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Applying machine-learning
models to differentiate benign
and malignant thyroid nodules
classified as C-TIRADS 4 based
on 2D-ultrasound combined
with five contrast-enhanced
ultrasound key frames
Jia-hui Chen, Yu-Qing Zhang, Tian-tong Zhu, Qian Zhang,
Ao-xue Zhao and Ying Huang*

Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
Objectives: To apply machine learning to extract radiomics features from thyroid

two-dimensional ultrasound (2D-US) combined with contrast-enhanced

ultrasound (CEUS) images to classify and predict benign and malignant thyroid

nodules, classified according to the Chinese version of the thyroid imaging

reporting and data system (C-TIRADS) as category 4.

Materials and methods: This retrospective study included 313 pathologically

diagnosed thyroid nodules (203 malignant and 110 benign). Two 2D-US images

and five CEUS key frames (“2nd second after the arrival time” frame, “time to peak”

frame, “2nd second after peak” frame, “first-flash” frame, and “second-flash” frame)

were selected to manually label the region of interest using the “Labelme” tool. A

total of 7 images of each nodule and their annotates were imported into the

Darwin Research Platform for radiomics analysis. The datasets were randomly split

into training and test cohorts in a 9:1 ratio. Six classifiers, namely, support vector

machine, logistic regression, decision tree, random forest (RF), gradient boosting

decision tree and extreme gradient boosting, were used to construct and test the

models. Performancewas evaluated using a receiver operating characteristic curve

analysis. The area under the curve (AUC), sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), accuracy (ACC), and F1-score were

calculated. One junior radiologist and one senior radiologist reviewed the 2D-US

image and CEUS videos of each nodule and made a diagnosis. We then compared

their AUC and ACC with those of our best model.

Results: The AUC of the diagnosis of US, CEUS and US combined CEUS by junior

radiologist and senior radiologist were 0.755, 0.750, 0.784, 0.800, 0.873, 0.890,

respectively. The RF classifier performed better than the other five, with an AUC

of 1 for the training cohort and 0.94 (95% confidence interval 0.88–1) for the test

cohort. The sensitivity, specificity, accuracy, PPV, NPV, and F1-score of the RF

model in the test cohort were 0.82, 0.93, 0.90, 0.85, 0.92, and 0.84, respectively.

The RF model with 2D-US combined with CEUS key frames achieved equivalent

performance as the senior radiologist (AUC: 0.94 vs. 0.92, P = 0.798; ACC: 0.90
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vs. 0.92) and outperformed the junior radiologist (AUC: 0.94 vs. 0.80, P = 0.039,

ACC: 0.90 vs. 0.81) in the test cohort.

Conclusions: Our model, based on 2D-US and CEUS key frames radiomics

features, had good diagnostic efficacy for thyroid nodules, which are classified as

C-TIRADS 4. It shows promising potential in assisting less experienced

junior radiologists.
KEYWORDS

thyroid nodules, ultrasound, contrast-enhanced ultrasound, machine learning,
radiomics features, key frames, radiologists
1 Introduction

Thyroid nodules are a common clinical condition. In recent

decades, the use of high-resolution ultrasound has rapidly increased

worldwide (1, 2). The detection rate of thyroid nodules can reach

67%; however, only 5–15% of them are malignant (3, 4). In clinical

practice, many patients suffer some complications after surgical

thyroidectomy (5, 6). Moreover, the status quo of overdiagnosis and

overtreatment has added unnecessary burdens to patients. In 2020,

Chinese experts developed the Chinese version of the thyroid

imaging reporting and data system (C-TIRADS) to evaluate the

characteristics of thyroid nodules, providing a more practical and

concise tool for daily clinical practice (7). Most nodules classified as

C-TIRADS 3 or 5 can be quickly distinguished accurately using

two-dimensional ultrasound (2D-US) alone; however, there is a

wide range of malignancy rates among thyroid nodules classified as

C-TIRADS 4 (2–90%). Moreover, some hypoechoic Hashimoto

nodules with blurred margins can be classified as C-TIRADS 4

(8). and mummified nodules with internal necrotic components

may also exhibit marked hypoechogenicity (9). Distinguishing these

from malignant nodules poses challenges, leading to the low

specificity of 2D-US and warranting fine needle aspiration (FNA),

an invasive procedure (2). Thus, there is a need to explore new

methods for a more precise diagnosis of thyroid nodules which are

classified as C-TIRADS 4.

Contrast-enhanced ultrasound (CEUS), which describes focal

microcirculation perfusion status by distinguishing acoustic

features of tissue backgrounds, plays an essential role in the

diagnosis of thyroid nodules and differentiation of necrotic

benign nodules from malignant ones to avoid FNA procedures

(10). Additionally, CEUS is utilized in the field of interventional

ultrasonography, which includes assisting biopsy and FNA

procedures and estimating therapeutic conditions after ablation

(11, 12). Despite not being recommended as part of the guidelines

for diagnosing thyroid nodules, numerous studies have

demonstrated that CEUS exhibits a sensitivity and specificity of

discriminating malignant nodules from benign nodules that could

reach 0.87 and 0.83, respectively (13, 14). The consensus on the
02
qualitative and quantitative analysis of CEUS recommends that

malignant characteristics include later wash-in, heterogeneous

hypoenhancement, earlier wash-out, and centripetal perfusion

(15–17). Machine learning (ML) is an algorithm based on

representational learning of data, except for computer vision,

natural language processing, and speech recognition, and has

played a prominent role in the medical field (18–21). ML can

significantly limit interobserver variations (22). With the rapid

development of artificial intelligence (AI), radiomics has recently

attracted the attention of researchers. Radiomics can transform

pixels in medical images into high-dimensional features and

quantitative data that can be calculated, which could show

intratumor heterogeneity and texture features (23, 24). ML

algorithms can be used to develop predictive models and calculate

their performances. In the field of thyroid nodules, ML is mostly

based on 2D-US images, with an accuracy (ACC) of approximately

0.88–0.92 (25, 26). To our knowledge, only two studies have used

CEUS images to build AI models for diagnosing thyroid nodules

(27, 28). Wan et al. used deep learning (DL) to build a diagnostic

model based on dynamic CEUS video and obtained relatively high

performance (27). Guo et al. used logistic regression to build ML

models based on US and CEUS features, while only included a

single frame of CEUS images (28). Our study aimed to explore the

useful information of CEUS images for diagnosing C- TIRADS 4

thyroid nodules. Herein, we combined 2D-US with five CEUS key

frames as an import for further radiomics feature extraction and

MLmodel development, aimed at examining the value of ML model

based on 2D-US and CEUS key frames in the differential diagnosis

of benign and malignant nodules which are classified as C-

TIRADS 4.
2 Materials and methods

2.1 Patients

This retrospective study was conducted between September

2019 and February 2023. Data from 313 thyroid nodules in 300
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patients which underwent FNA or thyroid surgery at our hospital

were included in this study. The inclusion criteria were: (1)

patients aged ≥18 years; (2) nodule classified as C-TIRADS 4

(with at least one malignant sign); (3) some suspicious malignant

nodules that needed CEUS examination to exclude mummified

nodules before FNA, and some cystic-solid nodules which were

classified as C-TIRADS 3 but the most component were the solid

and were eccentric distribution; (4) CEUS examination

procedures that contained “double-flash” at 40s and 60s,

respectively; and (5) patients who signed an informed consent

form and obtain pathological results of thyroid nodules after the

CEUS examination. The exclusion criteria were: (1) allergy to any

of the components in the ultrasound contrast agent; (2) nodules

with macrocalcification during B-mode ultrasound examination;

(3) FNA pathological results incomplete or categorized as

Bethesda I, III, and IV; and (4) CEUS videos with severe

motion. The patients were separated at a ratio of 9:1. Our study

was approved by Medical Ethics Committee of Shengjing Hospital

of China Medical University (2023PS967K). The PASS.15

software (NCSS LLC, Kaysville, UT, USA) was used to calculate

the sample size, with parameters set to ensure the power of 0.90

and level a was set at bilateral 0.05. Based on our expected results,

the receiver operating characteristic (ROC) curve was set to 0.90.

The false-positive rate was limited from 0 to 1. The group

allocation was set at 2. The number of nodules included in the

training cohort was 144 in the malignant group and 72 in the

benign group (total = 216), with an additional 10% for dropouts.

Hence, the final result was 158 and 80 nodules in the malignant

and benign groups, respectively (total = 238).
2.2 US, CEUS examinations and
images selection

An L14-3U transducer (frequency: 3–9 MHz) from the Resona 9

device (Mindray, Shenzhen, China) and an L12-5 transducer

(frequency: 5–12 MHz) from the iU22 device (Philips, Amsterdam,

The Netherlands) were used. 2D-US was performed by two

radiologists, one with 3 years of experience in thyroid ultrasound

and the other with >10 years of experience in thyroid ultrasound. We

measured the thyroid size, nodule numbers, nodule size, nodule

location, component, echogenicity, shape, margin, and the presence

or absence of Hashimoto’s background and microcalcification. We

then recorded following the C-TIRADS guidelines. In patients with

multiple nodules, the ones most suspicious for malignancy were

selected for observation and subsequent CEUS examination. The C-

TIRADS classification was recorded, and nodules with inconsistent

C-TIRADS results were reevaluated and decided upon. Subsequently,

CEUS was performed by an experienced radiologist, who then

selected the largest section of the nodule, including the surrounding

normal thyroid tissue. The mechanical index was set to 0.06–0.08,

and the gain, depth, acoustic window, and focal zone were adjusted.

The probe stabilized, and the CEUS mode was initiated. For this

procedure, 59 mg of contrast agent (SonoVue; Bracco, Milan, Italy)

was mixed with 5 mL of saline to prepare a suspension. The

suspension (1.5 mL) was injected rapidly through the superficial
Frontiers in Endocrinology 03
vein of the elbow, followed by a 5 mL saline flush. The timer was

started simultaneously with the time of injection. The term “flash”

means when the microbubbles had been blown up, the remaining

microbubbles would reperfuse after the “flash” without the bolus’s

influence, making good efforts to observe reperfusion status. The

radiologist pressed the contrast agent click-button in the 40th and 60th

seconds, defined as “first-flash” and “second-flash,” respectively. The

entire dynamic recording lasted 80 seconds and was recorded in

“AVI” format. Two experienced radiologists immediately diagnosed

patients. CEUS observation parameters, including wash-in pattern

(earlier, synchronous, and later), enhanced intensity (hypo-, iso-, and

hyperintensity), enhanced homogeneity (homo- and heterogeneous),

enhanced method (centripetal and centrifugal), and wash-out pattern

(earlier, synchronous, and later), were recorded. The nodules with

inconsistent results were examined and discussed. According to the

previous studies (17, 29–32), nodules with “later wash-in”,

“heterogeneous hypointensity”, “centripetal enhancement” and

“earlier wash-out” were malignant parameters for thyroid nodules.

In our study, we defined nodules with at least two of the among

parameters as malignant nodules, the others were defined as

benign nodules.

Furthermore, the nodule’s largest transverse and longitudinal

sections were selected in 2D-US after rotating the probe 90°

clockwise. Regarding CEUS, the perfusion of the contrast agents

gradually changes with changes in brightness during CEUS

examinations, which could reveal the blood supply of the nodule.

Many previous studies have also suggested wash-in or -out patterns

of contrast agents, and the enhanced intensity in the nodule area

compared to the surrounding normal thyroid tissues was the most

helpful parameter for diagnosing malignant nodules (11, 31, 33, 34).

The “double-flash,” identified as a new CEUS quantitative

parameter in our previous study, indicated that the diagnostic

accuracy in distinguishing malignant and benign thyroid nodules

could reach 88.4% (24). Therefore, based on these principles and

results, five CEUS key frames were finally selected: the “2nd second

after the arrival time” frame, “time to peak” frame, “2nd second after

peak” frame, “first-flash” frame, and “second-flash” frame.
2.3 Nodule segmentation

The 80-second CEUS video of each patient was converted to 1120

images (14 images every second) using Python code. One radiologist

(with 3 years of CEUS experience) browsed the images and found five

key CEUS frames. The radiologist manually delineated the boundary

of the region of interest (ROI) on seven images (two from 2D-US and

five from CEUS key frames) using “Labelme” in an Anaconda (http://

anaconda.org) environment. The second radiologist (with 8 years of

CEUS experience) checked the segmentations. If there were any

inconsistencies, the results were jointly discussed, and further

modifications were made until a consensus was reached. Finally,

the patient images and labels were imported into the Darwin

Research Platform (https://arxiv.org/abs/2009.00908) for feature

extraction and model establishment. The workflow scheme is

illustrated in Figure 1. The nodule segmentation process is

described in the Supplementary Materials.
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2.4 Feature extraction and selection

After nodule segmentation, feature extraction was performed

using the “PyRadiomics” package for Python (Python Software

Foundation, Beaverton, OR, USA). Radiomics features include first-

order, shape, and texture. First-order features can be obtained using

a simple metric procedure to clarify the distribution of voxel

intensities, such as mean range, variance, and kurtosis. Texture

features are used to describe the heterogeneity of the lesion,

including the gray-level cooccurrence matrix (GLCM), gray-level

run length matrix (GLRLM), gray-level dependence matrix

(GLDM), neighboring gray-tone difference matrix (NGTDM),

and gray-level size zone matrix (GLSZM). Eight kinds of filters

were applied in our study to transform the original images:

exponential, gradient, local binary pattern- two dimensional

(Lbp-2D), logarithm, square, square root, wavelet, and Laplacian

of Gaussian (LoG). First-order shape and texture features were

extracted from the derived images. However, since a single image

contained 1125 features, seven images from one patient produced

7875 features in total. We extracted all features and subsequently

selected them. Feature selection is an important ML procedure

because it reduces computational complexity and trains classifiers

more accurately. Maximum absolute normalization was used to

scale the numerical value to the unit length within a range of –1 to 1.

The variance threshold can remove all low-variance features. To

reduce overfitting and find definitive correlation features, only F

values equal to 0 were excluded from this study. The classifiers also

contain algorithms that iteratively calculate the importance of the

features. Finally, the decision tree (DT) classifier was used to

determine the most relevant feature rankings (Figure 2).
2.5 Model development

Six ML models, namely support vector machine (SVM), logistic

regression (LR), DT, random forest (RF), gradient boosting decision

tree (GBDT), and extreme gradient boosting (XGBOOST) were used to

determine the best diagnostic performance. The radial basis function

was used in the SVM classifier, and the penalty coefficient C was used
Frontiers in Endocrinology 04
to set the tolerance for misclassified samples (from 0.0001 to 1,000). LR

was based on an elastic net, and the I1 ratio was set to 0.5. For RF, DT,

GBDT, and XGBOOST, the maximum depth of the tree was set at 5 to

avoid overfitting. If values were missing, we chose the mean value as a

supplement. The 10-fold crossvalidation was used to inspect the

accuracy of the models. The ROC curve and area under the curve

(AUC) were used to compare the performance of the six ML models,

and the sensitivity, specificity, accuracy, F1-score, positive predictive

value (PPV), and negative predictive value (NPV) were calculated.
2.6 Statistical analysis

Statistical analysis was performed using the SPSS software

(version 26.0; IBM Corp., Armonk, NY, USA). Count data were

recorded as frequencies and rates. The measurement data that

confirmed a normal distribution were recorded as mean ±

standard deviation, while data that were not consistent with a

normal distribution were recorded as the median (interquartile

range). Furthermore, measurement data between groups were

compared using the independent t-test and Mann–Whitney U

test. Count data (clinical data, 2D-US and CEUS data) were

analyzed using chi-square or Fisher’s exact tests. Radiomics

analyses were performed using Python (version 3.6). Delong’s test

was used to test whether there were any differences in AUC among

the six ML models and between the ML model and human readers.

A calibration curve demonstrated the consistency between the

prediction model and the actual situation. Decision curve analysis

(DCA) was used to determine whether this model had net clinical

benefits. Statistical significance was set at P <0.05.
3 Results

3.1 Clinical and sonographic data

A total of 313 nodules were enrolled in our study, with 282 in

the training cohort and 31 in the test cohort. The training cohort

included 100 benign and 182 malignant nodules, while the test
FIGURE 1

Workflow of image acquisition.
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cohort included 10 benign and 21 malignant nodules. In our data,

89 nodules were classified as C- TIRADS 4a, 128 nodules were

classified as C- TIRADS 4b, 96 nodules were classified as C-

TIRADS 4c. The malignancy rate of C- TIRADS 4a, 4b and 4c

were 34.8% (31/89), 70.3% (90/128) and 85.4% (82/96), respectively.

The characteristics of the nodules are listed in Table 1, and the

patient inclusion flowchart is shown in Figure 3. In the training

cohort, the clinical and sonographic variables between the

malignant and benign groups showed significant differences in

age, number, size, solid composition, microcalcification, shape,

margin, enhanced intensity, homogeneity, and wash-in patterns

(all P<0.05). However, no significant difference was found in sex,

location, Hashimoto’s background, echogenicity, centripetal
Frontiers in Endocrinology 05
enhancement, and wash-out patterns (all P >0.05). There was no

statistically significant difference in the distribution of patients

between the training and test cohorts (P >0.05).
3.2 The US and CEUS analysis by
human reader

Each nodule was evaluated simultaneously by a junior radiologist

(3 years of CEUS experience) and a senior radiologist (8 years of

CEUS experience). The parallel method was used for combined

diagnosis of C- TIRADS and CEUS. That is to say, if both C-

TIRADS and CEUS were benign, the final diagnosis was recorded
FIGURE 2

Feature selection.
TABLE 1 Clinical and sonographic characteristics.

Training cohort (n=282) Test cohort (n = 31) P

Characteristics Total (n = 282) Benign(n = 100) Malignant (n = 182) p

Age (years) 44.57 ± 12.31 48.12 ± 12.5 42.62 ± 11.79 0.000* 45.52 ± 11.47 0.683

Sex
Female
Male

224 (79.4%)
58 (20.6%)

82 (82.0%)
18 (18.0%)

142 (78.0%)
40 (22.0%)

0.429
23 (74.2%)
8 (25.8%)

0.497

Number
Single
Multiple

99 (35.1%)
183 (64.9%)

19 (19.0%)
81 (81.0%)

80 (44.0%)
102 (56.0%)

0.000*
12 (38.7%)
19 (61.3%)

0.691

Size (mm)
Maximum diameter 10.67 ± 9.07 15.1 ± 12.14 8.24 ± 5.52 0.000* 10.2 ± 7.83 0.779

Location
Upper pole
Middle
Subthyroid pole
Isthmus

64 (22.7%)
112 (39.7%)
77 (27.3%)
29 (10.3%)

23 (23.0%)
37 (37.0%)
34 (34.0%)
6 (6.0%)

41 (22.5%)
75 (41.3%)
43 (23.6%)
23 (12.6%)

0.133
10 (32.3%)
10 (32.2%)
7 (22.6%)
4 (12.9%)

0.595

Hashimoto Background
Yes
No

46 (16.3%)
236 (83.7%)

17 (17.0%)
83 (83.0%)

29 (15.9%)
153 (84.1%)

0.917
7 (22.6%)
24 (77.4%)

0.377

Solid composition
Yes
No

278 (98.6%)
4 (1.4%)

96 (96.0%)
4 (4.0%)

182 (100%)
0

0.007*
31 (100%)
0

1.000

(Continued)
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FIGURE 3

Retrospective workflow. CEUS, contrast-enhanced ultrasound.
TABLE 1 Continued

Training cohort (n=282) Test cohort (n = 31) P

Characteristics Total (n = 282) Benign(n = 100) Malignant (n = 182) p

Very low echogenicity
Yes
No

16 (5.7%)
266 (94.3%)

3 (3.0%)
97 (97.0%)

13 (7.1%))
169 (92.9%)

0.150
2 (6.5%)
29 (93.5%)

0.860

Microcalcification
Yes
No

89 (31.6%)
193 (68.4%)

24 (24.0%)
76 (76.0%)

65 (35.7%)
117 (64.3%)

0.043*
5 (16.1%)
26 (83.9%)

0.075

Shape (Aspect ratio)
>1
<1

81 (28.7%)
201 (71.3%)

12 (12.0%)
88 (88.0%)

69 (37.9%)
113 (62.1%)

0.000*
9 (29.0%)
22 (71.0%)

0.971

Margin
Regular
Irregular

144 (51.1%)
138 (48.9%)

72 (72.0%)
28 (28.0%)

72 (39.6%)
110 (60.4%)

0.000*
19 (61.3%)
12 (38.7%)

0.279

Enhanced intensity
Hyperenhancement
Iso-enhancement
Hypoenhancement

54 (19.2%)
149 (52.8%)
79 (28.0%)

36 (36.0%)
32 (32.0%)
32 (32.0%)

18 (9.9%)
47 (25.8%)
117 (64.3%)

0.000*
10 (32.3%)
16 (51.6%)
5 (16.1%)

0.148

Homogeneity
Homogeneous
Heterogeneous

108 (38.3%)
174 (61.7%)

56 (56.0%)
44 (44.0%)

52 (28.6%)
130 (71.4%)

0.000*
16 (51.6%)
15 (48.4%)

0.150

Centripetal
enhancement
Yes
No

28 (9.9%)
254 (90.1%)

9 (9.0%)
91 (91.0%)

19 (10.4%)
163 (89.6%)

0.699
3 (10%)
28 (90%)

1.000

Wash-in
Synchronous
Later
Earlier

133 (47.2%)
116 (41.1%)
33 (11.7%)

51 (51.0%)
29 (29.0%)
20 (20.0%)

82 (45.1%)
87 (47.8%)
13 (7.1%)

0.001*
20 (64.5%)
9 (29.0%)
2 (6.5%)

0.180

Wash-out
Synchronous
Later
Earlier

180 (63.8%)
44 (15.6%)
58 (20.6%)

64 (64.0%)
12 (12.0%)
24 (24.0%)

116 (63.7%)
32 (17.6%)
34 (18.7%)

0.337
22 (71.0%)
4 (12.9%)
5 (16.1%)

0.731
F
rontiers in Endocrinology
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*Represents P <0.05. Numerical data are presented as mean ± standard deviation. Categorical data are presented as numbers (%).
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as benign, while one of the C-TIRADS or CEUS was malignant, the

final diagnosis was recorded as malignant. As shown in Table 2;

Figure 4, the AUCs of junior radiologist observing US for C-TIRADS

classification, CEUS videos, and the combined diagnosis of the two

methods were 0.755, 0.750, 0.784, respectively. Except from the

specificity and the PPV, the sensitivity, NPV and accuracy of

combining US and CEUS by junior radiologist were higher than

using US and CEUS alone, which were 0.941, 0,852, 0.831,

respectively. The AUC of senior radiologist observing US for C-

TIRADS classification, CEUS video, and combined diagnosis of the

two methods were 0.80, 0.873 and 0.890 respectively. Except from the

specificity and the PPV, the sensitivity, NPV and accuracy of

combining US and CEUS by senior radiologist were higher

than using US and CEUS alone, which were 0.970, 0,937,

0.914, respectively.
3.3 Prediction performance of ML models
based on 2D-US combined with CEUS
key frames

The six classifiers (SVM, LR, DT, RF, GBDT, and XGBOOST)

and their performance are listed in Table 3. AUCs for SVM, LR, DT,

RF, GBDT, and XGBOOST in the training cohort were 0.75, 0.87,

1.00, 1.00, 1.00, and 0.92, respectively. In the test cohort, AUCs of

SVM, LR, DT, RF, GBDT, and XGBOOST were 0.74, 0.81, 0.84,

0.94, 0.92, and 0.92, respectively. The ROC curves of the six ML

models are shown in Figure 5. The results of the Delong test showed

that in the test cohort, the difference between AUC of SVM, LR, and

DT was not statistically significant (P >0.05). Similarly, the

difference in AUC between RF, XGBOOST, and GBDT was not

statistically significant (P >0.05). RF, GBDT, and XGBOOST had

comparable predictive effectiveness. The differences in AUC

between GBDT, LR, and DT were not statistically significant

(P >0.05); however, AUCs of RF and XGBOOST were statistically

significant compared to those of SVM, LR, and DT, respectively (all

P <0.05). Notably, AUC of RF was the highest in the test cohort
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(0.94). Additionally, the calibration and DCA curves of RF showed

favorable consistency with reality (Figure 6). The cases in test

cohorts were presented in Figures 7, 8.
3.4 Comparison with human readers

A senior radiologist (8 years of CEUS experience) and a junior

radiologist (3 years of CEUS experience) independently reviewed

the transverse and longitudinal sections of the test cohort’s 2D-US

and CEUS videos of each nodule. Both groups were blinded to

clinical characteristics and pathological results, and a definitive

diagnosis of whether each nodule was benign or malignant was

provided. The diagnostic performances of the best-performing RF

model and human readers are summarized in Table 4; Figure 9. As

shown, the RF model achieved an equivalent performance to that of

the senior radiologist (P = 0.799) and gained more specificity. The

RF model outperformed the junior radiologist (P = 0.039) and

showed greater sensitivity, specificity and NPV.
TABLE 2 The US and CEUS analysis by human readers.

Models SEN SPE PPV NPV Accuracy AUC

Junior radiologist C- TIRADS 0.720
(0.651, 0.779)

0.791
(0.701, 0.860)

0.864
(0.801, 0.910)

0.604
(0.519, 0.683)

0.744 0.755
(0.698, 0.812)

Junior radiologist CEUS 0.764
(0.698, 0.819)

0.736
(0.642, 0.814)

0.842
(0.780, 0.890)

0.628
(0.538, 0.710)

0.754 0.750
(0.692, 0.808)

Junior radiologist C- TIRADS+CEUS 0.941
(0.897, 0.968)

0.627
(0.529, 0.716)

0.823
(0.767, 0.869)

0.852
(0.752, 0.918)

0.831 0.784
(0.698, 0.812)

Senior radiologist C- TIRADS 0.768
(0.703, 0.823)

0.836
(0.751, 0.898)

0.897
(0.839,0.936)

0.662
(0.576, 0.739)

0.792 0.800
(0.747, 0.853)

Senior radiologist CEUS 0.882
(0.827, 0.921)

0.864
(0.782, 0.920)

0.923
(0.873, 0.955)

0.800
(0.713, 0.864)

0.875 0.873
(0.828, 0.918)

Senior radiologist C-
TIRADS+CEUS

0.970
(0.934, 0.988)

0.809
(0.721, 0.875)

0.904
(0.855, 0.938)

0.937
(0.862, 0.974)

0.914 0.890
(0.844, 0.936)
C- TIRADS, Chinese version of thyroid imaging reporting and data system; CEUS, contrast-enhanced ultrasound; PPV, positive predictive value; NPV, negative predictive value; AUC, area
under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
FIGURE 4

ROC curves of TIRADS, CEUS and TIRADS combined with CEUS of
junior radiologist and senior radiologist, respectively.
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TABLE 3 Predictive performance of six machine learning models based on 2D-US and CEUS key frames.

DT RF GBDT XGBOOST

Test
cohort

Training
cohort

Test
cohort

Training
cohort

Test
cohort

Training
cohort

Test
cohort

Training
cohort

Test
cohort

0.808
(0.709– 0.907)

1 0.843
(0.757–0.929)

1 0.936
(0.884–0.988)

0.999 (0.998–1) 0.916
(0.854–0.978)

1 0.923
(0.864–0.984)

0.807 1 0.864 1 0.898 0.99 0.864 1 0.841

0.679
(0.493, 0.821)

1 (0.985–1) 0.786
(0.605–0.898)

1 (0.985,1) 0.821
(0.644–0.921)

0.988
(0.966–0.996)

0.857
(0.685–0.943)

1 (0.985–1) 0.893
(0.728–0.963)

0.867
(0.758, 0.931)

1 (0.993–1) 0.9
(0,799–0.953)

1 (0.993,1) 0.933
(0.841–0.974)

0.991
(0.978–0.996)

0.867
(0.758–0.931)

1 (0.993–1) 0.817
(0.701–0.894)

0.704
(0.515–0.841)

1 (0.985–1) 0.786
(0.605–0.898)

1 (0.985–1) 0.852
(0.675–0.941)

0.98
(0.955–0.992)

0.75
(0.579–0.867)

1 (0.985–1) 0.694
(0.531–0.82)

0.852
(0.743–0.92)

1 (0.993–1) 0.9
(0.799–0.953)

1 (0.993–1) 0.918
(0.822–0.964)

0.994
(0.984–0.998)

0.929
(0.83–0.972)

1 (0.993–1) 0.942
(0.8440.98)

0.691 1 0.786 1 0.836 0.984 0.8 1 0.781

est; GBDT, gradient boosting decision tree; XGBOOST, extreme gradient boosting; AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive
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Parameter SVM L

Training
cohort

Test
cohort

Training
cohort

AUC 0.746
(0.707–0.786)

0.735
(0.615–0.854)

0.867
(0.839–0.895)

ACC 0.741 0.75 0.791

SEN 0.671
(0.61–0.726)

0.643
(0.458–0.793)

0.813
(0.761–0.857)

SPE 0.773
(0.736–0.807)

0.8
(0.682–0.882)

0.781
(0.744–0.814)

PPV 0.581
(0.523–0.636)

0.6
(0.423–0.754)

0.635
(0.581–0.685)

NPV 0.834
(0.798–0.864)

0.828
(0.711–0.904)

0.899
(0.869–0.923)

F1-Score 0.741 0.621 0.713

SVM, support vector machine; LR, logistic regression; DT, decision tree; RF, random fo
value; NPV, negative predictive value.
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4 Discussion

In this study, we constructed six ML models using 2D-US

images combined with five CEUS keyframes. The ROC curves

showed that the diagnostic performance of our models was

desirable, with all AUC values >0.80 in the test cohort (except

SVM [0.74]). Moreover, we compared our best model with human

readers (senior and junior radiologists) and found that the best ML

model achieved equivalent performance to that of the senior

radiologist and outperformed the junior radiologist.

Traditional diagnostic methods for thyroid nodules, such as 2D-

US, color Doppler flow imaging (CDFI), elastography, and FNA,

have many disadvantages (35–37); the main ones are severe

overdiagnosis and overtreatment (38, 39). For example, some

Hashimoto’s nodules may show hypoechogenicity with blurred
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margins on 2D-US, which may be classified as TIRADS >4 and

require unnecessary FNA according to the guidelines (7, 40, 41).

CEUS, as a novel noninvasive microangiography technology, can

reveal microvasculature with a smaller diameter (>40 µm) than that

by CDFI (>100 µm) and is helpful in the detection of malignant

thyroid nodules (42, 43). Recent studies have indicated that CEUS

could modify the current TIRADS to create a new risk stratification

that may reduce unnecessary biopsies (42–46). Our team had

published one CEUS- TIRADS model to differentiate thyroid

nodules (C-TIRADS 4) by combining CEUS with C-TIRADS

(46), which had high clinical practicability in clinic. Additionally,

CEUS images may contain valuable information that has not

received sufficient attention in daily clinical practice. In recent

years, AI, especially radiomic features, has demonstrated

promising potential for evaluating the characteristics of thyroid

nodules (47, 48). Radiomics has also been used to diagnose

cytologically uncertain nodules (49–51), lymph node metastases

(52, 53), and extrathyroidal extension (54). Many studies employing

AI for evaluating the thyroid are mainly based on 2D-US images

(48, 55, 56). In 2015, LeCun introduced the principles of deep

learning and convolutional neural networks (CNNs) (18), attracting

the interest of many researchers. The principle of machine or deep

learning is that CNNs are trained using a large number of 2D-US

images with known corresponding pathological results. A specific

algorithm is used to segment US images. After several calculation

iterations, the CNNs can capture and analyze thyroid nodules and

suggest risk stratification. Studies on ML based on 2D-US to

distinguish malignant thyroid nodules from benign nodules could

reach a diagnostic accuracy of approximately 90%. Peng et al.

developed a deep learning AI model based on 2D-US to diagnose

thyroid nodules that outperformed 12 radiologists (AUC: 0.922 vs.

0.839, P <0.05) (37). Conversely, a study conducted by Sun et al.,

also based on 2D-US, indicated that the experts achieved better

performance (AUC: 0.881 vs. 0.819) (57). Gong et al. reported that

an AI-assisted diagnostic system combined with CEUS could

significantly improve the diagnostic sensitivity and NPV in

diagnosing thyroid nodules classified as American College of

Radiology Thyroid Imaging (ACR-TIRADS) 4 (58). However, to
FIGURE 5

ROC curves of the SVM, LR, DT, RF, GBDT, and XGBOOST classifiers
in the test cohort. ROC, receiver operating characteristic; SVM,
support vector machine; LR, logistic regression; DT, decision tree;
RF, random forest; GBDT, gradient boosting decision tree;
XGBOOST, extreme gradient boosting.
FIGURE 6

The calibration curves and decision curve analysis of RF models. RF, random forest.
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our knowledge, few researchers have developed AI models based on

CEUS images. To date, only two studies have proposed AI

diagnostic models based on CEUS image information (27, 28).

Wan et al. used DL to build a diagnostic model based on dynamic

CEUS video and obtained AUC of 0.92 (27), which was lower than
Frontiers in Endocrinology 10
ours (AUC: 0.94); ACC in their study was substantially lower than

that in ours (0.80 vs. 0.90). Guo et al. used logistic regression to

build ML models based on US and CEUS features, while as for

CEUS features, only a single frame of CEUS images was used (28).

Our studies extracted radiomics features five key CEUS frames and
FIGURE 7

A thyroid nodule in left lobe in a 46-year-old woman in test cohort. (A) 2D-US image; (B) the mask image corresponding to 2D-US image; (C) CEUS
image at peak time; (D) the mask image of CEUS image at peak time. The nodule was solid, hypoechoic, blurred margin, aspect ratio less than 1,
with microcalcification and was categorized as C-TIRADS 4c. CEUS showed “later wash-in, heterogeneous enhancement” and “later wash-out”, and
was diagnosed as malignant. RF model classifies it as malignant. Histologic analysis revealed papillary microcarcinoma (PTMC).
FIGURE 8

A thyroid nodule in right lobe in a 56-year-old man in test cohort. (A) 2D-US image; (B) the mask image corresponding to 2D-US image; (C) CEUS
image at peak time; (D) the mask image of CEUS image at peak time. The nodule was solid with blurred margin and was categorized as C-TIRADS
4b. CEUS showed “later wash-in” and “with hypointensity”, and was diagnosed as malignant. RF model classifies it as benign. Histologic analysis
revealed nodular goiter with granuloma formation.
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the sample size of our study is bigger (313 vs. 123). And our study

aimed at thyroid nodules which are classified as C-TIRADS 4,

which are relatively hardly differentiated in clinic. Therefore, this

was the first study to provide the highest value of radiomics

information from CEUS images in thyroid nodules (C-TIRADS

4) evaluation, offering a promising, noninvasive, fast, feasible, and

reliable method.

In our study, none of the patients experienced complications

during CEUS and FNA. By comparing the FNA and surgical

pathological results from January 2016 to June 2021 in our

hospital, we found that the success rate and diagnostic accuracy

of FNA were 96.6% and 93.3%, respectively (59). The accuracy of

FNA was much higher than that in most previous studies,

indicating that the pathological results from FNA at our

institution were reliable. Our study also demonstrated that

malignant thyroid nodules commonly occurred in younger people

(P <0.05). The statistical differences between malignant and benign

nodules in the training cohort were also significant for nodule

number, nodule size, nodule composition, the presence of

microcalcifications, shape, margin, enhanced intensity of CEUS,

homogeneity of CEUS, and wash-in patterns of CEUS (all P <0.05).

Regarding CEUS patterns, the malignant nodules in our data mostly

showed hypoenhancement (117/182; 64.3%), heterogeneous

enhancement (130/182; 71.4%), and later wash-in (87/182;
Frontiers in Endocrinology 11
47.8%), which is consistent with previous studies (12, 33, 34).

This may be attributed to the peripheral blood vessels of

malignant nodules being damaged by malignant growth,

hindering contrast agent entry. When the nodule is small, the

number of new blood vessels, branches, and arteriovenous fistulas

is not relatively large, and the inside of the nodule will be closely

related to the poor blood supply and uneven distribution of blood

vessels within the malignant nodules. In the present study, the mean

maximal diameter of malignant nodules was smaller than that of

benign nodules (P <0.05), which may indicate that the direction of

perfusion of contrast agents was difficult to observe, which explains

the lack of statistical significance in the enhancement methods and

wash-out patterns. And in our data, the diagnostic AUC and

accuracy of both junior and senior radiologist of using US

combined with CEUS were higher than those of US or CEUS alone.

In this study, we first extracted nearly all radiomics features as

published in the present literature. Subsequently, we adopted

maximum abs normalization to preprocess the data. Many data

normalization methods are used in ML, such as Z-score

standardization, max abs normalization, min-max normalization,

robust scaling, and median absolute deviation. The advantage of

max absol normalization lies in its ability to retain data distribution

without centralizing it, preserving the sparsity of large-scale data

such as ours. We then used the variance threshold to eliminate

outliers from the data. DT is a nonparametric method. Thus, it does

not make any assumptions regarding the spatial distribution or

categorical structure of the data, making it suitable for our study.

The best feature selection is based on the DT classifier. Wavelet

features accounted for the largest proportion of radiomics features

(6/18). High-dimensional wavelet features are texture features that

show lesion heterogeneity (60). Fan et al. used ML to predict the

aggressiveness of prostate cancer, and wavelet features accounted

for the largest proportion of their models (61). Meng et al. and Aerts

et al. reached similar conclusions (60, 62). Additionally, CEUS

frames played a substantial role in feature selection (12/18),

illustrating the importance of CEUS images. Moreover, among

the selected features, the top-ranked one was the “time to peak”

frame. This may be because the image is brightest at the peak time,

and the number of microbubbles in the nodule area is the highest,

which can probably provide more information.

Classifiers play a crucial role in ML procedures. Our study uses six

classifiers for model development(SVM, LR, DT, RF, GBDT, and

XGBOOST). Support vector machine (SVM) is a kind of generalized

linear classifier for binary classification of data according to supervised

learning, which is more suitable for dealing with complex nonlinear
TABLE 4 Diagnostic performance of the RF model compared to human readers in the test cohort.

Models SEN SPE PPV NPV Accuracy AUC P

Test cohort RF model 0.821
(0.644–0.921)

0.933
(0.841–0.974)

0.852
(0.675–0.941)

0.918
(0.822–0.964)

0.898 0.936
(0.884–0.988)

Senior
radiologist

0.965
(0.868–0.994)

0.839
(0.655–0.939)

0.917
(0.808–0.968)

0.929
(0.750–0.988)

0.920 0.923
(0.854–0.991)

0.799

Junior
radiologist

0.817
(0.691–0.901)

0.786
(0.585–0.910)

0.891
(0.771–0.955)

0.667
(0.481–0.814)

0.807 0.801
(0.696–0.906)

0.039*
RF, random forest; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
FIGURE 9

ROC curves of the RF model, senior radiologist, and junior
radiologist in the test cohort. ROC, receiver operating characteristic;
RF, random forest.
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equations than logistic regression. Compared with SVM, LR can be

used for multivariate classification and is more suitable for small data

volume. Decision tree (DT) is a basic classification and regression

method and defined as a conditional probability distribution on

feature space and class space. Both random forest (RF) and gradient

boosting decision tree (GBDT) are based on DT. RF is an extension of

a parallel ensemble learning method, and “random” means the

randomness of the selected partition attributes. GBDT is a decision

tree model trained with gradient boosting strategy, which performs

well in screening features (63). XGBOOST is a kind of basic GBDT,

but compared with GBDT, it can support custom loss functions and

add more regular terms, handling of missing value and column

sampling. Among the four models based on DT, RF can converge

to a lower generalization error than the traditional DT. What is more,

DT selects the optimal partition attribute from all attribute sets, while

RF selects the partition attribute only in a subset of the attribute set, so

the training efficiency is higher. And each tree of RF only chooses part

of samples and features, breaking through the “overfitting” defect of

DT. Compared with GBDT and XGBOOST, the performance of RF is

more stable, the parameter adjusting is relatively less complicated, the

operation time is short, and the universality is stronger. Compared

with SVM and LR, RF randomly selects samples and features for each

tree, removes noise variables, increases noise resistance and provides

more stable performance. Moreover, unlike SVM, as the number of

observed samples and features increases, SVM firstly needs to spend

much time to find a suitable kernel function during the calculation. RF

has no such weakness. The results of our study also proved that RF

was the optimal classifier for our model. In our data, the RF, GBDT,

and XGBOOST classifiers generally performed better than the SVM,

LR, and DT classifiers. The RF model performed the best (AUC: 0.94,

95% CI: 0.884–0.988; ACC: 0.90). In the test cohort, our RF model

obtained an equivalent performance to that of the senior radiologist

(AUC: 0.94 vs.0.92, P = 0.798; ACC: 0.90 vs. 0.92) and was

considerably higher in specificity than both the senior (0.93 vs. 0.84)

and junior (0.93 vs. 0.79) radiologists. The good performance of our

model also indicated that during the CEUS process, the radiologists

could pay more attention to those five time points: “2nd second after

the arrival time,” “time to peak” frame, “2nd second after peak” frame,

“first-flash” frame, and “second-flash” frame, especially the peak time.

This not only achieves comparable performance in diagnosing thyroid

nodules, which are classified as C- TIRADS 4, but also saves

radiologists time compared to watching the entire CEUS video.

This study had some limitations. First, this was a single-center

retrospective study; our institution is a referral center, and the

malignancy risk of thyroid nodules is relatively high, which may

have led to selection bias in our samples. Second, this study lacked

external verification, requiring a multi-center, multi-hospital,

multi-region study to augment the robustness and generalizability

of our results. Third, the ROI lines of the nodules were all manually

delineated, and key-frame selection was also observed and operated

by radiologists, although we had obtained rather good performance;

however, these two procedures are time-consuming and prone to

errors, and their efficiency and accuracy could potentially be

improved with the implementation of a mature automated

artificially intelligent system.
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5 Conclusion

Our study established six ML models based on two 2D-US

images and five CEUS key frames to distinguish malignant from

benign thyroid nodules which were classified as C-TIRADS 4. Our

study highlighted the information of CEUS image extracted by ML

that could not be seen by human eyes, indicating that CEUS may

have great potential in the field of thyroid nodules. The RF model, as

the optimal ML algorithm, may provide a noninvasive, convenient,

feasible, and highly accurate method for invasive FNA and assist

junior radiologists in diagnosis or preoperative prediction models.

Further studies will address these limitations, making it possible to

improve clinical diagnostic and therapeutic strategies.
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