclusively age-adjusted models (23). However, after further

adjustment for more confounders (BMI, smoking and drinking

status, physical activity, nighttime sleep duration, education levels

and retirement status), this statistical association disappeared (23).

Further cross-sectional data from the China Health and Retirement

Longitudinal Study showed that in the total sample of participants

aged 45 years and older, a nap duration >60 min significantly

increased the risk of T2DM (24). However, this statistical

association disappeared in middle-aged premenopausal women

(45-59 y) after stratification by age and menopausal status (24).

For ascertainment, we carried out a meta-analysis of these two

available studies (23, 24) and confirmed that there was no detectable
Frontiers in Endocrinology 04
association between napping and T2DM in premenopausal

women (Figure 3).

Instead, studies have consistently concluded that postmenopausal

women who habitually nap or those who nap for >1 h at a time are

at increased risk for T2DM (Supplementary Figure 2) (23, 24).

Fang et al. conducted an age-stratified analysis of 6,940 women

aged over 45 y to assess the effect of napping on T2DM in

postmenopausal women. Interestingly, their results showed that

the association between napping >1 h and T2DM was present

only in postmenopausal women aged 45-59 y (24). Other

postmenopausal age ranges with different nap durations were

also found to be specifically associated with T2DM risk, e.g.,

females aged ≥50 y who napped >1 h in Zhao et al.’s study [2.13

(1.17-3.88)] (27), women aged 45-54 y who napped ≥91 min in Liu

et al.’s study (33), and postmenopausal women over 55 y of age

who napped >1 h in Sun et al.’s study (23). Hence, the highest risk

of T2DM was identified to occur with different nap durations at

different postmenopausal ages in these studies. Among these

studies, Fang et al. (24) and Sun et al. (23) clearly defined the

postmenopausal age range, while other studies merely identified

significant age ranges through stratification analyses. These results

all imply that menopause indeed plays an important role in

napping’s effect on T2DM risk. Next, Yan et al. carried out an

in-depth study of this phenomenon and highlighted that the

highest risk occurred in the initial postmenopausal stage (59).

More specifically, premenopausal women have higher insulin

sensitivity and a lower incidence of T2DM than age-matched

men, and this advantage disappears after menopause, with an

ensuing increase in impaired glucose homeostasis and the risk of

T2DM (59). However, how the menopausal state affects the risks of

T2DM through napping remains to be elucidated.
4 Effect of napping on blood
glucose traits

4.1 Effect of napping on glucose
metabolism in the nondiabetic population

It has been speculated that the high risks of elevated HbA1c

levels and a high homeostasis model assessment of insulin

resistance (HOMA-IR) index are results of inappropriate daytime

napping (60). Thus, understanding how napping affects the glucose
FIGURE 2

Effect of napping on T2DM by gender.
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levels of nondiabetic people could help deepen the understanding of

the effect of napping on the occurrence of T2DM.

As shown in Table 1 (60–66), in general, longer napping

duration or more frequent napping is related to increased HbA1c

levels, hyperglycemia, IFG, impaired glucose regulation (IGR) and

elevated IR risks. For example, consider HbA1c (63); a prospective

study suggested that napping >30 min in the absence of sleep

deprivation significantly increased the risk of abnormal glucose

metabolism. In addition, for people with sleep deprivation, both
Frontiers in Endocrinology 05
naps >30 min and a lack of naps were associated with an increased

risk of high HbA1c levels (>6.5%) over an average of 4.5 years of

follow-up (63). In Chinese adolescents with adequate nighttime

sleep, another study found that napping >3 times/week for >30 min/

day may increase the risk of IFG (64). Here, nighttime sleep

adequacy is inferred from total time in bed. Despite some bias,

this metric still strongly suggests that for those adolescents with

adequate nighttime sleep, prolonged (>30 min/day) or more

frequent (>3 times/week) napping could significantly increase the
TABLE 1 Effect of napping on blood glucose traits in non-diabetic population.

Author,
year

Traits Country/
data
source

Sample Main results

Huang
et al.,
2014 (54)

HbA1c China A cross-sectional study involving 7,568
participants (59.6% females) aged 40-65 y
in China.

Participants who reported napping had a higher risk of HbA1c >6.0%,
IGR and IR.

Liu et al.,
2022
(55)

HbA1c UK Biobank A mendelian randomization study based
on UK Biobank (n = 336,999, mean age
57 y, 54.0% females).

Daytime napping (MVR 0.087 [0.081–0.093]; 1SMR main 0.090 [0.030–
0.140]) was associated with higher HbA1c levels.

Zonoozi
et al.,
2017 (56)

HbA1c, fasting
glucose
and insulin

The British
Regional
Heart Study

A representative sample of British men
aged 71-92 y with no history of heart
attack or heart failure.

Napping duration >1 h showed significantly higher mean levels of
HbA1c, fasting glucose and insulin.

Li et al.,
2016 (57)

HbA1c,
HOMA-
IR index

China 5,845 Chinese (46.8% females; 30–65 y of
age) based on the cohort study.

After an average of 4.5 y of follow-up, >30 min of daytime napping was
significantly associated with an elevated HbA1c level (>6.5%) and high
HOMA-IR index in overall.

Ji et al.,
2019 (58)

IFG China The sample comprised 625 early
adolescents (12.3 ± 0.6 y) with 45.3% (n
= 283) girls from China.

Early adolescents who napped 3-4 days/week (OR = 1.72, P < 0.001), 5-7
days/week (OR = 1.34, P = 0.02) or ≥31 min/nap (OR = 1.52, 1.56, P <
0.05) were associated with increased likelihoods of IFG compared to
non-nappers.

Al-Abri
et al.,
2022 (59)

HbA1c Oman A cross-sectional descriptive community-
based study (n = 405, 48.0% female, mean
age 32.8 ± 11.5 y) among the
Arab population.

Napping >1 h is correlated with increased HbA1c in participants with
normal night sleep duration in young and middle-aged adults.

Zheng
et al.,
2021 (60)

hyperglycaemia China A cross-sectional analysis of 172,901
adults aged ≥40 y living in China.

Long napping durations (≥1 h) were associated with hyperglycaemia (OR
= 1.04, 95% CI = 1.01-1.09) compared with no napping without
interactions from gender or age.
MVR, multivariable regression, 1SMR, one-sample Mendelian randomization, BMI, body mass index, IGR, impaired glucose regulation, IR, insulin resistance, IFG, impaired fasting glucose, TIB,
time in bed.
FIGURE 3

Effect of napping on T2DM incidence in premenopausal women. The plot shows the effect of different napping durations on the risk of T2DM in
premenopausal women. CI, confidence interval; OR, odds ratio. The OR based on multiple regression analysis from the Fang study (24) and the
adjusted OR from the Sun study (23) are reported.
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risk of IFG (64). Overall, a detrimental effect of lengthy napping

(>30 min/day) is strongly emphasized in these studies, regardless of

adequate nighttime sleep or sleep deprivation. In contrast, it seems

that napping for less than 30 min is likely to have a protective effect

for both adequate and inadequate night sleepers. Nevertheless, as

mentioned above, the correlation between napping and blood

glucose characteristics needs to be considered in combination

with nighttime sleep, since not taking naps was found to be

associated with abnormal glucose metabolism for inadequate

night sleepers only. Additionally, how napping interacts with

night sleep to influence the blood glucose levels of nondiabetic

individuals still needs further exploration.
4.2 Effect of napping on T2DM risk

Existing data show that longer napping duration (>30 min or >1

h), more frequent napping (>4 days/week), and habitual napping

can all significantly increase the risk of T2DM (Table 2) (11, 12, 17,

18, 20–28, 30, 31, 37, 58, 67–73). To make it clearer, we conducted a

meta-analysis that included 14 studies and 339,665 individuals (11,
Frontiers in Endocrinology 06
18, 24–28, 30–33, 68, 69, 73). Because the classification of napping

time is inconsistent among these studies, we first classified napping

into <1 h and ≥1 h groups. The results showed that nap durations of

both ≤1 h (OR = 1.16, 95% CI = 1.11-1.22) and >1 h (OR = 1.38,

95% CI = 1.23-1.55) increased the risk of T2DM (Supplementary

Figure 3). This indicates that such a classification is too rough to

provide useful guidance. Next, we classified nap duration using

three cutoffs spaced at 30-min intervals, resulting the categories of

≤30 min, 31-60 min, 61-90 min, and ≥91 min. The results showed

that there was no statistically significant association between

napping ≤30 min and T2DM risk, while napping for 31-60 min

(OR = 1.09, 95% CI = 1.02-1.16), 61-90 min (OR = 1.07, 95% CI =

1.00-1.15) or ≥91 min (OR = 1.20, 95% CI = 1.13-1.28) could

significantly increase the risk of T2DM (Supplementary Figure 4).

This result is consistent with the effect of lengthy napping (>30 min)

on glucose metabolism in nondiabetic individuals. Thus, the

different glycemic effects of napping ≤30 min and >30 min may

account for part of the inconsistency. Future studies should use the

vital classification time point of 30 min.

There are limited data on the combined effect of napping and

nighttime sleep on T2DM. Generally, no napping and a nighttime
TABLE 2 Effect of napping on type 2 diabetes mellitus.

Author, year Country/
data
source

Study
design

Sample Main results

Lin et al.,
2021 (11)

China Cohort
study

2,620 elderly, 51.0% were males and the mean age
was 66.9 ± 5.8 y.

Individuals with long daytime napping (>1 h/day) had
increased risk of developing T2DM than non-nappers
(adjusted RR = 1.52, 95%CI = 1.10, 2.10).

Wang et al.,
2021 (12)

China
cohort
study

The CKB study, 53,916 subjects (22,573 men and
31,343 women, 30-79 y).

5.11% of participants reported habitual daytime napping.
Habitual daytime napping is positively associated with risk of
T2DM in adults, except premenopausal females (OR = 1.39,
95%CI = 1.21, 1.59).

Leng et al.,
2016 (17)

Britain Cohort
study

13,465 individuals (3,852 reported naps) from
European Perspective Investigation into Cancer-
Norfolk study, ages 40-74 y in UK.

Daytime napping was associated with an increased risk of
T2DM (OR = 1.58, 95%CI = 1.23-2.03).

Xu et al.,
2010 (18)

the U.S. Cohort
study

164,399 individuals at ages 50–71 y from the NIH-
AAPP Diet and Health Cohort.

Longer daytime napping was associated with a higher risk for
T2DM for those reporting <1 h (OR = 1.23, 95%CI = 1.18–
1.29) and for those reporting ≥1 h (OR = 1.55, 95%CI =
1.45–1.66) of napping.

Lam et al.,
2010 (20)

China Cross-
sectional
study

Guangzhou Biobank cohort study, 19,567
participants (13,972 Chinese women and 5,595 men,
13,152 nap) ages ≥50 y.

Risk was increased for T2DM among older individuals who
reported napping 4–6 d/week (OR = 1.36, 95%CI = 1.17–
1.57) and daily napping (OR = 1.28, 95% CI = 1.15–1.44),
and the ORs were 1.35 (95% CI 1.00–1.82) and 1.41 (1.11–
1.81) for naps of ≤30 min and >30 min, respectively.

Hublin et al.,
2016 (21)

Finland Cohort
study

The study population of the Finnish Twin Cohort in
1,990 included 12,244 subjects, ages 33-45 y
in Finland.

The risk of T2DM was significantly increased only among
those napping every or almost every day (OR = 1.86, 95% CI
= 1.29–2.67).

Shadyab et al.,
2015 (22)

southern
California

Cross-
sectional
study

1,609 postmenopausal women (908 White, 330
Filipina, 371 Black) ages 50-86 y in United States.

The odds of T2DM were significantly higher among White
women napping ≥30 min/day (OR = 1.74, 95% CI = 1.10-
2.75) compared to White women without napping.

Sun et al.,
2016 (23)

China
cross-
sectional
study

A community in Guang Zhou, 8,621 (2,443 men and
6,178 women, >40 y).

In multivariate logistic regression analysis, compared with
no-habitual daytime napping postmenopausal women
(n=3213), those with daytime napping more than 1 h
(n=631) had higher prevalent T2DM (OR = 1.36, 95%CI =
1.04, 1.77). But no association was observed between men
and T2DM (OR = 1.23, 95%CI = 0.86, 1.75).
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TABLE 2 Continued

Author, year Country/
data
source

Study
design

Sample Main results

Fang et al.,
2019 (24)

China
cross-
sectional
study

The data from CHARLS, 6,940 participants (mean
age 61.03 y).

Women who napped more than 60 minutes were more likely
to report diagnosed T2DM. (OR = 1.39, 95%CI = 1.09, 1.76).

Ciren et al.,
2021 (25)

China
cross-
sectional
study

CMEC study, 2,902 subjects (1146 men and 1756
women, aged 45-79 y).

Of all participants, 15.8% reported napping 1-50min, 12%
reported napping ≥60min. Napping ≥60min was associated
with T2DM (OR = 1.33, 95%CI = 1.01, 1.74).

Yin et al.,
2018 (26)

China
cross-
sectional
study

The CHARLS study, 12,277 subjects (5,920 men and
6,357 women, mean age 59.2 y).

The weighted full adjusted ORs (95%CI) was 1.61 (1.22-2.13)
for napping >90 min in diabetic patients.

Zhao et al.,
2021 (27)

China
cross-
sectional
study

The data from four urban communities in Lanxi,
Zhejiang Province, China. 3,236 participants (1,213
men and 2,023 women, 18-80 y).

Compared to the no daytime napping group (n=1272),
people who napped during the daytime for >1 h (n=304)
were independently associated with a greater prevalence of
T2DM (OR = 1.59, 95%CI = 1.04, 2.43).

Fang et al.,
2013 (30)

China Cross-
sectional
study

Dongfeng–Tongji cohort, 27,009 retired employees
(18,515 reported naps, mean age 63.6 y) in China.

Napping duration >30 min was significantly associated with
the risk for T2DM (OR = 1.13, 95%CI = 1.02-1.25) and
napping duration >60 min was significantly associated with
the risk for IFG (OR = 1.11, 95% CI = 1.03-1.20).

Han et al.,
2016 (31)

China Cohort
study

16,399 subjects (7,083 males and 9,316 females with
a mean age of 62.5 y) from Dongfeng–Tongji cohort
in China.

Long afternoon napping (>90 min) was associated with
higher risk of incident diabetes (HR = 1.28, 95%CI =
1.03-1.59).

Picarsic et al.,
2008 (37)

The LIFE-
P study

Cross-
sectional
study

Community-dwelling older adults (n = 414, 225
reported naps), ages 70-89 y in United States.

Nappers were more likely to have T2DM (28% vs 14.3%, P =
0.007) than non-nappers.

Okada et al.,
2022 (58)

Japan
cohort
study

The Japan Collaborative Cohort Study, 20,318
participants (7,597 men and 12,721 women, 40-
79 y).

No association was observed between napping and T2DM.

Kowall et al.,
2016 (28)

Germany
cohort
study

The Heinz Nixdorf Recall study, 4,814 participants
(49.8% men, aged 45–75 years), with a median
follow-up of 5.1 years.

Napping duration and frequency are not associated with an
increased risk of T2DM.

Liu et al.,
2018 (67)

China
cross-
sectional
study

The RuralDiab study, 19,257 subjects (7,007 men
and 12,250 women, 35-74 y).

Napping duration of ≥91 min (n=4308) significantly
increased the prevalence for T2DM (OR = 1.19, 95%CI =
1.04, 1.37).

Zhou et al.,
2016 (68)

China
cross-
sectional
study

The Chinese Family Panel Studies, 13,469
participants (6,842 men and 6,627 women, >40 y).

Having over 60 minutes of daytime napping had weaker
association compared with shorter duration of daytime
napping (OR = 1.70, 95%CI = 1.12, 2.57). Daytime napping
appears to be associated with elevated risk of incidence of
T2DM (OR = 1.32, 95%CI = 0.80, 2.17).

Liu et al.,
2022 (69)

China
cohort
study

the REACTION cohort study, the remaining 11,539
subjects (4043 men, 7496 women), mean age 61 y.

The study did not find any significant association
between napping and the risk of developing T2DM.

Zhou et al.,
2023 (70)

China
cohort
study

The UK Biobank, 435,342 subjects (194,677 men
and 240,665 women, 40-69 y).

Higher daytime napping frequency (≥4 times per week) is
associated with an increased T2DM risk (OR = 1.49, 95%CI
= 1.41, 1.57).

Georgousopoulou
et al., 2017 (71)

Global
cross-
sectional
study

The Mediterranean islands (MEDIS) study, 3,749
subjects (mean age >70 y).

No association between napping and T2DM was observed
(OR = 1.11, 95%CI = 0.49, 2.54).

Stang et al.,
2007 (72)

Germany
cohort
study

the Heinz Nixdorf Recall Study, 4,472 subjects
(2,125 men and 2,333 women, 45-74 y).

The risk of developing T2DM was significantly
increased in both men and women who napped for more
than 1 hour (men: 1.77 [1.57, 1.99]; women: 3.07 [2.18,
4.33]). However, in men, even napping for ≤1 hour also
increased the risk (1.08 [1.03, 1.12]), whereas it acted as a
protective factor in women (0.62 [0.53, 0.72]).

Ye et al.,
2019 (73)

China
cohort
study

A longitudinal (REACTION) study, 33,850 subjects
(11,198 men and 22,652 women).

Napping is associated with a significantly elevated risk of
developing T2DM, and this risk escalates over
napping duration.
F
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CMEC, China Multi-Ethnic Cohort; CHARLS, China Health and Retirement Longitudinal Study; RuralDiab, the Rural Diabetes, Obesity and Lifestyle study; CKB, China Kadoorie Biobank.
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sleep duration of 6-8 h is thought to be associated with the lowest

risk of T2DM (11, 17). To be more specific, for people with enough

night sleep, a longer napping duration (>1 h) will significantly

increase the risk of T2DM, while for those with extremely long or

short nighttime sleep durations (>8 h or ≤4 h), a napping duration

>1 h will further aggravate this risk in comparison with the former

individuals (Table 3) (11, 17, 18, 31, 58, 74). However, another

study showed that poor quality and low quantity of nighttime sleep

impair blood glucose control in T2DM, while napping can mitigate

the deleterious effect of short nighttime sleep (<5 h) on glycemic

control (75). Taken together, the extant data tend to support an

adverse effect of longer napping duration (>1 h) for people with

adequate or excessive night sleep. However, for people with

inadequate night sleep, arguments still exist regarding whether

napping could mitigate or worsen their risk of developing T2DM

and how.

To solve this problem, we conducted a meta-analysis of two

studies (11, 31), which included 19,019 individuals (8,420 males and

10,599 females). Our results showed that regardless of how long

nighttime sleep was, napping >1 h increased the risk of T2DM

(Supplementary Figure 5), similar to the detrimental effect of

lengthy napping (>30 min) on glucose metabolism in nondiabetic

individuals. To be more specific, nighttime sleep duration <7 h and

nap duration >1 h (OR = 1.71, 95% CI = 1.19-2.45), nighttime sleep

duration 7-8 h and nap duration >1 h (OR=1.89, 95% CI=1.17-

3.04), or nighttime sleep duration >8 h and nap duration >1 h (OR

= 1.47, 95% CI = 1.17-1.85) increased the risk of T2DM. However,

the heterogeneity was 65; the possible reason is that we combined

the night sleep categories of ≤4 h and <7 h into a single category of
Frontiers in Endocrinology 08
<7 h for analysis, potentially contributing to the variability of

the results.

Next, for further clarification, we examined the ≤4 h night sleep

group in detail. In particular, a cohort study of older Chinese adults

showed that participants who had a nighttime sleep duration ≤4 h

and nap duration ≤1 h had a decreased risk of T2DM (0.92-fold),

while those who slept for ≤4 h and napped for >1 h had a

significantly increased risk (1.54-fold) (11). This suggests that for

people who do not sleep sufficiently at night, proper napping (e.g.,

≤1 h) works as a protective factor against T2DM, while excessive

napping (e.g., >1 h) can increase this risk. Han et al. refined the <1 h

nap duration interval to 30 min in a joint analysis of napping and

nighttime sleep time. They found a protective effect of nighttime

sleep duration <7 h and napping 1-30 min (OR 0.41, 95% CI 0.17-

1.01). For nighttime sleep duration <7 h and napping duration 31-

60 min, the OR nonsignificantly increased with increasing napping

time (OR 0.74, 95% CI 0.45-1.24). Therefore, for those who do not

sleep sufficiently at night, napping duration should be restricted to

30 min (31). However, this conclusion needs to be confirmed in a

larger sample size in the future.
4.3 Effect of napping on glycemic control
in T2DM patients

Aside from the effect of napping on all glucose metabolic traits

and on T2DM risks, napping also has a deep association with

glycemic control in T2DM patients (Table 4) (75–80). However, the

current findings regarding the effect of napping on glycemic control
TABLE 3 The combined effect of napping and nighttime sleep duration on T2DM.

Author,
year

Country Study
design

Sample Main results

Lin et al.,
2021 (11)

China cohort
study

2,620 eligible elderly (51.0% males, the mean
age 66.9 ± 5.8 y) from the CHARLS, 18.4%
napped >1 h.

Compared to non-nappers with 6–8 h of nighttime sleep, nappers who
slept ≤4 h at night/day had significantly increased the risk of developing
T2DM. Participants napped >1 h and slept over 6 h also showed higher
T2DM risk.

Leng et al.,
2016 (17)

British cohort
study

13,465 participants with complete information
on daytime napping and the covariates from the
European Perspective Investigation of Cancer-
Norfolk (EPIC-Norfolk) cohort study.

The risk of developing T2DM more than doubled for those who took day
naps and had less than 6 h of sleep, compared to those who did not nap
and had 6-8 h of sleep.

Xu et al.,
2010 (18)

the U.S. cohort
study

164,399 participants without diabetes and
10,143 participants with diabetic diagnosed after
2000 aged 50-71 y from the NIH-AARP Diet
and Health cohort in United States.

Among participants with no napping, only short night sleeping was
associated with higher occurrence of T2DM, whereas among those with
≥1 h of napping, both long and short sleeping was associated with higher
risk, whereas individuals who napped ≥1 h during the day but slept <5 h
at night had the highest risk (1.78-fold).

Han et al.,
2016 (31)

China cohort
study

16,399 middle-aged and older Chinese (7083
males and 9,316 females with a mean age of
62.5 y) from the Dongfeng-Tongji cohort study.

Individuals with both napping >60min and sleep duration ≥10h had a
72% higher risk of incident diabetes than those with sleeping 7-8h and
napping 0min (all above P < 0.05).

Okada
et al.,
2022 (58)

Japan cohort
study

20,318 participants (7,597 men, 12,721 women)
aged 40–79 y from the JACC completed the 5-
year follow-up survey and were
included analyses.

Among the non-overweight, nappers who slept ≥10h had the highest risk
of T2DM (OR = 2.84, 95%CI = 1.57-5.14), non-nappers who slept ≥10h
(OR = 2.27, 95%CI = 1.27-4.06), and nappers who slept <10h (OR = 1.30,
95%CI = 1.03-1.64) was associated with T2DM.

Zhang
et al.,
2019 (74)

China cross-
sectional
study

4,150 elderly Chinese (55.6% females), with an
average age of 74 y living in China. 56.6% of the
study subjects having habitual daytime napping.

Compared with the pattern of “daytime napping with short nighttime
sleep”, people with” no daytime napping with long nighttime sleep (OR =
1.35, 95% CI = 1.01-1.80) or daytime napping with long nighttime sleep
(OR = 1.36, 95% CI = 1.05-1.78)” had higher prevalence of T2DM.
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in T2DM patients are inconsistent. Factors such as age, gender, nap

duration, nighttime sleep duration, or the interaction of nap

duration and nighttime sleep duration may contribute to the

inconsistencies among these studies.

Several studies have proposed a beneficial effect of napping on

glycemic control in patients with T2DM. A cross-sectional study

involving 118 patients (90 males and 28 females, mean age 58 y)

with T2DM demonstrated that napping (with an average duration

of 1.3 h) was associated with improved glycemic control (76). The

same study also found that longer total sleep duration was linearly

associated with better glycemic control and that napping may

promote glucose metabolism by increasing total sleep duration
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(76). In this study, participants had an average nighttime sleep

duration of 6.6 h. As mentioned above, the optimal nighttime sleep

duration is 7-8 h; thus, this result suggests that napping may

compensate for insufficient nighttime sleep for these patients and

bring the total sleep duration into the optimal range, thus

improving blood glucose control. Another study (398 people with

T2DM and 43 people with abnormal glucose tolerance) also found

that napping improved glycemic control (HbA1c >7%) in people

with insufficient nighttime sleep (<5 h) (75). Thus, for T2DM

patients, the glycemic effect of short nighttime sleep could be

compensated by napping for the proper duration to achieve a

more appropriate total sleep time and thus achieve better blood

glucose control. However, the appropriate nap durations for

different conditions of inadequate night sleep remain to

be elucidated.

In contrast, another study involving 2,500 T2DM patients aged

18-60 y showed a 37% increased risk of poorly controlled HbA1c

(≥7%) in patients who reported “always” napping compared to

those who reported “never/rarely” napping (77). In addition, a

study including 12,997 T2DM patients from the UK Biobank

showed that patients who reported regular napping had a higher

risk of HbA1c ≥7% while on insulin therapy than those who never

or rarely napped during the same period (78). However, researchers

have noted that this result could be confounded by multiple factors,

including old age, long night sleep duration, high obstructive sleep

apnea (OSA) incidence and low physical activity (81). Here, long

night sleep duration probably played an important role in exerting

different combined glycemic effects with napping. Of course, other

intervening factors, particularly physical activity (82), should also

be controlled in future studies of the effect of regular napping on

T2DM control.
4.4 Effect of napping on
T2DM complications

Current data on the association between daytime napping and

diabetic complications are limited. Diabetes-associated kidney

disease (DKD) is the most common comorbidity of T2DM, but

the causes of its onset and progression are not clearly understood.

DKD is one of the main causes of end-stage renal disease worldwide

(83). Hypertension (84) and poor glycemic control (85) are

identified as the two main risk factors for DKD, and both of these

risk factors are independently related to daytime napping (21, 86).

Since the association between napping and poor glycemic control

has been introduced earlier, we focus only on its association with

hypertension and DKD-related traits here.

In the Dongfeng Tongji cohort study, researchers conducted

face-to-face interviews with 27,009 participants at baseline and

studied the association between napping and hypertension risk.

Generally, a longer nap duration (>30 min) was related to a higher

blood pressure level and a higher risk of hypertension. After

adjusting for confounding factors such as general sociological

characteristics, BMI, family history and physical activity, this

association still exists (86). Franke et al. investigated 733

participants (61% men, mean age 66 ± 9 y, mean diabetes
TABLE 4 Effect of napping on glycemic control in T2DM patients.

Author,
year

Country/
data
source

Sample Main results

Makino
et al.,
2018 (75)

Japan

457 Japanese
patients, aged
29–90 y,
diagnosed with
diabetes
or IGT.

Taking naps reduces the
risk of short nighttime sleep
for poor glycemic control
(HbA1c > 7%), which
indicates that midday naps
in short nighttime sleepers
with type 2 diabetes could
be beneficial for their
glycemic control.

Gozashti
et al.,
2016 (76)

Kerman

118 T2DM (90
males and 28
females, mean
age 58 y).

A one-hour increment in
sleep duration was
associated with a 0.174%
(1.4 mmol/mol) decrement
in HbA1c. Moreover,
participants who napped
(66%) had a lower HbA1c
(7.6 ± 1.0) compared to
others (8.1 ± 1.3) (P=0.04).

Bawadi
et al.,
2021 (77)

Qatar

2,448 Qatari
adults (1,000
men and 1,448
women) and
long-term
residents from
18–60 years of
age with a
history
of T2DM.

The participants who
consistently reported taking
naps exhibited a
significantly higher
likelihood of experiencing
poor glycaemic control (OR
= 1.37, 95%CI = 1.05, 1.78).

Xue et al.,
2022 (78)

UK biobank
12,997 T2DM
(mean age
>55 y).

Patients with T2D reporting
regular daytime napping
had higher odds of
exhibiting an HbA1c value
≥7% compared with the
never/rarely daytime
napping group (OR = 1.17,
95%CI = 1.03, 1.32).

Kollannoor-
Samuel
et al.,
2011 (79)

US
211 T2DM,
mean age
56.4 y.

Napping for 30-60 minutes
helps reduce the risk of high
HbA1c levels (OR = 0.07,
95%CI = 0.01, 0.74).

Suárez-
Torres
et al.,
2023 (80)

Mexico
202 T2DM
(71% females,
20-60 y).

Napping significantly
increased the risk of poor
glycaemic control in T2DM
patients (OR =2.9, 95%CI =
1.23, 6.76).
The criterion for poor glycaemic control was defined as having a HbA1c level of ≥ 7%.
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duration 10 ± 8 y) (87) and found that the prevalence of DKD was

significantly higher in patients with longer nap duration. More

importantly, longer nap duration was significantly associated with

an impaired estimated glomerular filtration rate [B (95% CI) = -0.05

(-0.09; 0.00), P = 0.044] and increased urine albumin creatinine

ratio [B (95% CI) = 0.01 (0.01; 0.02), P < 0.001] (87). However, the

pathological mechanism by which napping affects DKD patients

and ultimately causes renal failure is still unclear. Since only the

effect of napping on DKD was reported, future studies are still

needed to explore the effect of napping on the onset and progression

of other diabetic complications.
5 Possible mechanisms of the effect
of napping on T2DM

Next, we elucidated some possible mechanisms through which

napping exerts its effect on glycemic traits, T2DM and its

complication risks (Figure 4). Additionally, we considered the

potential synergistic effect of napping and nighttime sleep.
5.1 Link between increased obesity
prevalence and T2DM

Evidence indicates that excessive nap duration adversely affects

factors related to energy balance and weight control, thereby

increasing the risk that obesity will develop (88). First, prolonged

napping increases the amount of time spent stationary in bed, which

directly leads to reduced thermogenesis and daily energy expenditure,
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lowered leptin levels, and elevated ghrelin and orexin levels that

enhance fat deposition (81). Furthermore, extended daytime sleep

may aggravate obesity by disturbing nighttime sleep (89). More

specifically, lengthy naps may increase symptoms of insomnia at

night, and fragmented sleep has been confirmed to be significantly

related to increased BMI and obesity risk (90). Long naps may also

enhance irregular and excessive energy intake and promote fat

deposition (91). Taken together, the evidence indicates that longer

nap duration has a strong effect on the occurrence of obesity.

The increased prevalence of T2DM is strongly associated with

obesity. The global obesity epidemic largely explains the dramatic

increase in the incidence and prevalence of T2DM over the past 20

years. Studies have shown that approximately 90% of T2DM cases are

due to overweight (92). The link between obesity and T2DM involves

two pathologies: insulin resistance (IR) and insulin deficiency (93).

More specifically, obesity leads to persistently elevated plasma free fatty

acid (FFA) levels and increased production of adipokines and

cytokines, which could increase the risk of T2DM (94).

Overnutrition leads to mitochondrial dysfunction, which in turn

leads to IR and impaired b-cell function, contributing to the

development of T2DM (95). Therefore, the metabolic disorders

caused by obesity may lead to IR and progressive b-cell dysfunction.
Reciprocally, reduced insulin function can increase the concentration

of glucose, FFA and other nutrients, exacerbating overnutrition and

thus creating a vicious cycle.

Physiologically, inflammation could partly explain the potential

mechanistic link between naps and obesity. Esser et al. (96)

proposed that higher levels of inflammatory biomarkers may play

a role in the association between daytime napping and obesity. That

is, longer naps may increase sleep fragmentation and the frequency

of awakenings, leading to elevated interleukin 6 (IL-6) levels (97).
FIGURE 4

The influence of naps on T2DM.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1294638
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1294638
IL-6 leads to an increased risk of inflammation, which may cause

brown fat cells to dysfunction and render them unable to break

down fat properly, resulting in the development of obesity (98).

Additionally, excess daytime napping is reported to be associated

with elevated C-reactive protein (CRP) levels among older people in

the UK, particularly those who spend extreme amounts of time in

bed at night (99). In a cohort of young people with a mean age of

approximately 29 years, Mantua et al. found a linear increase in

CRP with nap frequency (100). Elevated CRP levels could lead to an

increased risk of obesity (101). Therefore, although the exact

association of nap duration with IL-6 as well as CRP is unclear,

excessive napping probably leads to increased levels of IL-6 and

CRP, increasing the risk of obesity and subsequent T2DM.
5.2 Links between hormone dysregulation
and T2DM

A wealth of studies have found a deep link between naps and

T2DM in women, especially postmenopausal women. In the

postmenopausal state, the declines in estrogen and progesterone as

well as the symptoms of mood changes, fatigue, insomnia, anxiety,

and depression that women experience during the transition phase of

menopause predispose them to sleep disturbances and reduced

insulin resistance regulation, thus increasing their risk of glucose

metabolism disorders and T2DM (102–104). Although menopause

(i.e., postmenopause) is clinically defined as the cessation of

menstruation for at least 12 months, the menopausal transition

itself actually begins 5-10 y earlier (105). Therefore, the association

between prolonged napping and T2DM in postmenopausal women

as opposed to premenopausal women should be attributed in part to

abnormal hormone levels during the menopausal transition state.

During the menopausal transition, ovarian estrogen production

decreases, testosterone levels increase, and sex hormone-binding

globulin (SHBG) levels decrease (106, 107). After menopause,

androgens increase, and the combination of increased testosterone

and decreased SHBG leads to increased levels of free circulating

testosterone and increased overall levels of androgens. These

hormonal changes could further increase insulin resistance (108). It

has also been suggested that women who reach menopause at <40 y

have a significantly increased risk of T2DM compared to women who

reach menopause in the typical age range of 45-54 y (109). Premature

menopause is probably associated with more advanced hormonal

changes as well as more abnormal sex hormone levels, leading to a

higher prevalence of T2DM in postmenopausal women. These

hormone changes are likely to worsen the adverse glycemic effect

of sleep disturbance during this postmenopausal stage, thus helping

to explain why napping >1 h significantly increases the risk of T2DM

in postmenopausal middle-aged women. However, among

postmenopausal women with high follicle-stimulating hormone

(FSH) levels and low estradiol levels, the association between

napping and T2DM seems more complicated. That is,

postmenopausal individuals with lower FSH have higher FPG and

HbA1c, as well as with higher rates of prediabetes and diabetes (110).

In addition, the Women’s Health Study (111) and the Multi-Ethnic

Study of Atherosclerosis demonstrate (112) that comparatively high
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estradiol levels are significantly associated with T2DM. Therefore, the

integral effect of napping on glycemic traits among premenopausal,

perimenopausal and postmenopausal women, together with its

complex interaction with other intervening factors, should be

further explored in the future.

In addition to the above sex hormone changes, cortisol may also

play a role. The release of cortisol upon awakening in the morning,

termed the cortisol awakening response (CAR), is followed by a

decline throughout the day (113). A significant link between

excessive daytime napping and elevated evening cortisol levels has

been reported (113). A recent meta-analysis of napping and cortisol

in children aged 0-5 y confirmed this connection and proposed the

occurrence of the CAR after napping (114), supporting the causal

relationship between them. Patients with the highest cortisol level

have been found to have the highest fasting blood glucose, urinary

glucose, and postprandial glucose as well as the highest HbA1c

levels (115). Mechanistically, excessive cortisol can lead to increased

risks of abdominal obesity and IR, which will ultimately lead to

T2DM (116). Therefore, longer daytime napping duration may

increase the risk of T2DM through increased cortisol levels as well.
5.3 Link between circadian rhythm
disruption and T2DM

Extended naps may also disrupt circadian rhythms, increasing

nocturnal awakening and shortening night sleep duration (117).

This would lead to b-cell dysfunction, hyperglycemia, impaired

glucose tolerance (118), increased HOMA-IR (119), and increased

glycated hemoglobin levels, thus increasing the risk of T2DM (120).

Melatonin, as the sleep hormone, controls the circadian rhythm

of the body and is secreted in humans primarily in the dark of night

to support sleep (121). The master clock that controls circadian

rhythms is located in the suprachiasmatic nucleus (SCN) of the

hypothalamus. Prolonged napping increases cortisol, which then

inhibits serotonin production, while insufficient serotonin results in

decreased melatonin production (122). Reduced or delayed secretion

of melatonin affects the SCN clock, thus changing the circadian

rhythms in humans (123) and producing a profound effect on sleep

patterns. Furthermore, melatonin can promote insulin secretion and

sensitivity and reduce IR (124).Whenmelatonin secretion is reduced,

insulin secretion and sensitivity are weakened correspondingly,

allowing elevated blood glucose and ultimately T2DM occurrence

(125). Interestingly, it has been observed that melatonin levels

decrease drastically in the first 15 years following menopause (126).

This change causes circadian rhythm disturbances and sleep

disorders during the menopausal stage and compounds the

increase in T2DM risk among postmenopausal women (127).

The effect of napping on melatonin secretion has also been

confirmed within young populations. A study involving 20 healthy

children (11 females, aged 30-36 months) showed that toddlers who

took naps had later bedtimes, later sleep onset times, longer sleep

latency and shorter nighttime sleep, together with a later onset of

melatonin, resulting in a delayed circadian rhythm (128). It has also

been suggested that napping more often in a week may have a

cumulative effect on delayed melatonin onset through an
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association with later bedtimes (128). In summary, napping may

affect the onset of melatonin release as well as the quantity of

melatonin production by affecting nighttime sleep, thus leading to

circadian rhythm disturbances and further increasing the risk

of T2DM.
6 Conclusion and summary

In conclusion, napping habits vary according to geographical

location, social environment, culture and population characteristics.

There are gender and ethnic differences in the association between

napping and T2DM. In particular, the association between napping

and T2DM is more pronounced in women than in men. When

combinations of gender and ethnicity were considered, this risk was

found to be particularly pronounced in postmenopausal White

women. For napping alone, our study showed that napping ≤30 min

did not increase the risk of T2DM, whereas napping >30 min

increased the risk of T2DM by 8-21%. In addition, napping and

nighttime sleep were observed to have a combined effect on

glycemic control. That is, extreme nighttime sleep duration (<5-6

h or >8-9 h) itself increases the risk of T2DM, while napping >1 h

exacerbates this risk. For nondiabetic individuals, napping duration

may be an independent risk factor for poor glycemic control, and

napping >30 min could increase the risk of high HbA1c levels and

IFG, which would increase the risk of developing T2DM later on. In

diabetic patients, prolonged napping may further impair glycemic

control and increase the risk of developing diabetic complications

(e.g., diabetic nephropathy) in the distant future.

The association between napping duration and T2DM may be

explained by obesity, hormone disturbance, menopausal status, and

circadian rhythm disruption. First, naps >30 min increase nocturnal

sleep fragmentation and the frequency of awakenings, leading to

elevated IL-6 and CRP levels, which then increase the risks of

inflammation and obesity. Together, they can lead to insulin

resistance and a resultant increased risk of T2DM. Second, in the

menopausal transition and postmenopausal states, decreased

estrogen and sex hormone-binding globulin and increased

androgen and testosterone levels jointly lead to elevated levels of

free testosterone and total androgens in circulation. These sex

hormone changes together with changes in the levels of other

hormones, such as cortisol, further increase insulin resistance and

the risk of T2DM. Third, prolonged napping may also affect the

production of melatonin and the onset of its release, which would

then influence nighttime sleep, leading to circadian rhythm

disturbances and further increasing the risk of T2DM.

This paper systematically elucidates the relationship between

napping and T2DM with extant data and provides important

suggestions for glycemic control. First, the quantity and quality of

nighttime sleep should be ensured. If nighttime sleep is sufficient and of

good quality, then individuals should either refrain from napping or

restrict the duration of their naps to 30 min. In contrast, if nighttime

sleep is insufficient, it needs to be compensated by appropriate napping

(≤30 min). Second, if the duration of night sleep is excessive, then

napping is not recommended. Nevertheless, the current research has

limitations, such as the inconsistent classification of napping in the
Frontiers in Endocrinology 12
studies we included, which resulted in a high level of heterogeneity

between studies. Next, studies should be conducted to explore the

detailed characteristics of napping more thoroughly, including the start

and end times and the interval between napping and lunch, which are

seldom considered. Additionally, quantitative and qualitative

measurements of glycemic change, such as continuous glucose

monitoring (CGM), which can trace glycemic changes earlier and

more accurately than other methods, should be used in the future to

better investigate the effect of napping on T2DM.
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