
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Nicole Horwood,
University of East Anglia, United Kingdom

REVIEWED BY

Bilgin Kadri Aribas,
Bülent Ecevit University, Türkiye
William Ian Duncombe Rae,
University of New South Wales, Australia

*CORRESPONDENCE

Zhangsheng Dai

daizhangsheng56@fjmu.edu.cn

RECEIVED 18 September 2023
ACCEPTED 22 May 2024

PUBLISHED 04 June 2024

CITATION

Fang K, Zheng X, Lin X and Dai Z (2024) A
comprehensive approach for osteoporosis
detection through chest CT analysis and bone
turnover markers: harnessing radiomics and
deep learning techniques.
Front. Endocrinol. 15:1296047.
doi: 10.3389/fendo.2024.1296047

COPYRIGHT

© 2024 Fang, Zheng, Lin and Dai. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 June 2024

DOI 10.3389/fendo.2024.1296047
A comprehensive approach for
osteoporosis detection through
chest CT analysis and bone
turnover markers: harnessing
radiomics and deep
learning techniques
Kaibin Fang1, Xiaoling Zheng2, Xiaocong Lin1

and Zhangsheng Dai1*

1Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, China, 2Aviation College, Liming Vocational University, Quanzhou, China
Purpose: The main objective of this study is to assess the possibility of using

radiomics, deep learning, and transfer learning methods for the analysis of chest

CT scans. An additional aim is to combine these techniques with bone turnover

markers to identify and screen for osteoporosis in patients.

Method: A total of 488 patients who had undergone chest CT and bone turnover

marker testing, and had known bone mineral density, were included in this study.

ITK-SNAP software was used to delineate regions of interest, while radiomics

features were extracted using Python. Multiple 2D and 3D deep learning models

were trained to identify these regions of interest. The effectiveness of these

techniques in screening for osteoporosis in patients was compared.

Result: Clinical models based on gender, age, and b-cross achieved an accuracy

of 0.698 and an AUC of 0.665. Radiomics models, which utilized 14 selected

radiomics features, achieved amaximum accuracy of 0.750 and an AUC of 0.739.

The test group yielded promising results: the 2D Deep Learning model achieved

an accuracy of 0.812 and an AUC of 0.855, while the 3D Deep Learning model

performed even better with an accuracy of 0.854 and an AUC of 0.906. Similarly,

the 2D Transfer Learning model achieved an accuracy of 0.854 and an AUC of

0.880, whereas the 3D Transfer Learning model exhibited an accuracy of 0.740

and an AUC of 0.737. Overall, the application of 3D deep learning and 2D transfer

learning techniques on chest CT scans showed excellent screening performance

in the context of osteoporosis.

Conclusion: Bone turnover markers may not be necessary for osteoporosis

screening, as 3D deep learning and 2D transfer learning techniques utilizing chest

CT scans proved to be equally effective alternatives.
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Background

Bone turnover markers (BTM) are biochemical substances

produced during the dynamic process of bone remodeling,

providing a timely and accurate reflection of bone turnover in the

human body (1). These markers play a pivotal role in the diagnosis

and treatment of osteoporosis, a prevalent bone disorder (2).

However, the diagnosis of osteoporosis primarily relies on DXA

(3). Although there is some correlation between BTM and BMD, this

correlation is not robust enough for the diagnosis of osteoporosis (4).

These limitations have hindered the widespread use of these markers.

The diagnosis of osteoporosis currently requires quantitative CT or

DXA examinations, which may increase additional costs (5).

Furthermore, the availability of these devices is limited, particularly

QCT, in many medical centers. Simultaneously, it is worth noting

that the screening rate for osteoporosis remains unsatisfactory, likely

indicating a lack of comprehensive understanding regarding the

intricacies of the disease (6).

Chest CT is a crucial and commonly performed medical check-

up. Regular chest CT scans are recommended for certain populations,

particularly the elderly, who are considered to be at higher risk for

lung cancer (7). If this examination can successfully diagnose

osteoporosis, it may potentially eliminate the need for DXA scans,

thereby reducing radiation exposure.The technologies of deep

learning and radiomics provide possibilities for the implementation

of this idea. Radiomics refers to the extraction of data that can be

analyzed frommedical imaging, and it has been extensively applied in

enhancing the accuracy of medical diagnosis, prognosis, and clinical

decision-making. Its application aims to achieve precise medical

treatment (8). This technology has gained widespread adoption and

its efficacy has been validated (9, 10). Deep learning is also extensively

utilized in the field of medicine. This technology is not only applied

for disease diagnosis but also widely employed for the automatic

segmentation of medical images (11). This technology has also been

employed in the diagnosis of osteoporosis and has yielded promising

outcomes. Previously reported studies primarily focused on analyzing

2D images such as lumbar and hip X-rays, using deep learning

techniques to diagnose osteoporosis in patients (12). However, in

medical imaging, three-dimensional images such as CT scans and

MRI scans are more commonly used. In this regard, employing pre-

trained 3D deep learning models can significantly enhance the

analysis of such medical images.

In this study, we aim to develop a comprehensive screening

model for osteoporosis by integrating patient demographics and

bone turnover markers.We also utilize radiomics techniques and

both 2D and 3D deep learning algorithms to analyze chest CT scans

and identify potential cases of osteoporosis. To extract transfer

learning, transfer learning will be employed. Transfer learning

enables the acquisition of valuable features from a source domain,

encoding these features, and transferring them from the source

domain to the target domain, thus effectively enhancing the

performance of the target domain task (13).

This study aims to identify the most optimal methods for

osteoporosis screening utilizing chest CT scans. It will explore

and compare various techniques including radiomics, 2D and 3D
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deep learning, and 2D and 3D transfer learning techniques.

Additionally, these methods will be compared to conventional

bone turnover markers for their efficacy in osteoporosis screening.
Materials and methods

Participants in the study and development
of clinical models

This study retrospectively analyzed a population of patients who

underwent both chest CT scans and DXA bone density testing at a

large hospital from January 2019 to May 2023. Patients with the

following conditions will be excluded from the scope of the study:

Severe scoliosis, both the eleventh and twelfth thoracic vertebrae with

severe compressibility fractures that cannot be corrected, the fixed

artifacts affecting the feature extraction area, and no results of bone

turnover marker examination. Approval was obtained from the

Hospital Institutional Review Board, and the study was conducted in

compliance with the principles outlined in the Declaration of Helsinki.

Almost all patients underwent chest CT scans and bone metabolism

marker detection. The BTM included in the analysis were vitamin D,

total type 1 collagen amino acid extension peptide (TPINP), and b- B-
Cross Laps. The gold standard for distinguishing osteoporosis was the

result of DXA, whereby a T-value of -2.5 or less indicated the presence

of the condition (12).

The patients were randomly assigned to training sets, and their

baseline data is depicted in Table 1. The clinical characteristics of

the patients were analyzed using either an independent sample t-

test or chi-square test, depending on the type of data.
Clinical signature

The training set data underwent initial univariate analysis to

identify factors with a p-value less than 0.05, indicating their

significance. These selected clinical factors were then used for

subsequent multivariate analysis.

To establish a predictive model, the eleven most common machine

learning models were trained using the final selected clinical factors.

These machine models include SVM (13), KNN (14), RandomForest

(15), ExtraTrees (16), XGBoost (17), LightGBM (18), NaiveBayes (19),

AdaBoost (20), GradientBoosting (21), LR (22), MLP (23).
Delineation of ROI

The preprocessing step involved adjusting the window width

and window level of the images to bone windows, as well as

standardizing the resolution of the images. Furthermore, for the

purpose of standardization, all images will undergo adjustment to

ensure consistent layer thickness and spacing. Radiomics feature

extraction primarily focused on the twelfth thoracic vertebra during

the analysis. In cases where measurement difficulties were

encountered, the eleventh thoracic vertebra was selected instead
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to minimize potential deviations. This approach considered the

physical susceptibility of the chest and waist, which are common

areas for osteoporotic fractures resulting from movement and

pressure (24). Axial images from the chest CT scans were chosen

for analysis, and image reconstruction and delineation of the region

of interest (ROI) were performed using ITK SNAP software (25).

Typically, the images captured both vertebral bodies in the chest CT

scans. Anatomical markers, such as the twelfth rib, the lower edge of

the scapula, and the seventh cervical spine spinous process, were

used to outline the segment of the thoracic spine for ROI

delineation. The process of ROI drawing is illustrated in Figure 1A.
Intra- and inter-observer variability

The intra- and inter-observer variability of the ROI delineation

on the CT images was evaluated using the Intraclass correlation

coefficient (ICC). One researcher defined the ROI, while another

researcher with more than 10 years of experience in orthopedics
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randomly selected 30 cases and redefined the ROI. Both researchers

were unaware of each other’s results. The ICC values were

calculated based on these 30 cases. Prior to feature selection, an

assessment of intra-observer variability will be performed on the

extracted radiomics features of all patients. Features exhibiting

intraclass correlation coefficients (ICCs) exceeding 0.9 will be

deemed reliable and will proceed to subsequent analyses.
Radiomics feature extraction

The feature extraction process was conducted using the

Pyradiomics Module (https://github.com/Radiomics/pyradiomics).
Feature selection

In order to identify the most relevant features associated with the

presence of osteoporosis, a meticulous feature selection process was
B

C

D

E

A

FIGURE 1

Research Process. (A) The process of outlining ROI. (B) The correlation between various clinical indicators and osteoporosis. (C) Extract Radiomics
Features: 1. Overview of Extracted Features. 2. Visualize Results using Spectral Clustering. 3,4. LASOO Regression. 5. Feature Weights. (D) Extract 2D
Transfer Learning: 1. Overview of Extracted Features. 2. Visualize Results using Spectral Clustering. 3,4. LASOO Regression. 5. Feature Weights. (E) Extract
3D Transfer Learning: 1. Overview of Extracted Features. 2. Visualize Results using Spectral Clustering. 3,4. LASOO Regression. 5. Feature Weights.
TABLE 1 The baseline clinical characteristics of patients.

feature train-no
osteoporosis

(n=170)

train-
osteoporosis

(n=222)

p_value test-label=no
osteoporosis

(n=40)

test-
osteoporosis

(n=56)

p_value

Age(year) 62.97 ± 10.19 74.98 ± 11.55 <0.01 62.90 ± 13.34 68.61 ± 11.08 0.03

vitamin D (ng//ml) 27.08 ± 9.83 23.84 ± 10.01 <0.01 25.17 ± 7.81 26.28 ± 8.72 0.52

TPINP (ng//ml) 60.31 ± 43.55 70.52 ± 55.61 0.05 53.74 ± 38.81 67.56 ± 52.09 0.16

b-CTX (ng//ml) 0.48 ± 0.27 0.69 ± 0.45 <0.01 0.53 ± 0.28 0.58 ± 0.33 0.44

gender 0.01 0.16

male 65 51 12 10

female 105 171 28 46
TPINP, Total type I collagen amino terminal extender peptide.
b-CTX, b- Cross Laps.
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implemented. Initially, the U test (p<0.05) was employed to identify

features that exhibited significant differences between the

osteoporosis and non-osteoporosis groups. Furthermore, to ensure

the inclusion of only statistically significant and reliable features,

those with ICC coefficients lower than 0.9 were excluded from this

step. This rigorous approach effectively reduced the number of

features while maintaining their predictive power.To address the

issue of multicollinearity, Pearson correlation analysis was conducted

to examine the relationships between features. Calculation of

correlation coefficients allowed for identification of feature pairs

with values ≥0.9 or ≤-0.9. In such cases, only the feature

demonstrating superior diagnostic performance was retained,

thereby preventing redundancy within the model introduced by

highly correlated features. Employing the Maximum Correlation

Minimum Redundancy (mRMR) algorithm for feature selection,

we retain only the top 20 most informative features. To further

refine the feature set, the least absolute shrinkage and selection

operator (LASSO) logistic regression technique was employed. We

employed the same machine learning model used for analyzing

clinical features to analyze the extracted radiomics features.
2D deep learning

The maximum cross-sectional area of ROI should be selected at

first, as it represents the most prominent area of the thoracic

vertebral body. These areas can then be cropped from the original

CT image using Python. The source code for the cropping process is

available open source and can be obtained from the CSDN website

(https://blog.csdn.net/).

In this study, a pre-trained model was employed, and the

researchers made no alterations to its parameters. Consequently,

the study lacked a validation group, comprising solely a training

group and a testing group (26). The division of this group aligns

with the approach used in prior studies involving clinical and

radiomics models.

The 24 most common deep learning neural network architectures

are used for learning and recognizing images of these patients. These

models are alexnet, densenet121, densenet169, googlenet, mnasnet1_0,

mobilenet_v2, mobilenet_v3_large, mobilenet_v3_small, resnet101,

resnet152, resnet18, resnet34, resnet50, resnext50_32x4d,

squeezenet1_0, squeezenet1_1, vgg11, vgg11_bn, vgg13, vgg13_bn,

vgg16, vgg16_bn, vgg19, vgg19_bn.

The cropped image serves as the input for deep learning

algorithms. To update the model parameters, the stochastic

gradient descent (SGD) optimizer is utilized. The training process

consists of 100 epochs, each containing 1800 iterations. A batch size

of 32 is used during these iterations. Each slice of the cropped image

is treated as an independent input for the deep learning model.
3D deep learning

The complete Region of Interest (ROI) is extracted and serves as

both the training and testing dataset for the 3D deep learning

model. To update the model parameters, the stochastic gradient
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descent (SGD) optimizer is utilized. The training process consists of

100 epochs, each containing 1800 iterations. A batch size of 4 is

used during these iterations. Each slice of the cropped image is

treated as an independent input for the deep learning model. The 8

most common deep learning neural network architectures are used

for learning and recognizing images of these patients. These models

are denseNet121, resnet10, resnet101, resnet152, resnet18, resnet34,

resnet50, shuffleNet. The parameter settings for 3D deep learning

mirror those utilized in 2D deep learning.
Transfer learning extraction

After completing both 2D and 3D deep learning, the most

efficient deep learning model will be chosen for feature extraction.

Once the feature extraction is finalized, these features will undergo a

screening process identical to that used for radiomics features.

Additionally, the same machine learning models would be

employed for training and testing these features.
Statistical analysis

The study will assess the efficacy of osteoporosis screening

through a comparative analysis of radiomics models, deep

learning models, transfer learning models, and clinical models.

Ultimately, we will identify the model that demonstrates the

highest screening efficiency.

To evaluate the performance of the model, data from the test set

will be used. The effectiveness of the model will be assessed using

the Area Under Curve (AUC) (27), a commonly employed metric in

evaluating the performance of predictive models. The AUC

provides a comprehensive measure of the model’s discriminatory

ability and will be used to determine the overall quality of the

predictions made by the model.

The patient’s baseline data were analyzed using statistical

software packages, specifically SPSS (version 20.0) and Python.

Continuous variables were presented as mean ± standard

deviation, while categorical variables were described using

frequencies and percentages. To assess the distribution of

continuous variables, the Kolmogorov-Smirnov (KS) (28) test was

employed. Additionally, the Levene test (29) was used to evaluate

the homogeneity of continuous variances. To compare inter-group

differences, the or Student’s t-test was used, depending on the

distribution of the variables. For categorical variables, the Chi-

squared test or Fisher’s exact test was employed. Statistical

significance was defined as a p-value < 0.05. The AUC was used

to evaluate the performance of predictive models, and the 95%

confidence interval (CI) of the AUC was calculated using the

bootstrap method with 1000 intervals. To compare the AUCs of

different models, the DeLong testing method was applied, enabling

a statistical assessment of the differences in performance metrics

between the models (30). The study aims to compare the

performance of radiomics features, transfer learning models, and

clinical features in different models. The most effective model will

then be compared to the performance of deep learning in order to
frontiersin.org
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identify the optimal method for screening patients for osteoporosis

using chest CT scans. The Selection Criteria: Evaluating the

Performance of Machine Learning Models for Osteoporosis

Screening in the Test Group, Prioritizing Accuracy and AUC.
Results

A total of 488 patients were included in the study and randomly

divided into a training group and a testing group. In the training

group, out of a total of 170 patients, none were diagnosed with

osteoporosis, while 222 patients were identified as osteoporosis

patients. Similarly, in the test group, 40 patients were found to be

free from osteoporosis, while 56 patients were diagnosed with the

condition. Figures 1B–E shows the process of feature extractionfor

clinical models, radiomics models, and 2D/3D transfer learning

models, respectively
Screening of risk factors for osteoporosis

In the univariate analysis, the p-values of gender, age, vitamin

D, TPINP, and b-cross, were found to be less than 0.05. These

indicators were subsequently chosen for the multivariate analysis.

In the multivariate analysis, the p-values of indicators such as

gender, age, and b-cross also remained below the 0.05 threshold.

Based on these results, these indicators were selected as the

foundation for establishing clinical models. The outcomes of both

single factor analysis and multivariable analysis are presented in

Table 2. Table 3 and Figure 2A displays the performance of these

features in the machine learning models. In the testing group, the

AdaBoost model exhibited the highest performance. The accuracy

of this model is 0.698, and the AUC is 0.665.
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Establishment of radiomics model

1834 radiomics features were extracted for each patient. Finally,

14 features were ultimately included in the study. Table 4 and

Figure 2B displays the performance of these radiomics features in

the machine learning models. Figure 2C shows the importance

ranking of filtered radiomics features among six tree models. In the

testing group, the LR model showcased the best performance. The

accuracy of this model in the test group is 0.750, and the AUC

is 0.739.
Efficiency of 2D deep learning models

After performing image processing and inputting the data, a

total of 24 2D deep learning models were employed to detect

osteoporosis using the maximum cross-sectional area of the ROI

in chest CT scans. These findings are summarized in Table 5 and

visually presented in Figure 3. Additionally, the visualization results

of the model can be observed in Figure 4. Among the various

models tested for screening osteoporosis through chest CT,

ResNet152 exhibited the most optimal performance. The accuracy

of this model in the test group is 0.812, and the AUC is 0.855.
Efficiency of 3D deep learning models

After performing image processing and inputting the data, a

total of 8 3D deep learning models were employed to detect

osteoporosis using the all regions of the region of interest (ROI)

in chest CT scans. These findings are summarized in Table 6 and

visually presented in Figure 5. Among the various models tested for

screening osteoporosis through chest CT, ResNet10 exhibited the
TABLE 2 Screening of risk factors for osteoporosis and establishment of clinical models.

Univariate analysis Log(OR)
lower
95%CI

upper
95%CI

OR
OR lower
95%CI

OR upper
95%CI

p_value

gender 0.017 0.014 0.020 1.017 1.014 1.020 0.000

age -0.006 -0.010 -0.002 0.994 0.990 0.998 0.007

vitamin D 0.001 0.000 0.002 1.001 1.000 1.002 0.018

TPINP 0.299 0.204 0.394 1.348 1.226 1.483 0.000

Bcross 0.178 0.097 0.259 1.195 1.102 1.296 0.000

Multivariate
analysis

Log(OR)
lower
95%CI

upper
95%CI

OR
OR lower
95%CI

OR upper
95%CI

p_value

vitamin D 0.000 -0.003 0.004 1.000 0.997 1.004 0.926

TPINP -0.000 -0.001 0.001 1.000 0.999 1.001 0.673

age 0.016 0.013 0.019 1.016 1.013 1.019 0.000

gender 0.169 0.094 0.244 1.184 1.099 1.276 0.000

Bcross 0.242 0.140 0.344 1.274 1.150 1.411 0.000
fro
TPINP, Total type I collagen amino terminal extender peptide.
b-CTX, b- Cross Laps.
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most optimal performance. The accuracy of this model in the test

group is 0.854, and the AUC is 0.906.
Extraction and efficiency of 2D
transfer learning

ResNet152, the most potent model in the arena of 2D deep

learning, was identified as the top choice for feature extraction in

the domain of 2D deep transfer learning based on the results of the

previous step. In the testing group, the SVM model showcased the

best performance. The accuracy of this model in the test group is

0.854, and the AUC is 0.880. Table 7 and Figure 2D displays the

performance of these features.
Extraction and efficiency of 3D
transfer learning

ResNet10, the most potent model in the arena of 3D deep

learning, was identified as the top choice for feature extraction in

the domain of 3D deep transfer learning based on previous research
Frontiers in Endocrinology 06
findings. In the testing group, the MLP model showcased the best

performance. The accuracy of this model in the test group is 0.740,

and the AUC is 0.737. Table 8 and Figure 2E displays the

performance of these features.
Comparison of the effectiveness of
screening osteoporosis

Table 9 presents the comparison of the effectiveness of various

features in screening for osteoporosis among machine learning

models. In the LR and AdaBoost models, the radiomics features

were found to be more effective in screening for osteoporosis

compared to clinical features. However, in the other models, there

was no statistically significant difference between the effectiveness of

the two feature types. On the other hand, the effectiveness of 3D

transfer learning model was not superior to clinical and radiomics

features in any of the models. Furthermore, among all the models,

the 2D transfer learning model were superior to clinical features in

screening for osteoporosis. Additionally, the effectiveness of 2D

transfer learning was found to be superior to 3D transfer learning in

all models. Moreover, when considering the seven models (LR,
TABLE 3 Effectiveness of clinical model.

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

LR 0.770 0.829 0.7884 - 0.8688 0.721 0.835 0.851 0.696 0.851 0.721 0.780 0.590 Train

LR 0.656 0.633 0.5145 - 0.7516 0.696 0.600 0.709 0.585 0.709 0.696 0.703 0.465 Test

NaiveBayes 0.755 0.800 0.7549 - 0.8443 0.725 0.794 0.821 0.689 0.821 0.725 0.770 0.463 Train

NaiveBayes 0.698 0.631 0.5118 - 0.7507 0.804 0.550 0.714 0.667 0.714 0.804 0.756 0.257 Test

SVM 0.737 0.801 0.7581 - 0.8442 0.658 0.841 0.844 0.653 0.844 0.658 0.739 0.627 Train

SVM 0.698 0.652 0.5342 - 0.7694 0.821 0.525 0.708 0.677 0.708 0.821 0.760 0.354 Test

KNN 0.798 0.874 0.8416 - 0.9064 0.811 0.782 0.829 0.760 0.829 0.811 0.820 0.600 Train

KNN 0.615 0.622 0.5055 - 0.7387 0.571 0.730 0.711 0.529 0.711 0.571 0.634 0.600 Test

RandomForest 0.796 0.853 0.8155 - 0.8905 0.793 0.800 0.838 0.747 0.838 0.793 0.815 0.534 Train

RandomForest 0.615 0.579 0.4595 - 0.6985 0.696 0.500 0.661 0.541 0.661 0.696 0.678 0.467 Test

ExtraTrees 0.735 0.815 0.7737 - 0.8567 0.644 0.853 0.851 0.647 0.851 0.644 0.733 0.598 Train

ExtraTrees 0.667 0.675 0.5650 - 0.7845 0.714 0.600 0.714 0.600 0.714 0.714 0.714 0.524 Test

XGBoost 0.967 0.992 0.9858 - 0.9977 0.968 0.965 0.973 0.959 0.973 0.968 0.971 0.488 Train

XGBoost 0.635 0.617 0.5012 - 0.7319 0.732 0.500 0.672 0.571 0.672 0.732 0.701 0.319 Test

LightGBM 0.834 0.911 0.8844 - 0.9383 0.896 0.753 0.826 0.848 0.826 0.896 0.860 0.487 Train

LightGBM 0.635 0.603 0.4854 - 0.7208 0.732 0.513 0.672 0.571 0.672 0.732 0.701 0.466 Test

GradientBoosting 0.798 0.884 0.8515 - 0.9156 0.770 0.835 0.859 0.736 0.859 0.770 0.812 0.532 Train

GradientBoosting 0.646 0.630 0.5131 - 0.7477 0.696 0.605 0.696 0.575 0.696 0.696 0.696 0.447 Test

AdaBoost 0.778 0.857 0.8208 - 0.8932 0.748 0.818 0.843 0.713 0.843 0.748 0.792 0.502 Train

AdaBoost 0.698 0.665 0.5513 - 0.7777 0.875 0.450 0.690 0.720 0.690 0.875 0.772 0.472 Test

MLP 0.684 0.736 0.6873 - 0.7844 0.613 0.776 0.782 0.606 0.782 0.613 0.687 0.688 Train

MLP 0.594 0.602 0.4860 - 0.7185 0.411 0.850 0.793 0.507 0.793 0.411 0.541 0.717 Test
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FIGURE 2

Effectiveness of radiomics models, clinical models, 2D transfer learning models, and 3D transfer models. (A) Effectiveness of clinical models. (A.1)
Utilizing Machine Learning Models for Osteoporosis Screening Based on Clinical Features. (A.2) Assessing the Accuracy of Machine Learning Models
for Osteoporosis Screening using Clinical Features. (A.3) Evaluation of Machine Learning Models in the Testing Group, Leveraging Clinical Features
for Osteoporosis Screening: AUC and Sensitivity Analysis. (B) Effectiveness of radiomics models. (B.1) Utilizing Machine Learning Models for
Osteoporosis Screening Based on Radiomics Features. (B.2) Assessing the Accuracy of Machine Learning Models for Osteoporosis Screening using
Radiomics Features. (B.3) Evaluation of Machine Learning Models in the Testing Group, Leveraging Radiomics Features for Osteoporosis Screening:
AUC and Sensitivity Analysis. (C) Weights of radiomics features in tree models. (D) Effectiveness of 2D Transfer Learning Model. (D.1) Utilizing
Machine Learning Models for Osteoporosis Screening Based on 2D Transfer Learning. (D.2) Assessing the Accuracy of Machine Learning Models for
Osteoporosis Screening using 2D Transfer Learning. (D.3) Evaluation of Machine Learning Models in the Testing Group, Leveraging 2D Transfer
Learning for Osteoporosis Screening: AUC and Sensitivity Analysis. (E) Effectiveness of 3D Transfer Learning Model. (E.1) Utilizing Machine Learning
Models for Osteoporosis Screening Based on 3D Transfer Learning. (E.2) Assessing the Accuracy of Machine Learning Models for Osteoporosis
Screening using 3D Transfer Learning. (E.3) Evaluation of Machine Learning Models in the Testing Group, Leveraging 3D Transfer Learning for
Osteoporosis Screening: AUC and Sensitivity Analysis.
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TABLE 4 Effectiveness of radiomics model.

NPV Precision Recall F1 Threshold Task

0.786 0.773 0.860 0.814 0.451 Train

0.711 0.776 0.804 0.789 0.527 Test

0.638 0.822 0.644 0.722 0.562 Train

0.656 0.703 0.804 0.750 0.339 Test

0.876 0.849 0.914 0.881 0.487 Train

0.630 0.780 0.696 0.736 0.646 Test

0.756 0.798 0.820 0.809 0.600 Train

0.590 0.702 0.714 0.708 0.600 Test

0.800 0.819 0.856 0.837 0.496 Train

0.706 0.742 0.821 0.780 0.483 Test

0.754 0.718 0.860 0.783 0.532 Train

0.620 0.804 0.661 0.725 0.574 Test

0.983 0.995 0.986 0.991 0.637 Train

0.719 0.734 0.839 0.783 0.472 Test

0.875 0.897 0.905 0.901 0.552 Train

0.559 0.811 0.536 0.645 0.630 Test

0.805 0.899 0.838 0.867 0.558 Train

0.675 0.768 0.768 0.768 0.547 Test

0.778 0.799 0.842 0.820 0.503 Train

0.684 0.759 0.786 0.772 0.503 Test

0.773 0.786 0.842 0.813 0.506 Train

0.711 0.776 0.804 0.789 0.544 Test
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Model Accuracy AUC 95% CI Sensitivity Specificity PPV

LR 0.778 0.830 0.7896 - 0.8701 0.860 0.671 0.773

LR 0.750 0.739 0.6321 - 0.8456 0.804 0.675 0.776

NaiveBayes 0.719 0.796 0.7518 - 0.8393 0.644 0.822 0.822

NaiveBayes 0.688 0.685 0.5717 - 0.7979 0.804 0.525 0.703

SVM 0.860 0.916 0.8876 - 0.9438 0.914 0.788 0.849

SVM 0.708 0.732 0.6279 - 0.8355 0.696 0.725 0.780

KNN 0.781 0.860 0.8255 - 0.8938 0.820 0.729 0.798

KNN 0.656 0.703 0.6029 - 0.8034 0.714 0.575 0.702

RandomForest 0.811 0.870 0.8342 - 0.9053 0.856 0.753 0.819

RandomForest 0.729 0.739 0.6362 - 0.8415 0.821 0.600 0.742

ExtraTrees 0.730 0.792 0.7476 - 0.8355 0.860 0.559 0.718

ExtraTrees 0.708 0.751 0.6491 - 0.8527 0.661 0.775 0.804

XGBoost 0.990 0.999 0.9987 - 1.0000 0.986 0.994 0.995

XGBoost 0.729 0.737 0.6363 - 0.8387 0.839 0.590 0.734

LightGBM 0.888 0.953 0.9342 - 0.9720 0.905 0.865 0.897

LightGBM 0.656 0.721 0.6180 - 0.8231 0.536 0.825 0.811

GradientBoosting 0.855 0.914 0.8858 - 0.9430 0.838 0.876 0.899

GradientBoosting 0.729 0.735 0.6295 - 0.8401 0.768 0.675 0.768

AdaBoost 0.791 0.854 0.8177 - 0.8910 0.842 0.724 0.799

AdaBoost 0.729 0.779 0.6847 - 0.8742 0.786 0.650 0.759

MLP 0.781 0.846 0.8083 - 0.8837 0.842 0.700 0.786

MLP 0.750 0.738 0.6314 - 0.8444 0.804 0.675 0.776

https://doi.org/10.3389/fendo.2024.1296047
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 5 Effectiveness of 2D deep learning models.

n Recall F1 Threshold Cohort

0.784 0.752 0.483 Train

0.875 0.817 0.486 Test

0.793 0.815 0.554 Train

0.750 0.778 0.836 Test

0.775 0.777 0.518 Train

0.786 0.786 0.585 Test

0.680 0.749 0.607 Train

0.839 0.832 0.498 Test

0.671 0.727 0.705 Train

0.857 0.774 0.880 Test

0.743 0.817 0.646 Train

0.661 0.747 0.741 Test

0.617 0.703 0.593 Train

0.750 0.757 0.506 Test

0.748 0.720 0.545 Train

0.571 0.660 0.637 Test

0.748 0.790 0.571 Train

(Continued)
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ModelName Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precisi

alexnet 0.707 0.772
0.7268–
0.8179

0.784 0.606 0.722 0.682 0.722

alexnet 0.771 0.769
0.6708–
0.8671

0.875 0.625 0.766 0.781 0.766

densenet121 0.796 0.868
0.8330–
0.9033

0.793 0.800 0.838 0.747 0.838

densenet121 0.750 0.789
0.6941–
0.8844

0.750 0.750 0.808 0.682 0.808

densenet169 0.747 0.804
0.7618–
0.8470

0.775 0.712 0.778 0.708 0.778

densenet169 0.750 0.760
0.6561–
0.8649

0.786 0.700 0.786 0.700 0.786

googlenet 0.742 0.807
0.7650–
0.8496

0.680 0.824 0.834 0.664 0.834

googlenet 0.802 0.808
0.7161–
0.9004

0.839 0.750 0.825 0.769 0.825

mnasnet1_0 0.714 0.757
0.7095–
0.8053

0.671 0.789 0.793 0.642 0.793

mnasnet1_0 0.708 0.699
0.5921–
0.8057

0.857 0.541 0.706 0.714 0.706

mobilenet_v2 0.811 0.884
0.8517–
0.9154

0.743 0.900 0.907 0.729 0.907

mobilenet_v2 0.740 0.796
0.7064–
0.8851

0.661 0.850 0.860 0.642 0.860

mobilenet_v3_large 0.704 0.769
0.7217–
0.8161

0.617 0.818 0.815 0.621 0.815

mobilenet_v3_large 0.719 0.772
0.6775–
0.8658

0.750 0.675 0.764 0.659 0.764

mobilenet_v3_small 0.671 0.704
0.6527–
0.7556

0.748 0.571 0.695 0.634 0.695

mobilenet_v3_small 0.656 0.644
0.5311–
0.7560

0.571 0.775 0.780 0.564 0.780

resnet101 0.776 0.845
0.8061–
0.8844

0.748 0.812 0.838 0.711 0.838
o
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TABLE 5 Continued

n Recall F1 Threshold Cohort

0.696 0.765 0.873 Test

0.829 0.834 0.535 Train

0.786 0.830 0.649 Test

0.851 0.873 0.555 Train

0.893 0.833 0.484 Test

0.730 0.794 0.617 Train

0.893 0.826 0.501 Test

0.761 0.807 0.624 Train

0.821 0.829 0.615 Test

0.860 0.840 0.445 Train

0.857 0.807 0.508 Test

0.685 0.736 0.595 Train

0.893 0.820 0.532 Test

0.662 0.730 0.600 Train

0.875 0.803 0.579 Test

0.811 0.778 0.537 Train

0.911 0.803 0.502 Test

(Continued)
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ModelName Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precisi

resnet101 0.750 0.798
0.7044–
0.8911

0.696 0.825 0.848 0.660 0.848

resnet152 0.814 0.891
0.8601–
0.9217

0.829 0.794 0.840 0.780 0.840

resnet152 0.812 0.855
0.7726–
0.9368

0.786 0.850 0.880 0.739 0.880

resnet18 0.860 0.914
0.8855–
0.9416

0.851 0.871 0.896 0.818 0.896

resnet18 0.792 0.821
0.7339–
0.9080

0.893 0.650 0.781 0.812 0.781

resnet34 0.786 0.867
0.8320–
0.9019

0.730 0.859 0.871 0.709 0.871

resnet34 0.781 0.769
0.6684–
0.8687

0.893 0.625 0.769 0.806 0.769

resnet50 0.793 0.868
0.8329–
0.9032

0.761 0.835 0.858 0.728 0.858

resnet50 0.802 0.778
0.6743–
0.8815

0.821 0.775 0.836 0.756 0.836

resnext50_32x4d 0.814 0.874
0.8395–
0.9075

0.860 0.753 0.820 0.805 0.820

resnext50_32x4d 0.760 0.762
0.6627–
0.8623

0.857 0.625 0.762 0.758 0.762

squeezenet1_0 0.722 0.785
0.7401–
0.8299

0.685 0.771 0.796 0.652 0.796

squeezenet1_0 0.771 0.783
0.6861–
0.8800

0.893 0.600 0.758 0.800 0.758

squeezenet1_1 0.722 0.796
0.7511–
0.8400

0.662 0.800 0.812 0.645 0.812

squeezenet1_1 0.750 0.769
0.6706–
0.8678

0.875 0.575 0.742 0.767 0.742

vgg11 0.737 0.795
0.7512–
0.8394

0.811 0.641 0.747 0.722 0.747

vgg11 0.740 0.756
0.6578–
0.8542

0.911 0.500 0.718 0.800 0.718
o
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TABLE 5 Continued

NPV Precision Recall F1 Threshold Cohort

0.680 0.879 0.685 0.770 0.650 Train

0.750 0.783 0.839 0.810 0.494 Test

0.719 0.763 0.797 0.780 0.543 Train

0.707 0.800 0.786 0.793 0.463 Test

0.720 0.772 0.793 0.782 0.549 Train

0.714 0.706 0.857 0.774 0.503 Test

0.694 0.827 0.730 0.775 0.581 Train

0.774 0.754 0.875 0.810 0.465 Test

0.679 0.797 0.725 0.759 0.590 Train

0.750 0.750 0.857 0.800 0.618 Test

0.688 0.796 0.739 0.766 0.586 Train

0.735 0.758 0.839 0.797 0.573 Test

0.646 0.817 0.662 0.731 0.578 Train

0.710 0.723 0.839 0.777 0.630 Test
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ModelName Accuracy AUC 95% CI Sensitivity Specificity PPV

vgg11_bn 0.768 0.851
0.8143–
0.8886

0.685 0.876 0.879

vgg11_bn 0.771 0.776
0.6811–
0.8716

0.839 0.675 0.783

vgg13 0.745 0.783
0.7370–
0.8294

0.797 0.676 0.763

vgg13 0.760 0.758
0.6579–
0.8586

0.786 0.725 0.800

vgg13_bn 0.750 0.827
0.7871–
0.8669

0.793 0.694 0.772

vgg13_bn 0.708 0.744
0.6454–
0.8417

0.857 0.500 0.706

vgg16 0.760 0.826
0.7853–
0.8671

0.730 0.800 0.827

vgg16 0.760 0.787
0.6958–
0.8775

0.875 0.600 0.754

vgg16_bn 0.740 0.818
0.7774–
0.8592

0.725 0.759 0.797

vgg16_bn 0.750 0.766
0.6669–
0.8643

0.857 0.600 0.750

vgg19 0.745 0.810
0.7675–
0.8533

0.739 0.753 0.796

vgg19 0.750 0.769
0.6733–
0.8651

0.839 0.625 0.758

vgg19_bn 0.724 0.807
0.7642–
0.8497

0.662 0.806 0.817

vgg19_bn 0.719 0.746
0.6475–
0.8436

0.839 0.550 0.723
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NaiveBayes, SVM, KNN, LightGBM, GradientBoosting, and MLP),

the effectiveness of 2D transfer learning model in screening for

osteoporosis was superior to radiomics features.
Assessing the effectiveness of the optimal
machine learning model and deep learning
technology for osteoporosis screening

The optimal machine models for screening osteoporosis based

on each feature were chosen as the reference for comparison with

deep learning techniques. When utilizing clinical features for
Frontiers in Endocrinology 12
osteoporosis screening, the AdaBoost model demonstrates the

highest performance. The LR model, on the other hand, shows

the best performance when employing radiomics features for

osteoporosis screening. For 2D transfer learning, the SVM model

exhibits the most optimal performance, while for 3D transfer

learning, the MLP model shows the highest performance. Among

the various 2D deeplearning models, ResNet152 exhibited the most

optimal performance. Among the various 3D deeplearning models,

ResNet10 exhibited the most optimal performance. The comparison

between these models is presented in Table 10. In the test group, the

AUC (Area Under the Curve) did not show any significant

difference between 2D deep learning and 3D deep learning
FIGURE 3

Effectiveness of 2D deep learning models.
FIGURE 4

Visualization of 2D deep learning models.
frontiersin.org
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TABLE 6 Effectiveness of 3D deep learning models.

Specificity PPV NPV Precision Recall F1 Threshold Cohort

0.982 0.986 0.971 0.986 0.977 0.982 0.607 Train

0.737 0.806 0.824 0.806 0.893 0.847 0.638 Test

0.988 0.991 0.977 0.991 0.982 0.986 0.586 Train

0.775 0.850 0.861 0.850 0.911 0.879 0.456 Test

0.988 0.991 0.977 0.991 0.982 0.986 0.607 Train

0.789 0.833 0.833 0.833 0.893 0.862 0.700 Test

0.982 0.986 0.977 0.986 0.982 0.984 0.564 Train

0.771 0.787 0.771 0.787 0.857 0.821 0.367 Test

0.976 0.982 0.949 0.982 0.959 0.970 0.667 Train

0.744 0.823 0.853 0.823 0.911 0.864 0.763 Test

0.918 0.937 0.912 0.937 0.932 0.935 0.619 Train

0.821 0.855 0.780 0.855 0.839 0.847 0.872 Test

0.976 0.982 0.971 0.982 0.977 0.980 0.686 Train

0.842 0.852 0.762 0.852 0.821 0.836 0.580 Test

0.988 0.991 0.988 0.991 0.991 0.991 0.454 Train

0.757 0.806 0.824 0.806 0.893 0.847 0.506 Test
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ModelName Accuracy AUC 95% CI Sensitivity

DenseNet121 0.980 0.995 0.9885–1.0000 0.977

DenseNet121 0.812 0.841 0.7591–0.9226 0.893

resnet10 0.985 0.998 0.9957–1.0000 0.982

resnet10 0.854 0.906 0.8456–0.9656 0.911

resnet101 0.985 0.998 0.9968–1.0000 0.982

resnet101 0.833 0.832 0.7413–0.9221 0.893

resnet152 0.982 0.997 0.9933–0.9998 0.982

resnet152 0.781 0.789 0.6863–0.8909 0.857

resnet18 0.967 0.991 0.9843–0.9985 0.959

resnet18 0.833 0.860 0.7803–0.9389 0.911

resnet34 0.926 0.971 0.9554–0.9865 0.932

resnet34 0.823 0.864 0.7879–0.9407 0.839

resnet50 0.977 0.996 0.9923–0.9997 0.977

resnet50 0.812 0.819 0.7261–0.9114 0.821

ShuffleNet 0.990 0.999 0.9985–1.0000 0.991

ShuffleNet 0.812 0.827 0.7404–0.9127 0.893
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methods. However, when compared to clinical models, radiomics

models, and 3D transfer learning models, the AUC of 3D deep

learning was significantly better. Interestingly, there was no

statistical difference in AUC when comparing 3D deep learning

with 2D transfer learning models. On the other hand, the AUC of

2D deep learning was superior to clinical models, but there was no

statistically significant difference between the AUC of 2D deep

learning and radiomics models or 2D transfer learning models or

3D transfer learning models.These results are presented in Table 10.
Discussion

Our study provides initial evidence supporting the potential of

using chest CT for osteoporosis screening. Moreover, we observed

that deep learning technology, and transfer learning technology

based on chest CT are more effective than bone transition

biomarkers for screening osteoporosis. Typically, in a tertiary

hospital in China, the cost of a chest CT examination is around

$26, while a DXA examination costs approximately $23. On the

other hand, a bone turnover marker examination is priced at

around $48. Osteoporosis is a silent and widespread condition,

making screening crucial for identifying potential patients early on

(31). Our findings suggest that conducting bone turnover

biomarker testing solely for the purpose of osteoporosis screening

may not be necessary. On the other hand, chest CT scans serve

multiple purposes such as lung tumor screening and exclusion of

pneumonia (32). Elderly individuals and the female demographic,

with a particular emphasis on Asian women, are disproportionately

susceptible to lung cancer. Consequently, some experts advocate for
Frontiers in Endocrinology 14
the inclusion of chest CT scans as part of routine health screenings

for these groups (33). Interestingly, our study also found a

correlation between age, gender, and osteoporosis, which

coincides with the population commonly advised to undergo

regular chest CT examinations. Older age and female gender have

been consistently identified as risk factors for osteoporosis in

various studies (34). Specifically, postmenopausal women in the

older age group are considered a high-risk population for this

condition (35). Regular chest CT examinations are often

recommended for individuals in this group (36). As DXA

screening for osteoporosis has not been widely adopted due to

limited awareness regarding the risks associated with osteoporosis

(37), utilizing chest CT for osteoporosis screening can not only

benefit potential patients but also help save a substantial amount of

money for medical insurance funds. By combining osteoporosis

screening with routine chest CT scans, we can effectively identify at-

risk individuals and allocate resources more efficiently.

There are various reasons why bone turnover markers cannot be

used for osteoporosis screening. In our study, we examined three

different BTM as research subjects, which were vitamin D, TPINP,

and b- Cross. Initially, in the univariate regression analysis, all three

markers were found to have associations with the occurrence of

osteoporosis. However, in the subsequent multivariable analysis, it

was determined that only b- Cross showed a significant relationship

with the occurrence of osteoporosis, along with the variables of age

and gender. Sufficient levels of vitamin D have been shown to

enhance the absorption of calcium and facilitate the process of

bone mineralization (38). Vitamin D deficiency is a prevalent issue

that warrants attention, and it is not limited to individuals with

osteoporosis (39). Furthermore, many osteoporosis patients are
FIGURE 5

Effectiveness of 3D deep learning models in test group.
frontiersin.org
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TABLE 7 Effectiveness of 2D transfer learning.

NPV Precision Recall F1 Threshold Task

0.909 0.912 0.932 0.922 0.475 Train

0.712 0.932 0.732 0.820 0.812 Test

0.827 0.918 0.856 0.886 0.856 Train

0.766 0.918 0.804 0.857 0.960 Test

0.928 0.929 0.946 0.937 0.500 Train

0.783 0.920 0.821 0.868 0.664 Test

0.933 0.925 0.950 0.938 0.600 Train

0.756 0.836 0.821 0.829 0.600 Test

0.897 0.936 0.919 0.927 0.584 Train

0.720 0.913 0.750 0.824 0.657 Test

0.910 0.878 0.937 0.906 0.525 Train

0.762 0.852 0.821 0.836 0.554 Test

1.000 1.000 1.000 1.000 0.597 Train

0.739 0.880 0.786 0.830 0.656 Test

0.994 0.932 0.995 0.963 0.504 Train

0.729 0.896 0.768 0.827 0.651 Test

0.970 0.964 0.977 0.971 0.550 Train

0.816 0.845 0.875 0.860 0.500 Test

0.893 0.911 0.919 0.915 0.490 Train

0.687 0.854 0.732 0.788 0.535 Test

0.947 0.892 0.964 0.926 0.407 Train

0.810 0.889 0.857 0.873 0.580 Test

Fan
g
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
4
.12

9
6
0
4
7

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

15
Model Accuracy AUC 95% CI Sensitivity Specificity PPV

LR 0.911 0.966 0.9513 - 0.9816 0.932 0.882 0.912

LR 0.812 0.858 0.7748 - 0.9413 0.732 0.925 0.932

NaiveBayes 0.875 0.957 0.9393 - 0.9741 0.856 0.900 0.918

NaiveBayes 0.844 0.886 0.8092 - 0.9622 0.804 0.947 0.918

SVM 0.929 0.975 0.9608 - 0.9888 0.946 0.906 0.929

SVM 0.854 0.880 0.8091 - 0.9507 0.821 0.900 0.920

KNN 0.929 0.974 0.9611 - 0.9865 0.950 0.900 0.925

KNN 0.802 0.840 0.7576 - 0.9224 0.821 0.816 0.836

RandomForest 0.918 0.972 0.9571 - 0.9865 0.919 0.918 0.936

RandomForest 0.812 0.853 0.7699 - 0.9359 0.750 0.923 0.913

ExtraTrees 0.890 0.946 0.9245 - 0.9669 0.937 0.829 0.878

ExtraTrees 0.812 0.842 0.7581 - 0.9254 0.821 0.800 0.852

XGBoost 1.000 1.000 1.0000 - 1.0000 1.000 1.000 1.000

XGBoost 0.812 0.836 0.7477 - 0.9246 0.786 0.895 0.880

LightGBM 0.957 0.990 0.9826 - 0.9965 0.995 0.906 0.932

LightGBM 0.812 0.846 0.7636 - 0.9275 0.768 0.875 0.896

GradientBoosting 0.967 0.991 0.9829 - 0.9983 0.977 0.953 0.964

GradientBoosting 0.833 0.847 0.7643 - 0.9294 0.875 0.775 0.845

AdaBoost 0.903 0.971 0.9578 - 0.9834 0.919 0.882 0.911

AdaBoost 0.771 0.812 0.7187 - 0.9058 0.732 0.825 0.854

MLP 0.913 0.963 0.9458 - 0.9792 0.964 0.847 0.892

MLP 0.854 0.871 0.7894 - 0.9517 0.857 0.850 0.889
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TABLE 8 Effectiveness of 3D transfer learning.

Recall F1 Threshold Task

0.743 0.784 0.592 Train

0.875 0.797 0.439 Test

0.788 0.771 0.379 Train

0.696 0.722 0.360 Test

0.770 0.840 0.669 Train

0.786 0.772 0.557 Test

0.824 0.830 0.600 Train

0.696 0.696 0.600 Test

0.923 0.867 0.493 Train

0.804 0.763 0.508 Test

0.676 0.739 0.574 Train

0.839 0.783 0.561 Test

0.977 0.989 0.614 Train

0.857 0.768 0.343 Test

0.851 0.900 0.597 Train

0.589 0.647 0.588 Test

0.802 0.866 0.609 Train

(Continued)
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Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precisio

LR 0.768 0.841 0.8017
- 0.8800

0.743 0.800 0.829 0.705 0.829

LR 0.740 0.726 0.6177
- 0.8341

0.875 0.564 0.731 0.759 0.731

NaiveBayes 0.735 0.779 0.7325
- 0.8258

0.788 0.665 0.754 0.706 0.754

NaiveBayes 0.688 0.668 0.5546
- 0.7811

0.696 0.692 0.750 0.614 0.750

SVM 0.834 0.904 0.8743
- 0.9346

0.770 0.918 0.924 0.754 0.924

SVM 0.729 0.723 0.6143
- 0.8312

0.786 0.650 0.759 0.684 0.759

KNN 0.809 0.894 0.8653
- 0.9233

0.824 0.788 0.836 0.775 0.836

KNN 0.646 0.681 0.5751
- 0.7879

0.696 0.605 0.696 0.575 0.696

RandomForest 0.839 0.888 0.8557
- 0.9203

0.923 0.729 0.817 0.879 0.817

RandomForest 0.708 0.712 0.6030
- 0.8206

0.804 0.590 0.726 0.676 0.726

ExtraTrees 0.730 0.811 0.7692
- 0.8527

0.676 0.800 0.815 0.654 0.815

ExtraTrees 0.729 0.700 0.5856
- 0.8144

0.839 0.590 0.734 0.719 0.734

XGBoost 0.987 0.999 0.9988
- 1.0000

0.977 1.000 1.000 0.971 1.000

XGBoost 0.698 0.654 0.5357
- 0.7715

0.857 0.475 0.696 0.704 0.696

LightGBM 0.893 0.958 0.9410
- 0.9760

0.851 0.947 0.955 0.830 0.955

LightGBM 0.625 0.643 0.5280
- 0.7587

0.589 0.675 0.717 0.540 0.717

GradientBoosting 0.860 0.937 0.9132
- 0.9601

0.802 0.935 0.942 0.783 0.942
n
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already receiving vitamin D supplementation as part of their

treatment, which can elevate their blood levels of vitamin D.

Consequently, this can potentially hinder the diagnostic

effectiveness of using vitamin D as a marker for osteoporosis.

TPINP primarily indicates bone metabolism and can be utilized to

assess the effectiveness of anti-osteoporosis treatments (40). It is

important to note that osteoporosis can arise from both bone

metabolism abnormalities and bone loss (41). However, not all

individuals with osteoporosis will exhibit significant disruptions in

bone metabolism. This might explain why TPINP cannot always

accurately determine the presence of osteoporosis in patients. b-
Cross is a marker that indicates the level of bone resorption activity

by osteoclasts (42). It is widely recognized as the most effective bone

turnover marker for identifying the presence of osteoporosis in

patients (43). In our research, b- Cross is believed to indicate the

occurrence of osteoporosis and constitutes a clinical model with two

variables: gender and age. However, the clinical efficacy of this model

is not entirely satisfactory, with an accuracy of 0.698 and an AUC

of 0.665.

However, the imaging features obtained through chest CT

imaging greatly improve the accuracy of identifying osteoporosis.

This also provides a preliminary screening for the presence of

osteoporosis for patients who undergo regular chest CT

examinations. The first features to be used were extracted through

radiomics methods. As a newly developed technology, computed

tomography (CT) radiomics has the ability to identify radiomic

features that are challenging to recognize visually. This advanced

approach offers a convenient, comprehensive, and accurate method

for diagnosing osteoporosis (44). In our study, the radiomics model

demonstrated an accuracy of 0.750 and an AUC of 0.739 for

recognizing osteoporosis, the 95% confidence interval is 0.6321–

0.8456. Compared to clinical models, radiomics models have shown

better potential for osteoporosis screening in some machine

learning models. However, compared to other previous studies,

such as using HU values on chest CT to screen for osteoporosis with

accuracy and AUC of 0.831 and 0.972 (45), the effectiveness of using

chest CT radiomics technology to screen for osteoporosis in this

study is still unsatisfactory.

Deep learning technology has emerged as a valuable tool for the

diagnosis of osteoporosis, with numerous studies demonstrating its

effectiveness (46). In our study, we employed a combination of 2D

and 3D deep learning models to screen for osteoporosis using chest

CT scans. Specifically, we utilized 24 widely used 2D deep learning

models and 8 commonly used 3D deep learning models. The

effectiveness of 2D and 3D deep learning models based on chest

CT scans in screening for osteoporosis is significantly improved

compared to clinical models that rely on bone turnover markers.

While there was no statistically significant difference in performance

between 2D and 3D deep learning models in the test group, it was

observed that the 3D deep learning model outperformed radiomics

models in terms of performance. The method of extracting 2D

transfer learning has been proven to improve the effectiveness of

disease prediction (47). In our study, the 2D transfer learning model

showed good performance, with an accuracy of 0.854 and an AUC of

0.880. However, it is worth noting that the 3D transfer learningmodel

did not demonstrate a better AUC (Area Under the Curve), possibly
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due to the overfitting phenomenon caused by the recognition of

excessive image information by the extracted 3D deep learning model

(47). The development of enhanced deep learning models based on

3D medical images holds the potential to further improve this

phenomenon. Although 2D transfer learning models demonstrate

better AUC when compared to standard 2D deep learning models,

they do not significantly outperform 3D deep learning models.
Frontiers in Endocrinology 18
Therefore, researchers suggest that both 3D deep learning

technology and 2D transfer learning technology should be

prioritized when utilizing chest CT scans for osteoporosis screening.

Recognizing several limitations of this study is of utmost

importance. Firstly, the absence of external validation is a

noteworthy concern and should be given priority in future

research efforts. Secondly, it is worth noting that the ROI
TABLE 9 Comparison of the effectiveness of screening osteoporosis through clinical models and radiomics, 2D deep learning features, and 3D deep
learning features by Delong test.

Model Clinical
VS

Radiomics

Clinical VS
2D Trans-
fer Learning

Clinical VS
3D Trans-
fer Learning

2D Transfer
Learning VS 3D

Transfer Learning

Radiomics VS
2D Trans-
fer Learning

Radiomics VS
3D Trans-
fer Learning

Task

LR 0.79 <0.01 0.52 <0.01 <0.01 0.70 Train

LR 0.04 <0.01 0.13 0.02 0.04 0.82 Test

NaiveBayes 0.91 <0.01 0.64 <0.01 <0.01 0.57 Train

NaiveBayes 0.39 <0.01 0.62 <0.01 <0.01 0.80 Test

SVM <0.01 <0.01 <0.01 <0.01 <0.01 0.47 Train

SVM 0.08 <0.01 0.30 0.01 <0.01 0.89 Test

KNN 0.65 <0.01 0.23 <0.01 <0.01 0.11 Train

KNN 0.20 <0.01 0.48 0.01 0.02 0.77 Test

RandomForest 0.36 <0.01 0.07 <0.01 <0.01 0.35 Train

RandomForest <0.01 <0.01 0.05 0.03 0.05 0.63 Test

ExtraTrees 0.41 <0.01 0.85 <0.01 <0.01 0.52 Train

ExtraTrees 0.17 <0.01 0.70 0.02 0.12 0.40 Test

XGBoost 0.01 <0.01 1.00 0.12 0.12 0.01 Train

XGBoost 0.05 <0.01 0.61 <0.01 0.09 0.24 Test

LightGBM <0.01 <0.01 <0.01 <0.01 <0.01 0.63 Train

LightGBM 0.05 <0.01 0.57 <0.01 0.03 0.24 Test

GradientBoosting 0.09 <0.01 <0.01 <0.01 <0.01 0.12 Train

GradientBoosting 0.09 <0.01 0.76 <0.01 <0.01 0.22 Test

AdaBoost 0.98 <0.01 0.66 <0.01 <0.01 0.63 Train

AdaBoost 0.04 0.02 0.99 0.02 0.54 0.06 Test

MLP <0.01 <0.01 <0.01 <0.01 <0.01 0.71 Train

MLP 0.06 <0.01 0.07 0.02 0.02 0.98 Test
frontie
TABLE 10 Comparison of the optimal machine learning model and deep learning technology for osteoporosis screening by delong test.

2D Deep Learning
VS Clini-
cal(AdaBoost)

2D Deep Learn-
ing VS
Radiomics(LR)

2D Deep Learning VS
2D Transfer Learn-
ing(SVM)

2D Deep Learning VS
3D Transfer Learn-
ing(MLP)

2D Deep Learning
VS 3D
Deep Learning

Task

0.11 0.01 <0.01 0.18 <0.01 Train

<0.01 0.06 0.31 0.05 0.26 Test

3D Deep Learning VS
Clinical(AdaBoost)

3D Deep Learning VS
Radiomics(LR)

3D Deep Learning VS 2D
Transfer Learning(SVM)

3D Deep Learning VS 3D Transfer Learning(MLP) Task

<0.01 <0.01 <0.01 <0.01 Train

<0.01 <0.01 0.55 <0.01 Test
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delineation utilized in this study employed a combination of

manual and semi-automatic methods.

In conclusion, our study indicates that bone turnover markers

may not be necessary for osteoporosis screening. Instead, a

combination of 3D deep learning and 2D transfer learning

techniques based on chest CT scans can be considered as effective

alternatives for osteoporosis screening.
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