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Shihao Sun3, Kai Huang1, Qingling Yang1* and Yihong Guo1*

1Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China, 2Department of Urology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China, 3Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou
University, Zhengzhou, Henan, China
Background: Primary ovarian insufficiency (POI) is a common clinical endocrine

disorder with a high heterogeneity in both endocrine hormones and etiological

phenotypes. However, the etiology of POI remains unclear. Herein, we unraveled

the causality of genetically determined metabolites (GDMs) on POI through

Mendelian randomization (MR) study with the overarching goal of disclosing

underlying mechanisms.

Methods: Genetic links with 486 metabolites were retrieved from GWAS data of

7824 European participants as exposures, while GWAS data concerning POI were

utilized as the outcome. Via MR analysis, we selected inverse-variance weighted

(IVW) method for primary analysis and several additional MRmethods (MR-Egger,

weighted median, and MR-PRESSO) for sensitivity analyses. MR-Egger intercept

and Cochran’s Q statistical analysis were conducted to assess potential

heterogeneity and pleiotropy. In addition, genetic variations in the key target

metabolite were scrutinized further. We conducted replication, meta-analysis,

and linkage disequilibrium score regression (LDSC) to reinforce our findings. The

MR Steiger test and reverse MR analysis were utilized to assess the robustness of

genetic directionality. Furthermore, to deeply explore causality, we performed

colocalization analysis and metabolic pathway analysis.

Results: Via IVW methods, our study identified 33 metabolites that might exert a

causal effect on POI development. X-11437 showed a robustly significant

relationship with POI in four MR analysis methods (P IVW=0.0119; P weighted-

median =0.0145; PMR-Egger =0.0499; PMR-PRESSO =0.0248). Among the identified

metabolites, N-acetylalanine emerged as the most significant in the primary MR

analysis using IVW method, reinforcing its pivotal status as a serum biomarker

indicative of an elevated POI risk with the most notable P-value (P IVW=0.0007;

PMR-PRESSO =0.0022). Multiple analyses were implemented to further

demonstrate the reliability and stability of our deduction of causality. Reverse

MR analysis did not provide evidence for the causal effects of POI on 33

metabolites. Colocalization analysis revealed that some causal associations

between metabolites and POI might be driven by shared genetic variants.
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Conclusion: By incorporating genomics withmetabolomics, this study sought to

offer a comprehensive analysis in causal impact of serum metabolome

phenotypes on risks of POI with implications for underlying mechanisms,

disease screening and prevention.
KEYWORDS

causal effects, genetically determined metabolites, mendelian randomization, primary
ovarian insufficiency, colocalization analysis
1 Introduction

Primary ovarian insufficiency (POI) is an important cause of

ovarian hormone deficiency and infertility in women, and as a

subclass of ovarian dysfunction, its etiology lies within the ovaries.

Patients with POI suffer from irregular menstrual cycles, with

abnormally high levels of gonadotropins and low levels of estrogen

(1, 2). Spontaneous POI occurs in around 1% of women by age 40 and

in an estimated 0.1% of women by age 30. Approximately 5% of

women experience early menopause by age 45 (3). Although

spontaneous ovulation occurs frequently, spontaneous pregnancy is

possible in only 5% of patients, with the majority of patients with POI

suffering lifelong fertility loss (4). As a consequence, POI has received

worldwide attention due to its adverse effects and patients’ strong desire

to fertilize, in particular among young women. In addition to causing

infertility, POI is also associated with a multitude of health risks owing

to chronic estrogen deficiency, including decreased bone density and

increased risk of fracture, psychological impacts like anxiety, potentially

early cognitive decline, etc., which poses serious implications for

women’s health (1). Frustratingly, due to the highly heterogeneous

and multi-aetiologic nature of POI, little progress has been made so far

in characterizing the pathophysiological mechanisms underlying POI,

with the biological mechanisms in 90% of cases still unclear (5).

Therefore, the etiology and underlying biological processes of POI

still require in-depth exploration.

Metabolites are widely distributed in human cells, tissues as well as

fluids, with changes in their concentrations providing early evidence for

pathological diagnosis (6, 7). Along with rapid advances in the field of

metabolomics, a more systematic comprehension of an individual’s

metabolic status has been achieved with genome-wide association

study (GWAS) extending to metabolic phenotypes. Genetically

determined metabolites (GDMs) profiles were yielded accordingly,

serving as the nexus between genetic variations and environmental

triggers of diseases (8–11). Notably, traditional targeted metabolomics

methodology only specializes in metabolites within a confined number

of pre-definedmetabolic pathways; whereas the combination of GWAS

with untargeted metabolomics facilitates an in-depth study to offer a

novel frontier in exploitation of the disease causation (12). The

emerging integration of serum metabolomics and modern genomics

technologies delivers prospective insights into the genetic and

metabolic mechanisms behind complex diseases (9). It is well known
02
that multiple factors, including metabolism, might activate the

pathogenesis of POI (13). Accumulated non-targeted metabolomics

studies recently disclosed that impairments such as cognitive decline,

anxiety, and decreased bone mineral density caused by estrogen

deficiency in POI patients are causally linked with serum GDMs,

strongly implicating that GDMs may shed light on the exploration of

the pathogenesis (14–16). Thus, the metabolomic investigation of

etiology for POI might lead to new preventive, therapeutic and

management tools with great potential and clinical value.

Mendelian randomization (MR) serves as a distinctive genetic

epidemiology research strategy, aiming at evaluating the causality of

exposure to risk factors on disease-specific clinical outcomes (17). One

of the critical basic principles in MR analysis is the utilization of

instrumental variables (IVs), so that causal relationships hypothesized

by studies are not solely derived from exposure factors (18). Acting as

IVs, genetic variants reliably correlate with exposures and directly

contribute to outcome events via the exposures (19). MR analytical

methodology can provide robust and unbiased estimations of how

genotypes are determined at conception (20). Upon this approach,

researchers can more precisely and thoroughly probe the potential

causal effects of multiple factors on disease, and target potentially vital

genetic variants and metabolic pathways, laying cornerstones for future

therapeutic strategies in clinical settings (21). MR analysis presents a

robust alternative to address biases arising from unmeasured

confounders, reverse causation, and measurement errors (22). It

offers a complementary approach to randomized controlled trials

(23, 24). For MR to be effectively executed, three core principles

must be adhered to: firstly, genetic variants should exhibit a strong

association with the exposure of interest; secondly, these variants

should be independent of any confounders that could influence both

the exposure and the outcome; thirdly, the genetic instruments should

influence the outcome exclusively through their effect on the exposure

(25, 26). Among these, the second and third assumptions, known

together as the absence of horizontal pleiotropy, can be tested

statistically (27). As a result, research on MR applied to GWAS data

has grown in popularity over the past few decades (28, 29).

Due to the existing knowledge gap regarding the causal links

between blood metabolites and POI, additional research in this field is

imperative. Herein, our study employs non-targeted metabolomics to

deduce causal associations between serum GDM levels and POI.

Employing MR analysis on GWAS summary data, we conducted a
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comprehensive exploration of the causal effects of 486 blood

metabolites on POI. Additionally, our research extends to

colocalization and metabolic pathway analyses to uncover the

underlying biological mechanisms. Our multifaceted studies not only

seek to reveal the metabolic etiology associated with POI but also aim

to provide profound insights into the biological processes involved,

potentially paving the way for novel therapeutic interventions and

prevention strategies.
2 Methods

2.1 Study design

A thorough two-sample MR study was employed to probe into the

causal links of 486 metabolites on POI. Figure 1A elucidates the study

design alongside three indispensable MR assumptions: (1) genetic

instruments are linked to the exposures, (2) genetic variants are

unrelated to any confounding factors, and (3) genetic instruments

only influence outcomes via risk variables (30). The graphical

representation of our study design is depicted in Figure 1B.
2.2 Genetically determined
serum metabolites

This study draws on the results of a robust analysis conducted

by Shin et al. whose research offers the most comprehensive and
Frontiers in Endocrinology 03
detailed analysis of human metabolites to date, covering GWAS of

486 metabolites (11). A total of 7824 participants from two

European cohorts contributed these data, and over 2.1 million

single nucleotide polymorphisms (SNPs) were involved in the

study. Performing a pivotal role in metabolomics GWAS data,

these SNPs deepen our in-depth knowledge and mastery of the

relationship between human genetic variations and serum

metabolites. As shown in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database, 309 of the 486 GDMs are already

known and have been categorized into eight bio-chemical classes

(amino acids, peptides, lipids, cofactors and vitamins,

carbohydrates, energy, nucleotides, and exotic organisms), while

the remaining 177 GDMs have not yet been well characterized.

GWAS data for GDMs can be retrieved from Metabolomics GWAS

server (https://metabolomics.helmholtz-muenchen.de/gwas/).
2.3 Selection of instrumental variables

To ascertain the accuracy and effectiveness of MR analyses, a

rigorous selection procedure of IVs was conducted for 486

metabolites. Initially, selected SNPs significantly correlated with

particular metabolites were chosen with a linkage threshold set at

locus-wide significance threshold (P <1 × 10-5), which could

guarantee IVs accounted for the majority of variance in

metabolites. Furthermore, in order to ensure IVs independent of

each other, a linkage disequilibrium threshold of r2 < 0.01 and a

window of 500 kb were taken into account. In addition, we excluded
A

B

FIGURE 1

Study design overview. (A) Mendelian randomization (MR) analyses depend on three core assumptions. Assumption 1, genetic instruments are
strongly associated with the exposures of interest; Assumption 2, genetic instruments are independent of confounding factors; Assumption 3,
genetic instruments are not associated with outcome and affect outcome only via exposures. (B) Outline of the study design. IVW, inverse variance
weighted; LD, linkage disequilibrium; MR-PRESSO, MR-Pleiotropy RESidual sum and outlier; SNPs, single nucleotide polymorphisms; LDSC, linkage
disequilibrium score.
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specific palindromic SNPs so as to avoid biased results due to IVs

selected inappropriately. F-statistic (b2exposure/SE2exposure) was
further calculated to estimate the strength of IVs (31), and F-

statistic >10 is deemed a strongly efficient selection criterion (32).

Such selection criteria not only conformed to the recommendations

from previous studies, but also assured the robustness and accuracy

of IVs utilized in this study.
2.4 GWAS summary dataset for POI

GWAS summary statistics regarding POI risk were available

from the FinnGen Consortium regarding 254 Finnish adult female

cases and 118,228 controls, which utilized genetic data from the

Finnish Biobank in combination with health records from the

Finnish Health Registries. The diagnosis of POI was established

according to the International Classification of Diseases-10 (ICD-

10), which classifies Primary ovarian failure under code E28.3, a

subcategory of Ovarian dysfunction (E28). This classification

included cases with decreased estrogen levels, Premature

menopause NOS (Not Otherwise Specified), and Resistant ovary

syndrome, and explicitly excludes menopausal and female

climacteric states (coded as N95.1), pure gonadal dysgenesis

(coded as Q99.1), and Turner syndrome (coded as Q96.-). These

stringent criteria ensured that the POI diagnoses used in our genetic

analysis are precise and clinically validated. Given that GWAS

information pertaining to POI was publicly available summary

data, no additional ethical approvals were required in relation to

their utilization. Data above can be publicly accessible on MRC

Integrative Epidemiology Unit (https://gwas.mrcieu.ac.uk/).
2.5 Estimation of causal effects via
MR analysis

To probe the causal association between GDMs and POI, the

two-sample MR analysis was adopted in this study with a wide

spectrum of methods. As the primary approach, inverse-variance

weighted (IVW) method delivered consistent estimates of causal

effects with all genetic variants treated as valid instrumental

variables. To assure the robustness of our findings, further

sensitivity tests were carried out to assess the MR estimates of

latent metabolites by employing MR-Egger, weighted median, as

well as MR pleiotropy residual sum and outlier (MR-PRESSO) (18).

Assessments of diversity and sensitivity were implemented to

ensure consistency and reliability within our results. A variety of

methodologies were applied to validate the assumption of

independence, comprising MR-Egger intercept, MR-PRESSO

method, etc. (33). To evaluate the presence of horizontal pleiotropy

and potential bias caused by invalid IVs, MR-Egger intercept analysis

was computed (34). MR-PRESSO Global test was used to provide

further assessment of horizontal pleiotropy. s Q-test was employed to

determine heterogeneity among SNPs, which may be attributed to

horizontal pleiotropy or other biases (35). The ‘leave-one-out’ (LOO)

approach demonstrated the reliability and robustness of outcomes by
Frontiers in Endocrinology 04
discarding each SNP in turn and then conducting MR analyses (34). In

this way, LOO intuitively visualized whether a single SNP was driving

the primary causality.

Only when the following criteria were satisfied, a strong causal

relationship between GDMs and POI could be recognized in this

study: 1) IVWmethod showed a significant difference with P <0.05;

2) consistent estimates were identified via the other three MR

methods; 3) Cochran’s Q test, MR-Egger intercept and MR-

PRESSO Global test were not significant with P > 0.05; 4) The

MR-Steiger directionality test indicated TRUE. 5) MR estimates

were not seriously disturbed by a single SNP in LOO analysis.
2.6 Replication and meta-analysis

To thoroughly assess the robustness of candidate metabolites

identified based on the criteria outlined previously, replication

analyses were conducted using alternative metabolite databases to

validate the reproducibility of our findings. A comprehensive search

and collection of positive metabolites were performed across

databases including IEU OpenGWAS project (https://

gwas.mrcieu.ac.uk/) and GWAS Catalog (https://www.ebi.ac.uk/

gwas/). All collected data on matching metabolites underwent

replication analysis primarily utilizing IVW method. Notably, our

replication efforts also incorporated the most comprehensive

GWAS study to date, which included genome-wide association

analyses of 1,091 blood metabolites and 309 metabolite ratios across

a cohort of 8,299 individuals (36). Subsequently, the findings from

the replication analysis were integrated into a meta-analysis. A

random effects model was employed in cases of significant

heterogeneity (I² > 50%, H > 1.5, P < 0.05); otherwise, a fixed

effects model was utilized.
2.7 Evaluation of genetic correlation
and directionality

The accuracy of causal effect estimates in MR analysis may be

compromised due to genetic associations between the exposure and

the outcome of interest (37). Even after removing several SNPs

associated with POI during the selection of IVs, combinations of

SNPs not significantly associated with the POI may still influence its

genetic predisposition to POI. To address this, we applied Linkage

Disequilibrium Score (LDSC) regression, which utilizes chi-squared

statistics to evaluate the genetic coinheritance of two traits, thereby

assessing the genetic correlation between the identified metabolites

and POI.

Moreover, to address potential biases from reverse causation,

we conducted the Steiger test to more accurately determine the

relationship direction between GDMs and POI (38). As a further

step to validate the genetic direction, a reverse MR study was also

carried out on GDMs previously identified through forward MR

analysis as exerting a causal relationship with POI. This reverse

analysis was performed via the same methodological framework as

the forward MR, ensuring consistency in our approach.
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2.8 Colocalization analysis

To further ascertain whether the associations of the identified

GDMs between POI were driven by a locus within a genomic region,

we conducted colocalization analysis via coloc R package. Coloc employs

a Bayesian framework to generate posterior probabilities for 5 mutually

exclusive hypotheses concerning the sharing of causal variants between

two phenotypes. These hypotheses included H0 (neither trait has a

genetic association in the region), H1 (only trait 1 has a genetic

association in the region), H2 (only trait 2 has a genetic association in

the region), H3 (both traits are associated, but with different causal

variants), and H4 (both traits are associated and share a single causal

variant) (39). H4/(H3+H4) represents the probability of colocalization

conditional on the presence of a causal variant for the outcome (40).
2.9 Metabolic pathway analysis

To uncover the biological mechanisms through which blood

metabolites influence POI causally, we conducted a detailed

metabolic pathway analysis using MetaboAnalyst 6.0 (https://

www.metaboanalyst.ca/). Utilizing the functional enrichment

analysis module on MetaboAnalyst 6.0, we honed in on

identifying key metabolite pathways, drawing from the

comprehensive dataset available in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. Adhering to strict

significance thresholds (P <0.05), our analysis provided a

thorough and reliable examination of the metabolites associated

with the POI, offering insightful revelations about its metabolic

underpinnings and potential pathways of pathogenesis.
2.10 Statistical analysis

All MR analyses were carried out in R (4.2.0) software. Packages

such as MendelianRandomization, MR-PRESSO, coloc, and forestplot,

were employed in this study. Collectively, the array of methods and

tests presented a systematic and rigorous framework to assess causal

effects between GDMs and POI. If the estimated causal effect P value

for GDMs was less than 0.05, GDMs were considered statistically

significantly associated with POI and defined as latent metabolites as

suggestive risk predictors for POI. A two-tailed P <0.05 was deemed

statistically significant in all tests of sensitivity analysis. For the analysis

of genetic correlation, the LDSC software was employed (41).

Additionally, the online tool LocusZoom was utilized to display the

results of the colocalization analysis (42).
3 Results

3.1 Strength of genetic instrumentals for
486 GDMs

With GWAS summary statistics, our study exploited two-

sample MR analysis to uncover the underlying causal effects
Frontiers in Endocrinology 05
between GDMs and POI. A total of 9552 SNPs were enrolled in

the study on the basis of rigorous screening criteria. SNPs for IVs

corresponding to the 486 metabolites in serum ranged from 2 to

481, accounting for 0.24% to 70.82% of variances in corresponding

GDMs. Of note, the minimum F-statistic for the strength of the IVs

employed in this study was 17.41. The F-statistics corresponding to

all SNPs were above 10, indicating that all IVs associated with the

486 GDMs were sufficient to fulfill the requirements to achieve a

potent MR analysis.
3.2 Causality of serum metabolites on POI

Through IVW approach, 14 known GDMs and 19 unknown

metabolites that significantly correlate with POI were identified

(Figure 2). The 14 known GDMs under focused attention contained

4 amino acids, 1 cofactor and vitamin, 3 lipids, 1 peptide, and 5

xenobiotics. Notably, among these well-known metabolites, N-

acetylalanine was detected to be the most prominently linked to POI

(PIVW =0.0007). With 23 SNPs serving as proxy predictors, increased

levels of N-acetylalanine were strongly tied to a significantly increased

risk of POI (logarithmic value of odds ratio [ln OR]: 10.56; 95%

confidence interval [CI]: 4.48-16.63). Similar to N-acetylalanine, the

other 15 metabolites associated with an elevated risk of POI were also

determined, including threonine (ln OR: 3.99; 95% CI: 0.41-7.58; PIVW
=0.0290), X-11593–O-methylascorbate (ln OR: 3.99; 95% CI: 1.41-5.9;

PIVW =0.0014), pyroglutamylglycine (ln OR: 2.53; 95% CI: 0.47-4.58;

PIVW =0.0255), glycerol 2−phosphate (ln OR: 2.41; 95% CI: 0.46-4.36;

PIVW =0.0157), homostachydrine (ln OR: 2.54; 95% CI: 0.32-4.77; PIVW
=0.0248), etc. In contrast, 17 other metabolites were characterized to be

related to a reduced risk of POI, comprising indolepropionate (ln OR:

−1.9; 95% CI: −3.54- −0.26; PIVW =0.0235), dodecanedioate (ln OR:

−2.96; 95% CI: −5.43- −0.49; PIVW =0.0188), salicyluric glucuronide (ln

OR: −0.44; 95% CI: −0.84- −0.05; PIVW =0.0261), etc. Altogether, with

genetic variations as a proxy, a total of 33 GDMs with potential

pathogenic effects on POI were defined on the basis of IVW method.
3.3 Sensitivity analysis

Even though the IVW approach is very effective for deducing

causal relationships between exposure and outcome in complicated

diseases, it is susceptible to the effects of weak instrumental biases.

Thus, sensitivity analysis was further implemented to minimize

these biases. Table 1 shows the results of the sensitivity analysis for

evaluating the stability and robustness of the metabolites identified

by IVW. When sensitivity tests were employed, only 1 unknown

metabolite, X-11437, was unearthed from 33 GDMs with a strong

causal association with POI (P weighted-median =0.0145; PMR-Egger

=0.0499; PMR-PRESSO =0.0248). Besides IVW method, consistent

causality estimations that serum X-11437 increased the risk of POI

could also be derived from these three MR methods, involving MR-

Egger, weighted median, and MR-PRESSO (Table 1).

Furthermore, with the criteria less stringent, we inferred that all

but 6 GDMs (indolepropionate, 3-(3-hydroxyphenyl) propionate,
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chiro -inositol, homostachydrine, X-12236, X-12776, and X-12844)

of the 33 metabolites identified by IVW passed at least one

additional sensitivity test (Table 1). Intriguingly, given that the

MR-Egger and weighted median methods relied on potentially

incorrect assumptions, N-acetylalanine, the most prominent

known compound we identified through IVW, still demonstrated

a strong correlation on the risk of POI in the MR -PRESSO test

(PMR-PRESSO =0.0022), implicating that this known GDM deserves

more in-depth studies (Table 1, Figure 3A). The LOO approach

demonstrated the absence of any potential outliers in IVs, which

implied that no leading SNPs would severely affect the results after

elimination, and further confirmed the credibility of our MR results

against this critically important metabolite (Figure 3B).

A series of sensitivity analyses were subsequently conducted in

this study to further evaluate the robustness of IVW results. For 33

serum metabolites excavated by IVW, Cochran’s Q-test showed no

heterogeneity among the IVs (Table 2). The results of MR-Egger

regression intercept and MR-PRESSO global test demonstrated that

our MR analyses were not subjected to any potential effect of

horizontal pleiotropy (P >0.05) (Table 3).
3.4 Genetic variants for determining the
causality of the association

Latent genetic variants were further delved into, which might

cast a decisive role in identifying causal relationship between GDMs

and POI. N-acetylalanine, a critical serum metabolite revealed by

our study, was spotlighted. SNPs that exert an essential effect in the

causal relationship between N-acetylalanine and POI were deeply
Frontiers in Endocrinology 06
investigated. Among the 23 SNPs constituting the IVs for N-

acetylalanine, rs11144136 exhibited the most significant

correlation signal with the largest association coefficient

(b = 0.0097; standard error = 0.018; P = 4.82E-08, Table 4).

Intriguingly, its strong effect on POI was also captured by our

study (b = 0.3626; standard error = 0.1407; P = 0.099). Similarly,

rs2019107 (b =-0.2666; standard error =0.0915; P =0.0036) and

rs11606364 (b =0.4646; standard error =0.1951; P = 0.0173) were

also significantly linked to POI. These SNPs may shed light on the

underlying pathophysiological mechanisms of POI, as well as offer

valuable insights into the identification of diagnostic and

therapeutic targets.
3.5 Replication and meta-analysis

To bolster the robustness of our findings, we expanded our MR

analysis by incorporating additional GWAS datasets for the positive

metabolites identified in above study. For the 33 candidate

metabolites under investigation, GWAS data from alternative

sources were successfully retrieved for 8 of them. A meta-analysis

was subsequently performed on the MR results from all available

data sources for each metabolite (Supplementary Figures S1–S8). As

anticipated, multiple candidate metabolites exhibited similar trends

in causal associations with POI across different GWAS data sources,

akin to the patterns observed using data from Shin et al., although

the causal effects were not significant, likely due to substantial

differences in sample size. Notably, the meta-analysis result further

validated the protective effect of salicyluric glucuronide on POI

(Supplementary Figure S1), indicating that a higher genetic
FIGURE 2

Mendelian randomization associations between serum metabolites and POI based on inverse-variance weighted (IVW) method.
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TABLE 1 Sensitivity analysis of causal associations between metabolites and POI.

GDMs
MR-Egger Weighted median MR-PRESSO

lnOR (95% CI) P-value lnOR (95% CI) P-value lnOR (95% CI) P-value

Amino acid

threonine 8.15(-5.54,21.84) 0.2585 3.04(-1.64,7.71) 0.2150 3.99 (2.07, 5.92 ) 0.0007

N−acetylalanine 31.44(-75.27,138.16) 0.5698 7.35(-1.08,15.77) 0.0875 10.56 ( 4.58 , 16.53 ) 0.0022

indolepropionate -2.03(-5.36,1.3) 0.2505 -2.04(-4.24,0.16) 0.0695 -1.9 ( -3.24 , -0.55 ) 0.0140

3−(3
−hydroxyphenyl)propionate

-0.84(-3.1,1.42) 0.4888 -0.73(-1.88,0.42) 0.2138 -0.87 ( -1.66 , -0.09 ) 0.0574

Cofactors and vitamins

X−11593−
−O−methylascorbate

3.14(-0.92,7.2) 0.1364 2.86(-0.69,6.4) 0.1142 3.66 ( NA , NA ) 0.0010

Lipid

dodecanedioate 2.15(-7.17,11.47) 0.6696 -2.71(-5.89,0.48) 0.0964 -2.96 ( -4.59 , -1.33 ) 0.0120

chiro−inositol 0.47(-0.78,1.72) 0.4735 -0.2(-1,0.59) 0.6194 -0.62 ( -1.19 , -0.05 ) 0.0548

15−methylpalmitate
(isobar with

2−methylpalmitate)
-5.86(-12.5,0.78) 0.1091 -3.8(-8.34,0.74) 0.1010 -3.91 ( -7.03 , -0.79 ) 0.0289

Peptide

pyroglutamylglycine -1.25(-7.36,4.85) 0.7266 3.06(0.49,5.63) 0.0198 2.53 ( 0.47 , 4.58 ) 0.0948

Xenobiotics

saccharin 1.55(0,3.1) 0.0858 1.3(0.26,2.33) 0.0144 0.93 ( 0.46 , 1.4 ) 0.0038

glycerol 2−phosphate 2.9(-0.61,6.41) 0.1162 3.15(-0.07,6.38) 0.0549 2.41 ( 0.46 , 4.36 ) 0.0217

N−(2−furoyl)glycine -0.4(-0.89,0.1) 0.1275 -0.25(-0.72,0.21) 0.2829 -0.36 ( -0.62 , -0.09 ) 0.0145

homostachydrine -3.75(-10.46,2.97) 0.3355 2.62(-0.48,5.71) 0.0977 2.54 ( 0.46 , 4.63 ) 0.0622

salicyluric glucuronide -0.52(-1.21,0.17) 0.1723 -0.26(-0.81,0.29) 0.3539 -0.44 ( -0.79 , -0.1 ) 0.0270

Unknown

X−04495 -2.46(-10.45,5.54) 0.5623 -2.25(-6.09,1.6) 0.2522 -3.78 ( -7.01 , -0.55 ) 0.0446

X−05907 -4.53(-12.8,3.74) 0.3061 -4.58(-9.56,0.4) 0.0712 -4.44 ( -7.94 , -0.95 ) 0.0284

X−09706 -5.1(-12.32,2.11) 0.1827 -2.38(-6.6,1.83) 0.2682 -3.5 ( -6.5 , -0.5 ) 0.0338

X−10510 3.23(-3.17,9.64) 0.3351 4.34(0.26,8.42) 0.0373 3.53 ( 1.17 , 5.9 ) 0.0083

X−02249 7.75(-0.9,16.41) 0.1067 2.89(-0.63,6.4) 0.1078 2.83 ( 0.35 , 5.32 ) 0.0448

X−11412 5.37(-1.11,11.85) 0.1110 1.44(-2.58,5.46) 0.4833 2.67 ( 0.29 , 5.05 ) 0.0331

X−11437 1.15(0.11,2.2) 0.0499 1.07(0.21,1.93) 0.0145 0.91 ( 0.2 , 1.62 ) 0.0248

X−11470 -2.67(-9.76,4.43) 0.4743 -3.07(-6.63,0.5) 0.0921 -3.33 ( -6.22 , -0.43 ) 0.0411

X−11805 0.75(-0.17,1.67) 0.1475 0.63(-0.25,1.51) 0.1612 0.72 ( 0.33 , 1.12 ) 0.0056

X−12093 0.42(-1.27,2.11) 0.6349 0.67(-0.57,1.9) 0.2896 0.96 ( 0.19 , 1.74 ) 0.0308

X−12206 -14.39(-25.26,-3.53) 0.0289 -3.63(-7.87,0.61) 0.0935 -4.04 ( -7.19 , -0.89 ) 0.0308

X−12236 1.67(-2.63,5.96) 0.4714 1.1(-0.99,3.19) 0.3023 1.76 ( 0.25 , 3.27 ) 0.0520

X−12524 2.69(-6.8,12.19) 0.5826 3.57(-2.77,9.91) 0.2697 4.69 ( 0.48 , 8.9 ) 0.0370

X-12704 -2.22(-5.88,1.44) 0.2684 -1.62(-3.21,-0.02) 0.0476 -1.25 ( -2.24 , -0.26 ) 0.0355

X-12776 6.87(-11.12,24.86) 0.5909 11.35(-2.85,25.56) 0.1171 NA NA

(Continued)
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predisposition for salicyluric glucuronide (OR: 0.49; 95% CI: 0.32–

0.77; P =0.002) might reduce susceptibility to POI.
3.6 Evaluation of genetic correlation
and directionality

LDSC analysis was applied to examine the genetic correlation

between POI and candidate metabolites. Most metabolites, except for

X-13619 (rg=-1.163, P=0.035) and X-11593—O-methylascorbate

(rg=0.703, P=0.038), showed no significant genetic correlation with

POI, suggesting that MR estimates for these metabolites are unlikely to

be confounded by shared genetic factors (Supplementary Table S1).

However, due to limitations such as low heritability and small sample

sizes, several metabolites were not amenable to this analysis. Moreover,

MR Steiger directionality tests were performed for these metabolites

and interpreted the direction from these GDMs to POI as robust,

proving that the inferred causal directions between our exposures and

outcome are “True” (Table 5). Results of the reverse MR analysis also

demonstrated no definitive evidence of causality between POI
Frontiers in Endocrinology 08
phenotype and candidate GDMs within the IVW model

(Supplementary Table S2), which was further corroborated by three

additional MR approaches (Supplementary Table S3). Cochran’s Q

test, MR-Egger, and MR-PRESSO analyses showed no substantial

heterogeneity or horizontal pleiotropy in reverse MR study

(Supplementary Tables S4, S5).
3.7 Results of genetic
colocalization analysis

Colocalization analysis, serving as a crucial supplemental analysis

to support the validity of IV assumptions in MR analyses, was

performed for the 33 candidate metabolites. Causal associations

between multiple metabolites and POI were revealed to be driven

by shared genetic variants within gene loci (Supplementary Table S6).

For instance, the MR effect of N-acetylalanine, one of the most

significant compounds identified in this study, on POI was driven by

the shared lead SNP rs11143900 located on chromosome 9p21.2-

PIP5K1B (Supplementary Figure S9).
TABLE 1 Continued

GDMs
MR-Egger Weighted median MR-PRESSO

lnOR (95% CI) P-value lnOR (95% CI) P-value lnOR (95% CI) P-value

Unknown

X-12786 -4.2(-8.69,0.3) 0.1005 -3.06(-6.08,-0.03) 0.0477 -2.49 ( -4.96 , -0.02 ) 0.0764

X-12844 -3.11(-12.19,5.97) 0.5129 -1.33(-4.93,2.26) 0.4676 -2.62 ( -5.07 , -0.16 ) 0.0540

X-13619 -4.81(-17.08,7.47) 0.4486 -4.46(-10.37,1.45) 0.1387 -4.36 ( -7.97 , -0.74 ) 0.0246

X-14662 -0.99(-2.54,0.56) 0.2262 -1.01(-2.3,0.27) 0.1222 -0.98 ( -1.89 , -0.08 ) 0.0474
Values in bold represent statistically significant data with P < 0.05.
A B

FIGURE 3

Sensitivity analysis of genetic associations of N−acetylalanine on POI. (A) Scatter plot of potential effects of single-nucleotide polymorphisms (SNPs)
on N−acetylalanine vs. POI, with the slope of each line corresponding to the estimated MR effect per method. (B) Leave-one-out analysis for the
impact of individual SNPs on the association between N−acetylalanine and POI risk. By leaving out exactly one SNP, it depicts how each SNP
influences the overall estimate.
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TABLE 2 Results of heterogeneity by the Cochran’s Q test.

GDMs
Cochran’s Q test via IVW Cochran’s Q test via MR-Egger

Q Q_df Q_pval Q Q_df Q_pval

Amino acid

threonine 5.463 19 0.999 5.083 18 0.999

N−acetylalanine 21.257 22 0.505 21.108 21 0.452

indolepropionate 10.782 16 0.823 10.774 15 0.768

3−(3
−hydroxyphenyl)propionate

7.592 9 0.576 7.591 8 0.474

Cofactors and vitamins

X−11593−−O−methylascorbate 41.030 49 0.784 40.941 48 0.755

Lipid

dodecanedioate 2.623 6 0.854 1.380 5 0.927

chiro−inositol 14.161 12 0.291 10.576 11 0.479

15−methylpalmitate
(isobar with
2−methylpalmitate)

11.613 13 0.560 11.173 12 0.514

Peptide

pyroglutamylglycine 3.310 3 0.346 1.668 2 0.434

Xenobiotics

saccharin 2.996 9 0.964 2.147 8 0.976

glycerol 2−phosphate 34.143 31 0.319 34.019 30 0.280

N−(2−furoyl)glycine 17.974 25 0.843 17.925 24 0.807

homostachydrine 4.399 5 0.493 0.612 4 0.962

salicyluric glucuronide 8.382 11 0.679 8.317 10 0.598

Unknown

X−04495 12.968 10 0.225 12.786 9 0.173

X−05907 11.301 12 0.503 11.300 11 0.418

X−09706 20.924 19 0.341 20.659 18 0.297

X−10510 14.116 20 0.825 14.106 19 0.777

X−02249 10.871 12 0.540 9.505 11 0.575

X−11412 38.511 46 0.776 37.712 45 0.771

X−11437 20.001 14 0.130 19.404 13 0.111

X−11470 20.488 14 0.115 20.425 13 0.085

X−11805 3.240 9 0.954 3.232 8 0.919

X−12093 8.241 12 0.766 7.669 11 0.743

X−12206 11.241 10 0.339 7.471 9 0.588

X−12236 8.285 8 0.406 8.282 7 0.308

X−12524 29.667 30 0.483 29.451 29 0.442

X-12704 5.968 9 0.743 5.664 8 0.685

X-12776 0.912 2 0.634 0.223 1 0.637

X-12786 15.065 10 0.130 13.836 9 0.128

(Continued)
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TABLE 2 Continued

GDMs
Cochran’s Q test via IVW Cochran’s Q test via MR-Egger

Q Q_df Q_pval Q Q_df Q_pval

Unknown

X-12844 14.068 15 0.520 14.056 14 0.446

X-13619 25.914 31 0.725 25.908 30 0.680

X-14662 21.975 18 0.233 21.975 17 0.186
F
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TABLE 3 Results of horizontal pleiotropy by the MR-Egger intercept test and MR-PRESSO global test.

GDMs
MR-Egger intercept test MR-PRESSO global test

Intercept SE P-value Rss obs P-value

Amino acid

threonine -0.061 0.098 0.545 6.05 1.000

N−acetylalanine -0.170 0.442 0.705 23.31 0.546

indolepropionate 0.005 0.050 0.929 12.38 0.811

3−(3
−hydroxyphenyl)propionate

-0.003 0.094 0.975 8.92 0.605

Cofactors and vitamins

X−11593−
−O−methylascorbate

0.008 0.026 0.766 42.43 0.832

Lipid

dodecanedioate -0.173 0.155 0.315 3.34 0.889

chiro−inositol -0.135 0.071 0.085 17.03 0.324

15−methylpalmitate
(isobar with
2−methylpalmitate)

0.041 0.062 0.519 12.87 0.624

Peptide

pyroglutamylglycine 0.231 0.180 0.328 4.75 0.485

Xenobiotics

saccharin -0.075 0.082 0.384 3.65 0.972

glycerol 2−phosphate -0.011 0.034 0.743 37.02 0.315

N−(2−furoyl)glycine 0.010 0.046 0.827 21.14 0.821

homostachydrine 0.294 0.151 0.124 6.69 0.507

salicyluric glucuronide 0.021 0.083 0.804 9.84 0.722

Unknown

X−04495 -0.038 0.106 0.729 15.28 0.277

X−05907 0.002 0.075 0.983 12.37 0.591

X−09706 0.032 0.067 0.637 23.23 0.397

X−10510 0.006 0.061 0.920 15.70 0.838

X−02249 -0.119 0.102 0.267 12.86 0.563

X−11412 -0.033 0.037 0.376 40.29 0.774

(Continued)
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TABLE 3 Continued

GDMs
MR-Egger intercept test MR-PRESSO global test

Intercept SE P-value Rss obs P-value

Unknown

X−11437 -0.039 0.062 0.538 21.45 0.213

X−11470 -0.019 0.094 0.844 22.48 0.161

X−11805 -0.005 0.060 0.933 4.44 0.949

X−12093 0.045 0.060 0.465 9.17 0.797

X−12206 0.230 0.119 0.084 14.04 0.357

X−12236 0.005 0.111 0.965 10.37 0.464

X−12524 0.026 0.056 0.649 31.70 0.510

X-12704 0.058 0.106 0.596 7.13 0.777

X-12776 0.131 0.158 0.559 NA NA

X-12786 0.066 0.073 0.395 17.77 0.186

X-12844 0.011 0.096 0.913 16.11 0.540

X-13619 0.005 0.060 0.940 27.38 0.747

X-14662 0.001 0.050 0.987 23.81 0.306
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TABLE 4 Genetic predictors of N−acetylalanine and their association with POI.

SNP CHR EA RA
N−acetylalanine POI

EAF Beta SE P value EAF Beta SE P value

rs11144136 9 T G 0.1375 0.0097 0.0018 4.862E-08 0.1111 0.3626 0.1407 0.0099

rs10125203 9 C G 0.8698 0.009 0.0018 4.109E-07 0.8481 -0.0132 0.1248 0.9156

rs266742 3 T G 0.7307 0.0082 0.0016 5.676E-07 0.7156 0.1562 0.0997 0.1174

rs1554074 12 A G 0.1925 0.0086 0.0017 6.392E-07 0.1666 0.0389 0.1193 0.7442

rs6690829 1 T C 0.24 -0.008 0.0016 1.242E-06 0.2599 -0.0233 0.1016 0.8183

rs11045425 12 A G 0.1266 0.0086 0.0018 1.832E-06 0.1189 -0.0302 0.1394 0.8287

rs6462723 7 A G 0.121 -0.0085 0.0018 1.921E-06 0.1023 -0.1744 0.1471 0.2360

rs9663814 10 A G 0.6175 0.0076 0.0016 1.952E-06 0.6392 0.0999 0.093 0.2826

rs2596194 15 A T 0.1255 -0.0083 0.0018 2.586E-06 0.0903 -0.0501 0.1562 0.7482

rs7178551 15 T C 0.1545 0.0081 0.0017 2.664E-06 0.1213 0.0377 0.1365 0.7822

rs10988352 9 T G 0.1244 0.0084 0.0018 3.086E-06 0.1473 -0.0422 0.127 0.7398

rs2486925 1 T G 0.1462 -0.0082 0.0018 3.467E-06 0.1172 0.0856 0.1387 0.5372

rs10090064 8 T C 0.8026 0.0077 0.0017 5.931E-06 0.7717 0.0624 0.1066 0.5583

rs513209 11 A C 0.8824 -0.0082 0.0018 6.602E-06 0.829 -0.0899 0.1192 0.4506

rs2019107 19 T C 0.6257 -0.0078 0.0017 6.655E-06 0.594 -0.2666 0.0915 0.0036

rs6019504 20 A G 0.8586 0.008 0.0018 6.689E-06 0.8234 0.2158 0.1182 0.0679

rs2993308 13 A G 0.338 0.0075 0.0017 6.833E-06 0.2931 0.0984 0.0982 0.3160

rs10850426 12 T G 0.1199 0.0081 0.0018 6.845E-06 0.0712 0.0427 0.1761 0.8082
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TABLE 4 Continued

SNP CHR EA RA
N−acetylalanine POI

EAF Beta SE P value EAF Beta SE P value

rs7250750 19 T G 0.8583 0.0081 0.0018 7.029E-06 0.8116 -0.0674 0.1146 0.5564

rs732426 17 A G 0.8218 0.0077 0.0017 7.541E-06 0.7889 -0.0378 0.1104 0.7319

rs10757735 9 A C 0.132 -0.008 0.0018 7.911E-06 0.1226 -0.0569 0.136 0.6756

rs662760 6 A C 0.8723 0.0079 0.0018 8.042E-06 0.896 0.0651 0.1443 0.6519

rs11606364 11 T C 0.1149 0.0084 0.0019 9.266E-06 0.05562 0.4646 0.1951 0.0173
F
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Values in bold represent statistically significant data with P < 0.05.
TABLE 5 Estimation of the Steiger direction from GDMs to POI.

GDMs SNP_r2.exposure SNP_r2.outcome Direction Steiger P-value

Amino acid

threonine 0.0838 0.0001 TRUE 5.46E-97

N−acetylalanine 0.0694 0.0003 TRUE 1.78E-97

indolepropionate 0.0933 0.0001 TRUE 1.85E-117

3−(3
−hydroxyphenyl)propionate

0.3135 0.0001 TRUE 1.43E-77

Cofactors and vitamins

X−11593−
−O−methylascorbate

0.2847 0.0004 TRUE 0

Lipid

dodecanedioate 0.0860 0.0001 TRUE 7.28E-70

chiro−inositol 0.2601 0.0002 TRUE 3.05E-125

15−methylpalmitate
(isobar with
2−methylpalmitate)

0.0729 0.0001 TRUE 4.60E-85

Peptide

pyroglutamylglycine 0.0793 0.0001 TRUE 1.37E-21

Xenobiotics

saccharin 0.1681 0.0001 TRUE 3.68E-78

glycerol 2−phosphate 0.1795 0.0003 TRUE 8.31E-199

N−(2−furoyl)glycine 1.2440 0.0002 TRUE NA

homostachydrine 0.0811 0.0001 TRUE 6.74E-29

salicyluric glucuronide 0.5540 0.0001 TRUE 6.16E-115

Unknown

X−04495 0.0536 0.0002 TRUE 2.57E-64

X−05907 0.0703 0.0001 TRUE 8.74E-86

X−09706 0.0858 0.0002 TRUE 5.48E-111

X−10510 0.1001 0.0002 TRUE 1.27E-140

X−02249 0.0462 0.0001 TRUE 1.88E-65

X−11412 0.1838 0.0004 TRUE 5.70E-251
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3.8 Metabolic pathway analysis

Based on multiple known metabolites with established causal

connections to POI revealed in our study, we pinpointed two

metabolic pathways potentially implicated in the mechanism

underlying POI pathogenesis (Supplementary Table S7). The

biosynthesis of valine, leucine, and isoleucine (P =0.0052),

alongside the metabolism of glycine, serine, and threonine

(P =0.0214), emerge as potential biological pathways involved in

the development of POI. Further research focusing on these

pathways is anticipated to elucidate the underlying mechanisms

of POI more deeply.
4 Discussion

An unbiased detection of causal associations between GDMs

and POI was implemented by employing two-sample MR analysis.

Using genetic variants as proxies, causal associations of 33 serum

metabolites and POI were uncovered via IVW approach.

Association between genetically determined higher levels of X-

11437 and increased risk of POI development was consistently

validated across four MR analysis methods. Besides, our study

revealed 26 metabolites exhibiting significant signals in most of

the vital MR methodologies, and the known metabolite N-

acetylalanine was disclosed as a crucial serum metabolite linked

to an increased risk of POI. Moreover, potential genetic variants

responsible for causality were further screened. By replication and

meta-analyses with additional metabolite GWAS datasets, Steiger

tests, and reverse analyses, the robustness of our findings were

significantly bolstered. The assessment of genetic correlation

between metabolites and POI through LDSC rendered the MR
Frontiers in Endocrinology 13
estimates more credible. Colocalization analysis provided strong

evidence for causal connections between these metabolites and POI

from the perspective of shared genetic variants. Two specific

metabolic pathways involved in the pathogenesis of POI were also

revealed. Our study underscored the complex genetic

underpinnings of POI and suggested potential biological

mechanisms for its pathology.

To the best of our knowledge, this is the first large-scale MR

analysis incorporating metabolomics and genomics to unravel the

physiopathological mechanisms of POI. GWAS data were utilized

to investigate the causality between serum GDMs and POI at the

genetic level. By focusing on certain metabolites, our study might

yield useful recommendations for the prevention, treatment, and

management of POI. This study has bridged a gap in the relevant

field with research that offers novel insights into the role of

interactions between genetic and metabolic factors in the

pathogenesis of POI.

On the basis of a panel of 23 genetic scores with different

degrees of specificity for N-acetylalanine, the genetic correlation

between elevated levels of N-acetylalanine and increased risk of POI

was demonstrated in this study. Previous metabolite profiling

studies have indicated the presence of N-acetylalanine in human

amniotic fluid, which is of great potential significance for the

diagnosis of maternal or fetal disease (43). Nevertheless, the link

between N-acetylalanine and other reproductive disorders, such as

POI, has never received sufficient clinical attention. Given that this

study has unveiled, for the first time, that N-acetylalanine was the

most influential known metabolite in the causal correlation with

POI, it is imperative to conduct future large-scale clinical data

collection and in-depth correlative studies to further support the

potential role of N-acetylalanine in the diagnosis or treatment

of POI.
TABLE 5 Continued

GDMs SNP_r2.exposure SNP_r2.outcome Direction Steiger P-value

Unknown

X−11437 0.0980 0.0002 TRUE 5.80E-102

X−11470 0.0694 0.0002 TRUE 8.25E-89

X−11805 0.0920 0.0001 TRUE 2.17E-51

X−12093 0.3136 0.0001 TRUE 1.92E-173

X−12206 0.0870 0.0002 TRUE 5.02E-50

X−12236 0.1242 0.0001 TRUE 9.77E-50

X−12524 0.1322 0.0003 TRUE 3.83E-180

X-12704 0.1463 0.0001 TRUE 8.91E-53

X-12776 0.0289 0.0000 TRUE 1.57E-22

X-12786 0.0618 0.0002 TRUE 9.79E-66

X-12844 0.0763 0.0002 TRUE 2.88E-102

X-13619 0.1332 0.0003 TRUE 6.72E-183

X-14662 0.1555 0.0002 TRUE 3.21E-121
SNP, single nucleotide polymorphism; CHR, chromosome; EA, effect allele; RA,reference allele; EAF, effect allele frequency.
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Our study also pinpointed a handful of other known

metabolites that are possibly implicated in POI, including chiro-

inositol, pyroglutamylglycine, saccharin, etc. Chiro-inositol is a

carbocyclic sugar polyalcohol and comprises several isomers such

as D-chiro-inositol (44). With high levels negatively affecting the

quality of oocytes and blastocysts (45), D-chiro-inositol performs

an instrumental role in the maintenance of normal ovarian function

and state of health, making strict regulation of its abundance a

necessity (46). Possible deleterious effects of D-chiro-inositol on

ovarian tissue revealed by prior studies are in line with the causality

between this GDM and POI unearthed in our study (47).

Pyroglutamylglycine, a dipeptide composed of glycine and 5-oxo-

L-proline, was reported to be a risk factor for the development of

pancreatic cancer in a large prospective survey (48), whereas the

association between pyroglutamylglycine and other diseases

remained unclear. This study was the first to propose this

causative link between pyroglutamylglycine and POI, laying

foundation for subsequent insightful studies on this metabolite

and POI pathogenesis. Saccharin and its salts are artificial

nonnutritive sweeteners. Accumulated studies have documented

that saccharin has detrimental impacts on reproductive indices in

senescent mice (49), induces sister chromatid exchanges in hamster

and human cells, and functions as a weak carcinogen to cause

cytogenetic alterations (50). Sodium saccharin has also formerly

been disclosed to exert an unfavorable biological influence on

ovarian estrus in rats, with an increasing percentage of abnormal

cycles and a growing number of ovarian cysts (51). As a further

complement to the previous findings, our study shed the first light

on the causal effect between saccharin and POI, supporting the

harmful effects of saccharin on ovarian function.

In addition, it is worthy of attracting sufficient focus that this

study has uncovered several interesting GDMs categorized as

‘unknown’ , including X-11437 which exhibited robustly

significant causal association with POI. Despite the fact that their

chemical properties have not been clearly ascertained to date, causal

associations between these metabolites and POI were revealed. We

enrolled these “unknown”metabolites in our study as they still hold

the attention of other researchers, expecting that these GDMs will

gain wider attention in the future to yield valuable information.

Genetic variants associated with variation in the crucial target

metabolite N-acetylalanine were also further drilled down. One of

the N-acetylalanine IVs, SNP rs11045425, is situated within gene

SLCO1C1. It has been reported that thyroid dysfunction is

implicated in POI, and SLCO1C1 can encode extremely pivotal

transporter proteins of thyroid hormones, which are essential for

ovarian function (52, 53). Apart from that, rs6690829, another IV

for N-acetylalanine, lies on gene KIF26B, whose up-regulation

correlates with cancer cell function in ovarian cancer (54).

Although further evidence for the correlation of KIF26B with POI

is lacking, associations discovered in this study might offer new

clues for understanding the potential molecular mechanisms of

POI. Similarly, rs10757735 is located on LINGO2, and studies have

probed that LINGO2 is a critical gene related to the development of

embryos and oocytes (55, 56), indicating LINGO2might perform an

influential role in the pathogenesis of POI. It is noteworthy that

another instrumental variable for N-acetylalanine, rs732426, is
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located in MYH13. No link has been previously established

between MYH13 and POI, but the Human Protein Atlas database

(https://www.proteinatlas.org/) reports enrichment of MYH13 in

oocytes at the single-cell level, suggesting thatMYH13may function

in oocyte depletion in the ovary. These connections disclosed in this

study serve to bring a completely novel perspective to the further

excavation of pathogenic mechanisms for POI.

Moreover, the colocalization analysis revealed that N-

acetylalanine shared a locus with POI, rs11143900, located on

chromosome 9p21.2 within PIP5K1B. PIP5K1B has been reported

to potentially function coordinately and/or redundantly in the

maintenance of sperm number and morphology during

spermatogenesis (57). The lack of research on PIP5K1B in

ovarian-related fields warrants further attention in future studies.

However, this study has several limitations. First, our research

identified metabolites causally associated with POI based on a

robust MR approach, but the findings require to be further

validated against experimental data. Second, the strength of IVs

relies on the sample size of GWAS, therefore a larger amount of

data should be gathered to improve the accuracy of generated

GDMs. Third, GWAS analysis of serum metabolites utilized in

this study was based on a European population, so it is inconclusive

whether the results can be expanded to individuals of non-

European ancestry owing to genetic differences between races.
5 Conclusion

By integrating comprehensive approaches including replication,

meta-analysis, LDSC genetic correlation, colocalization, and

metabolic pathway analysis, our MR study delivered an

unconfounded estimation of the causality between multiple

GDMs and POI. N-acetylalanine stands out as a key pathogenic

metabolite linked to POI, with novel metabolites like X-11437 also

showing strong associations. The exploration into genetic variations

related to these GDMs enriched our understanding. This work not

only underscored the significance of merging genomics and

metabolomics to uncover disease mechanisms but also

highlighted potential targets for POI treatment and prevention.
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