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The integrated incretin effect is
reduced by both glucose
intolerance and obesity in
Japanese subjects
Akihiro Hamasaki1,2, Norio Harada1, Atsushi Muraoka1,
Shunsuke Yamane1, Erina Joo1, Kazuyo Suzuki1

and Nobuya Inagaki1*

1Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto
University, Kyoto, Japan, 2Department of Diabetes and Endocrinology, Medical Research Institute
Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
Introduction: Incretin-based drugs are extensively utilized in the treatment of

type 2 diabetes (T2D), with remarkable clinical efficacy. These drugs were

developed based on findings that the incretin effect is reduced in T2D. The

incretin effect in East Asians, whose pancreatic b-cell function is more vulnerable

than that in Caucasians, however, has not been fully examined. In this study, we

investigated the effects of incretin in Japanese subjects.

Methods: A total of 28 Japanese subjects (14 with normal glucose tolerance

[NGT], 6 with impaired glucose tolerance, and 8 with T2D) were enrolled.

Isoglycemic oral (75 g glucose tolerance test) and intravenous glucose were

administered. The numerical incretin effect and gastrointestinally-mediated

glucose disposal (GIGD) were calculated by measuring the plasma glucose and

entero-pancreatic hormone concentrations.

Results and discussion: The difference in the numerical incretin effect among

the groups was relatively small. The numerical incretin effect significantly

negatively correlated with the body mass index (BMI). GIGD was significantly

lower in participants with T2D than in those with NGT, and significantly negatively

correlated with the area under the curve (AUC)-glucose, BMI, and AUC-

glucagon. Incretin concentrations did not differ significantly among the groups.

We demonstrate that in Japanese subjects, obesity has a greater effect than

glucose tolerance on the numerical incretin effect, whereas GIGD is diminished

in individuals with both glucose intolerance and obesity. These findings indicate

variances as well as commonalities between East Asians and Caucasians in the

manifestation of incretin effects on pancreatic b-cell function and the integrated

capacity to handle glucose.
KEYWORDS

incretins, gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide,
glucagon-like peptide-1, insulin, glucagon
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Introduction

Insulin secretion is greater with oral glucose loading than with

intravenous glucose loading under the same blood glucose

concentration increase (1, 2). This phenomenon is due to

intestinal-derived factors released from the gut after glucose

ingestion and enhanced insulin secretion from pancreatic b-cells.
The intestinal tract-derived factors are called incretins, and their

insulinotropic effect of them is called the incretin effect (3).

Glucose-dependent insulinotropic polypeptide (GIP) and

glucagon-like polypeptide-1 (GLP-1) are known as incretins (4,

5). Both GIP and GLP-1 bind to their specific receptors, GIPR and

GLP1R, respectively, and stimulate insulin secretion in pancreatic b
cells depending on the glucose (4, 5). GIP and GLP-1, however, are

quickly cleaved the two NH2-terminal amino acids by the

degrading enzyme dipeptidyl peptidase-4 (DPP-4) and

inactivated (4).

The incretin effect is attenuated with a deterioration in glucose

tolerance, resulting in a diminished insulin response to oral glucose

loading. The incretin effect is clearly lower in type 2 diabetes (T2D)

than in normal glucose tolerance (NGT) (6–11). Therefore, various

strategies to enhance the incretin effect have been developed for

T2D treatment (4, 12–15). Treatment that inhibit DPP-4 enzymatic

activity to prolong the presence of active incretins in the plasma,

and the use of a GLP1R agonist resistant to DPP4 degradation are

successfully applied throughout the world (4, 12, 13, 16–18).

Previous findings indicate that enhanced insulin secretion and

suppression of inappropriate glucagon secretion are the major

clinical effects of incretin-based drugs (19, 20). Both glucose

intolerance and obesity attenuate the incretin effect and the

effectiveness of incretin-related drugs (8–11).

The findings of diminished incretin effects due to impaired

glucose tolerance are mainly based on studies in Caucasians (8–11),

while in a study of East Asians with a background of weak b-cell
function, the incretin effect in patients with T2D was comparable to

that in subjects with NGT (21). These findings suggest that racial

differences affect the relationship between glucose tolerance and the

incretin effect, but this has not been fully investigated. Furthermore,

the adequacy of the incretin effect for capturing the capacity for

glucose metabolism varies (12, 22); for example, the numerical

incretin effect evaluated by insulin secretion does not differ before

and after DPP-4 inhibitor treatment in patients with T2D (23, 24).

Gastrointestinally-mediated glucose disposal (GIGD), evaluated as

the amount of intravenously infused glucose that reproduces the

blood glucose excursion following oral loading, however, is
Abbreviations: AUC, area under the curve; CPR, C-peptide immunoreactivity;

DPP-4, dipeptidyl peptidase-4; ELISA, enzyme-linked immune sorbent assay;

GIGD, gastrointestinally-mediated glucose disposal; GIP, glucose-dependent

insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; HOMA-IR,

assessment of insulin resistance by homeostatic model assessment; IdIR,

intestinal factor derived insulin secretory response; IGT, impaired glucose

tolerance; IIGI, isoglycemic intravenous glucose infusion; IRI, immunoreactive

insulin; NGT, normal glucose tolerance; OGTT, oral glucose tolerance test; PG,

plasma glucose; T2D, type 2 diabetes.

Frontiers in Endocrinology 02
improved by DPP-4 inhibitor treatment (23, 24). Based on these

findings, it is important to clarify what the incretin effect actually

represents (12, 25). To date, only a few investigators have examined

factors other than the relationship between the incretin effect and

insulin secretion.

In the present study, we investigated the relationship of glucose

tolerance and obesity with the numerical incretin effect in East

Asians. In addition, we examined the characteristics of GIGD as a

more widely defined incretin effect in relation to glucose tolerance

and obesity.
Methods

This study protocol complied with the principles of the

Declaration of Helsinki and was approved by the ethics

committee of Kyoto University (registration no. C-0352). Written

informed consent was obtained from all participants.
Subjects

Twenty-eight Japanese subjects (14 with NGT, 6 with impaired

glucose tolerance (IGT), and 8 with T2D) were enrolled. Diagnosis

of NGT, IGT and T2D was made according to the criteria set by the

Japan Diabetes Society (26). None of the participants with T2D took

antidiabetic drugs.
Procedures

Participants underwent an oral glucose tolerance test (OGTT)

and an isoglycemic intravenous glucose infusion (IIGI) after an

overnight fast on separate days. A standard OGTT with 75 g glucose

was performed over 180 min. In the IIGI, an intravenous glucose

infusion (20% wt/vol) was performed aiming to reproduce the

plasma glucose profile of the OGTT using an artificial pancreas

system (STG-22; Nikkiso, Tokyo, Japan). The glucose infusion rate

was regulated using a previously reported glucose clamp protocol

(27) with some modifications. Blood samples were collected at -15,

0, 10, 20, 30, 60, 90, 120, 150, and 180 min after starting the glucose

loading, and then centrifuged at 1880 g for 10 min at 4°C. The

sample supernatant was collected, and the plasma samples were

stored at -80°C until analyzed.
Analyses

The plasma glucose (PG) levels were measured by the ultraviolet

absorption spectrophotometry method. Serum immunoreactive

insulin (IRI) levels and C-peptide immunoreactivity (CPR) were

measured by 2 -site radioimmunoassay. Plasma glucagon

concentrations were determined by radioimmunoassay (Millipore,

Billerica, MA, USA). Total gastric inhibitory peptide (GIP) and

GLP-1 concentrations were evaluated using a human total GIP

enzyme-linked immunosorbent assay (ELISA) kit (Linco Research,
frontiersin.org
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St Charles, MO, USA) and human total GLP-1 ELISA kit (Meso

Scale Discovery, Gaithersburg, MD, USA), respectively as

previously described (28, 29). After solid phase extraction (30,

31), the concentration of GIP and GLP-1 in their active forms

ware measured using a human active GIP ELISA kit (IBL Co Ltd,

Fujioka, Japan) and a human active GLP-1 ELISA kit (Millipore,

Billerica, MA, USA), respectively.
Calculations and statistical analyses

Areas under the curve (AUCs) were calculated using the

trapezoidal rule. Incretin effect values were calculated in relation

to the difference in the integrated incremental b-cell secretory

responses (iAUC: baseline subtracted from the actual values)

according to the following formula: 100% x (iAUC-OGTT –

iAUC-IIGI)/iAUC-OGTT. The ratio of the difference in glucose

administration between oral and intravenous glucose

administration for 75 g oral glucose loading was calculated as the

GIGD according to the following formula: 100% x (glucose-OGTT

(75 g) – glucose-IIGI)/glucose-OGTT (75 g) (6, 22). As

representative indices of the insulin secretion capacity and insulin

sensitivity, the insulinogenic index (32, 33) and assessment of

insulin resistance by homeostatic model assessment (HOMA-IR)

(34, 35), respectively, were calculated as follows: insulinogenic index

= (IRI at 30 min – IRI at 0 min [pM])/(PG at 30 min – PG at 0 min

[mM]), HOMA-IR = (IRI at 0 min [pM]) x (PG at 0 min [mM])/

22.5. Data are presented as mean ± standard deviation. Data were

analyzed using a 2-tailed t-test, Wilcoxon signed rank sum test, and

Kruskal-Wallis test procedures. Statistical analyses were performed

with EZR (Saitama Medical Center, Jichi Medical University,

Saitama, Japan), which is a graphical user interface for R (The R

Foundation for Statistical Computing, Vienna, Austria) (36).
Results

Study participant characteristics, glucose
tolerance and incretin concentrations

The characteristics of the study participants are shown in

Table 1. The mean age of participants in the T2DM and IGT

groups was significantly higher than that of participants in the NGT

group. The mean BMI did not differ significantly among groups.

Fasting blood glucose and HbA1c levels increased along with

deterioration of glucose tolerance (Table 1). Fasting IRI, CPR,

and glucagon levels did not differ significantly among the glucose

tolerance groups, although the insulinogenic index level was

characteristically lower in the T2D group (Table 1). From NGT

to IGT and T2D, glucose excursions during OGTT increased, and

the effect was well reproduced by IIGI (Figures 1A–C; Table 2). The

IRI and CPR concentrations in the early phase after both oral

and intraveneous glucose loading were lower in the T2D

group compared with the other groups (Figures 1D–I). The

insulin secretory response to glucose by AUC-CPR per glucose

excursion (AUC-CPR/AUC-glucose) revealed that insulin secretion
Frontiers in Endocrinology 03
clearly decreased along with the deterioration of glucose

tolerance (Figure 2).

Both GIP and GLP-1 were well secreted after oral glucose loading,

while secretion was not evoked during IIGI (Figure 3; Table 3).

Analysis in all 28 cases revealed that total GIP, active GIP and total

GLP-1 concentrations were significantly suppressed after intravenous

glucose loading (total GIP p = 0.010, active GIP p = 0.0032, total GLP-

1 p = 0.036). Neither secretion of total GIP and GLP-1 nor

enhancement of active GIP and GLP-1 during glucose loading

differed significantly among groups (Table 3). AUC-total GIP

significantly positively correlated with the BMI (r = 0.39, p = 0.043).
Incretin effect

The numerical incretin effect was slightly smaller in the glucose

intolerance groups (IGT and T2D) than in the NGT group

calculated by IRI (NGT 61.9 ± 15.6%, IGT 44.0 ± 30.2%, T2DM

51.8 ± 21.4%) or CPR (NGT 51.5 ± 12.9%, IGT 39.0 ± 15.8%, T2DM

42.6 ± 22.8%), but the difference was not significant among groups.

(Table 2). Similarly, the numerical incretin effect showed no relation

to the AUC of glucose (AUC-glucose (r = -0.01, p = ns), whereas it

significantly negatively correlated with BMI (r = -0.58, p = 0.012;

Figures 4A, C).

The amount of intravenous glucose needed to obtain

isoglycemia for OGTT was greater in the T2DM group than in

the NGT group (52.2 ± 15.2 g vs 33.7 ± 11.9 g, p = 0.012; Table 2).

Stratifying the glucose infusion amounts into time intervals, the

glucose infusion in the T2DM group was significantly greater than

that in the NGT group at 40–100 min (Figures 1J–L). GIGD

calculated from the amount of glucose administered was

significantly lower in the T2DM group than in the NGT group

(30.4 ± 20.3% vs 55.1 ± 15.8%, p = 0.012), and marginally lower in

the IGT group than in the NGT group (36.1 ± 18.2% vs 55.1 ±

15.8%, p = 0.09; Figures 1J–L; Table 2). GIGD significantly
TABLE 1 Participant characteristics.

NGT IGT T2D

N (female) 14(3) 6(0) 8(1)

Age (years) 31.9±7.4 45.7±11.6 * 62.1±5.4 *,#

BMI 23.8±3.8 28.0±8.0 24.8±4.1

HbA1c (%) 5.1±0.2 5.4±0.3 6.8±0.9 *,#

fPG (mM) 4.8±0.4 5.9±0.4 * 6.5±0.5 *

fIRI (pM) 28.8±18.0 34.3±24.5 39.3±32.8

fCPR (pM) 514±159 673±310 585±205

fGlucagon (pM) 28.4±12.2 39.0±21.0 22.9±6.5

HOMA-IR 1.0±0.7 1.5±1.1 1.8±1.4

Insulinogenic index 73±42 68±65 16±11 *
fro
Subjects with normal glucose tolerance (NGT), patients with impaired glucose tolerance (IGT)
and type 2 diabetes mellitus (T2D). Data are mean values ± SD. * and # represent statistical
differences NGT and IGT, respectively (p < 0.05). BMI, body mass index; HbA1c, glycated
hemoglobin AIC; f, fasting; PG, plasma glucose; IRI, immunoreactive insulin; CPR, c-peptide
immunoreactivity; HOMA-IR, homeostasis model assessment of insulin resistance.
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A B

D E F

G IH

J K L

C

FIGURE 1

Plasma glucose (A–C), insulin (D–F), and C-peptide (G–I) concentrations and infused glucose amounts (J–L) during 75-g OGTT and isoglycemic
intravenous glucose infusion, respectively, in participants with NGT (A, D, G, J), IGT (B, E, H, K), and T2D (C, F, I, L). Data are mean values ± SD.
* and # represent a statistical difference vs NGT and IGT, respectively (p < 0.05).
TABLE 2 Responses of glucose, insulin and C-peptide during OGTT and
IIGI, and Incretin effect.

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

AUC-Glucose (min·mM)

OGTT 1184±101 1576±109 * 2121±443 *,#

IIGI 1197±88 1577±182 * 2223±486 *,#

P(OGTT vs IIGI) ns ns ns

AUC-Insulin (min·nM)

OGTT 39.1±21.5 80.4±47.1 35.3±31.4 #

IIGI 16.3±10.3 56.5±61.9 * 19.2±16.8

P(OGTT vs IIGI) <0.01 ns <0.01

(Continued)
F
rontiers in Endocrinolog
y
 04
TABLE 2 Continued

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

AUC-CPR (min·nM)

OGTT 399±84 517±134 334±104 #

IIGI 235±63 374±168 * 228±94

P(OGTT vs IIGI) <0.01 <0.05 <0.01

Incretin Effect (%)

Insulin 61.9±15.6 44.0±30.2 51.8±21.4

CPR 51.5±12.9 39.0±15.8 42.6±22.8

Glucose Infusion

(Continued)
f
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negatively correlated with both the AUC-glucose (r = -0.56, p =

0.002) and BMI (r = -0.54, p = 0.003; Figures 4B, D).

Glucagon suppression after OGTT and IIGT was similar in the

NGT and IGT groups. The glucagon concentrations in the T2D group,
Frontiers in Endocrinology 05
however, were significantly higher in OGTT than in IIGI, especially in

early the phase after glucose loading (Figure 5; Table 3). AUC-glucagon

for 60min during oral loading was higher in the T2D group than in the

NGT group (Table 3). Both fasting glucagon (r = 0.47, p = 0.011) and

AUC-glucagon for 180min (r = 0.47, p = 0.013) significantly correlated

with the BMI. Regarding the contribution of glucagon kinetics to the

glucose handling capacity, the AUC-glucagon for 60 min subtracted by

baseline (i.e., the early post-loading period) negatively correlated with

GIGD (r = -0.48, p = 0.01; Figure 6A). Furthermore, the numerical

incretin effect also weakly, but significantly positively correlated with

GIGD (r = 0.39, p = 0.042; Figure 6B).
Discussion

In the present study, we analyzed participants exhibiting a glucose

tolerance spectrum from NGT to early-stage mild T2D. In the T2D

participants, despite being in the early stages, we observed a significant
TABLE 2 Continued

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

Glucose Infusion

Glucose (g) 33.7±11.9 47.9±13.7 52.2±15.2 *

GIGD (%) 55.1±15.8 36.1±18.2 30.4±20.3 *
Area under the curve (AUC) of plasma glucose, insulin, and C-peptide during 75g oral glucose
tolerance test (OGTT) and isoglycemic intravenous glucose infusion (IIGI). Incretin effect
calculated by incremental insulin and C-peptide responses during glucose load (numerical
incretin effect). Gastrointestinally mediated glucose disposal (GIGD) was calculated by total
amounts of glucose infused during I IGT to reproduce glucose excursion in 75g OGTT. Data are
mean values ± SD. * and # represent statistical difference vs NGT and IGT, respectively (p < 0.05).
'ns' indicates 'not significant' (P>=0.05).
A B

D E F

G IH

C

FIGURE 2

Relationships of the AUC of C-peptide values during a 75-g OGTT (A, G), isoglycemic intravenous glucose infusion (IIGI) (B, H), and the intestinal
factors derived C-peptide(insulin) response (IdIR) (calculated by AUC of C-peptide [OGTT] – AUC of C-peptide [IIGI]) (C, I), with AUC of glucose
concentration during OGTT (A–C) and BMI (G–I), respectively. Relationships of the ratios of C-peptide amounts in OGTT (D), IIGI (E), and IdIR (F) to
the glucose concentration during OGTT (D–F) with the AUC of glucose concentrations. Pearson’s correlation tests were carried out to calculate the
correlation coefficient (r) and p-values. 'ns' indicates 'not significant' (P>=0.05).
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FIGURE 3

Plasma total GIP (A–C), active GIP (D–F), total GLP-1 (G–I), and active GLP-1 (J–L) concentrations during 75-g OGTT and isoglycemic intravenous
glucose infusion (ivGTT) in participants with NGT (A, D, G, J), IGT (B, E, H, K), and T2D (C, F, I, L). Data are mean values ± SD.
TABLE 3 Responses of plasma GIP, GLP-I, and glucagon during OGTT
and IIGI.

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

AUC-total GIP (min·nM)

OGTT 7.4±2.9 10.8±4.2 9.3±4.4

IIGI 1.3±0.5 1.6±0.8 1.3±0.8

P(OGTT vs IIGI) <0.01 <0.05 <0.01

AUC-active GIP (min·nM)

OGTT 4.4±1.2 6.3±2.5 5.2±2.1

IIGI 0.6±0.3 0.7±0.3 0.6±0.3

P(OGTT vs IIGI) <0.01 <0.05 <0.01

(Continued)
F
rontiers in Endocrinology
 06
TABLE 3 Continued

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

AUC-total GLP-1 (min·nM)

OGTT 1.6±0.8 1.4±0.3 2.1±1.1

IIGI 0.5±0.5 0.6±0.3 0.6±0.5

P(OGTT vs IIGI) <0.01 <0.05 <0.01

AUC-active GLP-1 (min·nM)

OGTT 0.5±0.3 0.4±0.2 0.5±0.4

IIGI 0.1±0.1 0.1±0.2 0.03±0.1

P(OGTT vs IIGI) <0.01 <0.05 <0.01

⊿AUC-Glucagon 0-180min (min·nM)

(Continued)
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reduction in the insulinogenic index, reflecting distinct characteristics

observed in Japanese T2D patients (37, 38). This study, therefore,
Frontiers in Endocrinology 07
enabled us to investigate the effects of incretin in East Asians,

characterized by lower insulin secretion, in comparison with previous

findings in Caucasians. Although, the incretin effect was slightly smaller

in the T2D group than in the NGT group, the difference was not

significant in contrast to previous reports in Western Caucasians (6–

11). A reduced numerical incretin effect, however, was clearly observed

in clear with an increase in BMI.

Several studies in Caucasians report decreases in the numerical

incretin effect in response to impaired glucose tolerance (6–11), but

in Koreans, no significant differences in the numerical incretin effect

between those with NGT and T2D are reported (21). Our findings

arevealed that the decrease in glucose tolerance up to early T2D is

not always parallel with the decrease in the incretin effect in contrast

to that in Caucasians. These characteristics of the incretin effect are

common to East Asians, suggesting a potential racial difference in

the action of incretin (12). IGT is reported to decrease the incretin

effect in Caucasians (8). Our results demonstrated no clear

difference in the numerical incretin effect in Japanese with IGT

compared to those with NGT and T2D.

Here, we consider the insulin secretory response separately after

oral glucose loading, the insulin secretory response after

intravenous loading, and the difference between these two
TABLE 3 Continued

NGT
(n=14)

IGT
(n=6)

T2D
(n=8)

⊿AUC-Glucagon 0-180min (min·nM)

OGTT -958±833 -1624±1119 -397±554

IIGI -760±572 -1727±1269 -784±359

P(OGTT vs IIGI) ns ns ns

⊿AUC-Glucagon 0-60min (min·nM)

OGTT -269±217 -197±410 32±126 *

IIGI -249±150 -389±264 -143±88

P(OGTT vs IIGI) ns ns <0.05
Area under the curve (AUC) of plasma total GIP, active GIP, total GLP-1, and active GLP-1
concentrations during 75g oral glucose tolerance test (OGTT) and isoglycemic intravenous
glucose infusion (IIGI). The change in the plasma glucagon response (⊿AUC) is calculated by
subtracting the AUC from the baseline value. Data are mean values ± SD. * represent statistical
difference vs NGT, respectively (p < 0.01).
'ns' indicates 'not significant' (P>=0.05).
A B

DC

FIGURE 4

Relationship of the incretin effect calculated by incremental AUC of C-peptide values (A, C) and percentage of gastrointestinally mediated glucose
disposal (GIGD) (B, D), with the AUC of the glucose concentration during OGTT (A, B) and BMI (C, D). Pearson’s correlation tests were carried out to
calculate the correlation coefficient (r) and p-values. 'ns' indicates 'not significant' (P>=0.05).
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conditions as the intestinal factor-derived insulin secretory

response (IdIR) (Figure 2). Along with the diminished insulin

secretory response to direct (intravenous) glucose loading in the

case of b-cell dysfunction during impaired glucose tolerance, the

IdIR is also decreased (39). Detailed observations of insulin

secretion in previous reports (7, 8) revealed that the reduction of

the IdIR ratio to the insulin secretory response to intravenous

glucose loading along with glucose intolerance is more prominent

in Caucasians than in Japanese subjects (Figures 2A–C). For this

reason, the reduction of the numerical incretin effect in Japanese

with T2D is not so large. Incretin secretion was not affected by

differences in glucose tolerance, consistent with previous reports

(40–44). In terms of incretin action, a recent genome-wide

association study (45) reported that Japanese have a higher

proportion of a genetic GLP-1 receptor variant that is associated

with greater insulin secretion induced by GLP-1 stimulation (46).

This background might contribute to the relatively preserved IdIR
Frontiers in Endocrinology 08
compared with the strongly diminished insulin response to

intravenous glucose loading in our results. Furthermore, this may

be why the effectiveness of incretin-based therapy for T2D is more

apparent in Asians (47, 48).

The numerical incretin effect decreased as BMI increase. As

BMI increases, the insulin secretory response to intravenous glucose

loading increases, but IdIR was not enhanced (Figures 2H, I),

resulting in a diminished numerical incretin effect. The pattern is

consistent with finding from previous studies on insulin secretion in

Caucasians (8, 10). These findings may relate to the greater

effectiveness of incretin-based therapies for patients with T2D

with relatively lower BMI (47–49).

The GIGD can be considered as an index of the capacity of

additional oral glucose loading under the blood glucose excursion

observed in intravenous loading (12, 25). In this study, GIGD

decreased as glucose tolerance deteriorated, which is consistent

with previous studies in Caucasians (6, 7, 9, 10) and East Asians
A B C

FIGURE 5

Ratios of plasma glucagon values to the basal values during a 75-g OGTT (filled symbols) and isoglycemic intravenous glucose infusion (open
symbols), in participants with NGT (A), IGT (B), and T2D (C). Data are mean values ± SD. +; p < 0.05 vs IIGI.
A B

FIGURE 6

Relationship of the percentage of gastrointestinally-mediated glucose disposal (GIGD) with the incretin effect calculated by the incremental AUC of
C-peptide values (A) and AUC(0-60min) of the plasma glucagon concentration during OGTT (B). Pearson’s correlation tests were carried out to
calculate the correlation coefficient (r) and p-values.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1301352
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hamasaki et al. 10.3389/fendo.2024.1301352
(21). In the T2D group, suppression of glucagon secretion was

insufficient after oral glucose loading compared with after

intravenous glucose loading, as previously reported (50, 51).

GIGD negatively correlated with the AUC-glucagon in OGTT,

suggesting that GIGD reflects the role of glucagon in glucose

excursions (20, 52, 53). Besides glucagon, GIGD weakly, but

significantly, positively correlated with the incretin effect

calculated by CPR in the present study. We defined GIGD as

representing an integrated and more accurate incretin effect

including the secretion and action of both insulin and glucagon

(12, 25, 54, 55). GIGD also decreased with an increase in the BMI,

which was accompanied by increasing glucagon concentrations.

Increased glucagon secretion in obesity is also reported in

Caucasians (10, 56). The dysregulated of glucose metabolism in

obesity results from by both the inadequate increase in insulin

secretion through the numerical incretin effect and insufficient

suppression of glucagon secretion. On the basis of the findings to

date, this mechanism may be common between Caucasian and East

Asian populations.

Our study has some limitations. First, the glucose tolerance

groups were not matched for age. Generally, b-cell function

decreases with age. Our finding that the incretin effect was not

diminished in older subjects with impaired glucose tolerance

supports the notion that the numerical incretin effects differ from

those in Caucasians, but an age-matched analysis may be necessary

for confirmation. Second, the gastric emptying rate was not

measured. A decrease in the gastric excretion rate due to

impaired glucose tolerance affects incretin secretion and the

evaluation of its effect. It is reported that the excretion rate

decreases with an increase in the glucose load but that there is no

significant difference among different glucose tolerance groups with

a 75-g glucose load (9). This may not be applicable in the East Asian

population. Third, this study was conducted with a small number of

subjects in a single facility and there were more male than female

participants. To clarify the different characteristics between Asian

and Caucasian populations, a large-scale multi-center study

is needed.

In conclusion, in Japanese, obesity has a more pronounced

impact on reducing the numerical incretin effect compared with

impaired glucose tolerance. On the other hand, GIGD as the

integrated glucose handling capacity encompassing the glucagon

inhibitory effect decreases with worsening glucose intolerance and

increasing obesity, which may be a common pathophysiologic

characteristic between Asians and Caucasians. A detailed

examination of the incretin effect by taking into account the

characteristics of each race is critically important for elucidating

the pathogenesis of diabetes, which will lead to more appropriate

therapeutic approaches tailored to each condition.
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