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A two-sample bidirectional
Mendelian randomization
analysis investigates associations
between gut microbiota and
type 2 diabetes mellitus
Siyuan Song, Qiling Zhang, Li Zhang, Xiqiao Zhou
and Jiangyi Yu*

Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of
Nanjing University of Chinese Medicine, Nanjing, China
Objective: This study sought to elucidate the causal association between gut

microbiota (GM) composition and type 2 diabetes mellitus (T2DM) through a

comprehensive two-sample bidirectional Mendelian randomization analysis.

Method: T2DM data were sourced from the IEU OpenGWAS Project database,

complemented by 211 gut microbiota (GM) datasets from the MiBioGen

Federation. The primary analytical approach employed was inverse variance

weighted (IVW), supplemented by MR-Egger regression and weighted median

(WME) methods to investigate their potential interplay. Results were assessed

using odds ratios (OR) and 95% confidence intervals (CI). The robustness and

reliability of the findings were confirmed through leave-one-out analysis,

heterogeneity testing, and assessment of horizontal pleiotropy. Furthermore,

we explored the potential mediating role of metabolites in the pathway linking

GM to T2DM.

Result: A set of 11 Single Nucleotide Polymorphisms (SNPs) linked to GM were

identified as instrumental variables (IVs). The IVW analysis revealed that increased

abundance of the genus Act inomyces , genus Bi lophi la , genus

Lachnoclostridium, genus Ruminococcus gnavus group , and genus

Streptococcus corresponded to a heightened risk of T2DM. Conversely, higher

levels of genus Eubacterium oxidoreducens group, genus Oscillospira, genus

Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and genus

Sellimonas were associated with a reduced risk of T2DM. However, following

false discovery rate (FDR) correction, only the abundance of genus

Lachnoclostridium retained a significant positive correlation with T2DM risk

(OR = 1.22, q value = 0.09), while the other ten GM showed suggestive

associations with T2DM. Reverse MR analysis did not reveal any causal

relationship between T2DM and the increased risk associated with the

identified GM. Additionally, metabolites did not exhibit mediating effects in

this context.
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Abbreviations: FDR, false discovery rate; GM, gut micro

variables; IVW, Inverse variance weighted; GWAS, Ge

study; LD, linkage disequilibrium; LOO, Leave-one

randomization; MRS, Microbiome risk score; SCFAs,

SNPs, Single nucleotide polymorphisms; T2DM, Type 2 d

Weighted median.
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Conclusion: This study effectively pinpointed specific GM associated with T2DM,

potentially paving the way for novel biomarkers in the prevention and treatment

of this condition. The findings suggested that probiotics could emerge as a

promising avenue for managing T2DM in the future. Furthermore, the analysis

indicated that metabolites do not appear to act as mediators in the pathway from

GM to T2DM.
KEYWORDS

gut microbiota, type 2 diabetes mellitus, genus Lachnoclostridium Actinomyces,
bidirectional, metabolites
1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder

characterized by chronic hyperglycemia, primarily stemming from

insulin resistance in peripheral tissues or inadequate insulin

secretion from pancreatic islet b cells. Globally, the diabetic

population has surged to approximately 420 million, with China

alone exceeding 100 million individuals affected (1). Research

findings indicate substantial alterations in the gut microbiota

(GM) structure among T2DM patients compared to healthy

individuals (2). GM actively participates in material and energy

metabolism processes, influencing the onset and progression of

metabolic disorders such as obesity through inflammatory

responses, endotoxemia, and the production of short-chain fatty

acids (SCFAs) (3). Research has demonstrated that individuals with

T2DM exhibit an altered GM composition compared to healthy

counterparts, characterized by an increase in Firmicutes abundance

and a decrease in Bacteroides abundance. Moreover, the ratio of

Bacteroides to Firmicutes has been positively correlated with plasma

glucose levels measured by oral glucose tolerance test (OGTT) (4).

Hwang (5) observed an elevated Firmicutes to Bacteroides ratio in

the GM of diet-induced obese mice, which was associated with

increased calorie absorption. This imbalance was implicated in

perturbed glucose and lipid metabolism, altered gene expression,

low-grade inflammation, and the pathogenesis of T2DM. Gou (6)

developed a microbiome risk score (MRS) based on T2DM-

associated gut microorganisms. They observed a positive

correlation between MRS and glucose increment, providing

evidence that dysbiosis of the GM contributes to aberrant glucose

and lipid metabolism, thereby influencing the onset and

progression of T2DM. The mycobiome and virome are

recognized to exert significant, sometimes debilitating effects on
biota; IVs, Instrumental

nome-wide association
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T2DM. These components interact within the intestinal milieu. For

instance, Bao (7) demonstrated that mitigating Candida albicans

colonization represents a viable strategy for ameliorating T2DM

progression. Similarly, viruses coexist within the human gut, and

their interplay has been implicated in T2DM pathogenesis. The

functional loss of several viruses and the disruption of virus-bacteria

correlations suggest a potential role for enteroviruses in T2DM (8).

Additionally, Gu (9) observed that Lactobacillus paracasei

administration alleviated T2DM by modulating the intestinal

microbiota SCFAs-hormone/inflammation axis. However,

observational studies are susceptible to unknown confounders

and reverse causality, thereby obscuring the causal relationship

between GM and T2DM risk.

Mendelian randomization (MR) stands as an effective approach

for discerning causal relationships between exposures and

outcomes, leveraging single nucleotide polymorphisms (SNPs) as

IVs (10). The inherent independence of MR ensures that genetic

variations are generally uninfluenced by external factors or

confounding variables, rendering the associations gleaned from

MR analyses more robust than those from randomized clinical

trials (RCTs) (11). In this investigation, data were gathered via

genome-wide association studies (GWAS), and a two-sample

bidirectional MR analysis was employed to elucidate the potential

causal link between GM and the risk of T2DM, thereby furnishing

genetic substantiation for their association. The schematic

representation of our study protocol is depicted in Figure 1.
2 Materials and method

2.1 Study design

In this investigation, GM was posited as the exposure variable,

with SNPs exhibiting significant correlations selected as IVs, while

T2DM was delineated as the outcome variable. Causal analysis was

undertaken employing a two-sample MR analysis. The fulfillment

of three hub hypotheses is imperative for robust MR analysis (12):

(1) a substantial association between IVs and the exposure variable

exists; (2) no confounding factors unduly influence the relationship
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between the exposure variable and the outcome variable; (3) IVs

exert no direct effect on the outcome variable but instead operate

solely through the exposure variable. These pivotal hypotheses are

depicted in Figure 2A.
2.2 Data of exposure

The exposure data utilized in this study originated from a large-

scale, multi-ethnic genome-wide meta-analysis conducted by the

MiBioGen Federation. The MiBioGen Consortium aggregated 16s

RNA gene sequencing maps and genotyping data from 18,340
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subjects across 11 countries in Asia and Europe. Through

meticulous analysis, characteristic loci associated with microbial

groups were identified to ascertain genetic factors influencing the

relative abundance or presence of microbial taxa, all of which were

integrated into the genome-wide association study (GWAS) dataset.

Within this GWAS endeavor, 211 subgroups of GM, categorized at

the phylum level, were meticulously examined. Consequently, the

genetic variation linked with 9 phyla, 16 classes, 20 orders, 35

families, and 131 genera of GM was delineated (13).

To delve deeper into the realm of GM sub-species, a query for

“gut microbio” was executed within the IEU OpenGWAS Project,

yielding 418 additional GM datasets. Subsequently, a secondary MR

analysis was undertaken to corroborate the influence of GM sub-

species on the risk of T2DM.
2.3 Data of outcome

The outcome data utilized in this study, designated as ebi-a-

GCST006867, was procured from the IEU OpenGWAS Project

website (gwas.mrcieu.ac.uk). The T2DM dataset encompasses a

substantial sample size of 655,666 individuals, with a

corresponding SNP count of 5,030,727. As all data utilized in this

research are sourced from publicly available databases, no

additional ethical approval was deemed necessary.
2.4 Tool variable filtering

We conducted a rigorous selection process for SNPs with

significant correlation, employing a threshold of P < 1e-05 (14). To

mitigate the influence of linkage disequilibrium (LD), we set parameters

of R2 = 0.001 and kb = 10,000. Additionally, all palindrome SNPs were

excluded to ensure data integrity (15). To fulfill the second MR

hypothesis, known as the independence hypothesis, we utilized the

PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/)

database (16) to identify all eligible SNPs. SNPs associated with

confounding factors related to T2DM, such as fasting insulin,

HbA1c, and two-hour glucose challenge, were meticulously excluded

from the analysis. The strength of the correlation between loci and

exposure variables was assessed based on the F value of each SNP, with
FIGURE 1

The protocol of our study procedure.
A B

FIGURE 2

Overview of MR analysis. (A) The hub hypothesis of MR analysis. (B) Mediated analysis of metabolites from GM to T2DM pathway. (a) stands for the
causal effect of GM on metabolites, and (b) stands for the causal effect of metabolites on T2DM, (c) represents the total influence of GM on T2DM.
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an F value exceeding 10 generally considered indicative of unbiased

IVs (17).
2.5 Statistical analysis

2.5.1 MR analysis
We employed multiple methods including the IVW method,

WME method, MR-Egger regression, and forest plot analysis to

thoroughly investigate the potential relationship between GM and

T2DM, ensuring robustness of the findings (18). The IVW method,

assuming all SNPs are valid IVs, offers the most precise effect

estimation (10). MR-Egger regression, while capable of detecting and

adjusting for pleiotropy, often yields less accurate estimates (19). The

WME method, predicated on the assumption that at least 50% of IVs

are valid, provides accurate estimation results (20). Given the superior

efficiency of the IVW method compared to other MR methods, it was

selected as the primary approach to assess causal effects in this study

(21). A significance level of P < 0.05 was considered indicative of a

causal relationship between exposure (GM) and outcome (T2DM)

(22). Tomitigate the risk of one kind of error and ascertain whether the

findings were influenced by multiple testing, we also employed the

q value to correct the false discovery rate (FDR) of GM. A q value of less

than 0.1 indicates a positive correlation (23).When P < 0.05 but q ≥ 0.1,

GM and T2DM are deemed suggestive of association.
2.5.2 Sensitivity analysis
Cochran’s Q statistic was employed to assess heterogeneity. A

P-value greater than or equal to 0.05 suggests no heterogeneity in

causal analysis (19). Additionally, the funnel plot was utilized to

detect heterogeneity, with symmetrical distribution of SNPs

indicating absence of heterogeneity in the results (24). MR-Egger

intercept analysis was utilized to assess pleiotropy between IVs and

other potential confounding factors, ensuring that the selected IVs

do not exert effects on outcome variables via pathways other than

exposure factors. Statistical significance (P < 0.05) in MR-Egger

intercept analysis indicates presence of horizontal pleiotropy (25).

Furthermore, to evaluate the impact of each SNP, a leave-one-out

(LOO) analysis was conducted to ascertain the comprehensive

impact of individual SNPs (26). Results were reported as odds

ratios (OR) with corresponding 95% confidence intervals (CI), with

statistical significance set at P < 0.05.
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2.5.3 Bidirectional MR analysis
We conducted a two-sample bidirectional MR analysis to

explore the reverse causal relationship between T2DM (exposure)

and positively identified GM (outcome). The steps of bidirectional

MR analysis mirror those of the MR analysis.

2.5.4 Mediation analysis
To explore whether the influence of GM on T2DM could be

mediated through metabolites, we examined the mediation of

metabolites in the pathway from GM to T2DM (Figure 2B). We

acquired GWAS data for 575 metabolites from the IEU

OpenGWAS Project (with criteria of P < 5e-06, R2 = 0.001, and

kb = 10,000).

2.5.5 Statistical software
All MR analyses were conducted using R (version 4.3.1) and the

TwoSampleMR package.
3 Results

3.1 Tool variable filtering

According to the screening criteria of IVs, 6, 9, 3, 9, 6, 9, 4, 9, 6,

11, and 6 SNPs were extracted from the genus Actinomyces, genus

Bilophila, genus Eubacterium oxidoreducens group, genus

Lachnoclostridium, genus Oscillospira, genus Ruminococcaceae

UCG003, genus Ruminococcaceae UCG010, genus Ruminococcus

gnavus group, genus Sellimonas, genus Streptococcus, and

unknown genus. The F statistics of the IVs included were all

greater than 10, indicating that the bias of weak IVs would not

have a substantial impact on the results (Supplementary

Table 1; Figure 3).
3.2 MR analysis

The IVW analysis showed that the genus Actinomyces (OR =

1.10, 95%CI 1.01-1.19, P = 2.5e-02), genus Bilophila (OR = 1.11, 95%

CI 1.00-1.22, P = 4.6e-02), genus Lachnoclostridium (OR = 1.22, 95%

CI 1.10-1.35, P = 2.0e-04), genus Ruminococcus gnavus group

(OR = 1.07, 95%CI 1.00-1.13, P = 4.6e-02), genus Streptococcus
FIGURE 3

Forest plot of the MR results of 11 GM. nsnp represents the number of single nucleotide polymorphism. pval represents P-value.
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(OR = 1.16, 95%CI 1.05-1.28, P = 4.1e-03), and unknown

genus (OR = 1.10, 95%CI 1.01-1.21, P = 3.7e-02) had a causal

relationship with the increased risk of T2DM, while the genus

Eubacterium oxidoreducens group (OR = 0.89, 95%CI 0.79-0.99,

P = 3.6e-02), genus Oscillospira (OR = 0.85, 95%CI 0.73-0.99,

P = 3.2e-02), genus Ruminococcaceae UCG003 (OR = 0.91, 95%

CI 0.83-0.99, P = 2.9e-02), genus Ruminococcaceae UCG010

(OR = 0.81, 95%CI 0.71-0.93, P = 1.7e-03), and genus Sellimonas

(OR = 0.95, 95%CI 0.90-1.00, P = 3.7e-02) had a causal relationship

with the reduced risk of T2DM (Figures 4A, B). The results

of the WME analysis supported the above conclusions. In

the results of the genus Bilophila, genus Ruminococcaceae

UCG003, genus Ruminococcaceae UCG010, genus Ruminococcus

gnavus group, the total effect values of MR-Egger and IVW

are in the opposite direction. (Supplementary Table 2; Figures 5,

6). Because the results of IVW analysis are the most valuable

and consistent with the forest plot, it was considered that the 11

GM we identified are related to the onset of T2DM. However, after

FDR correction, it was found that only the genus Lachnoclostridium

had a positive correlation with the risk of T2DM (OR = 1.22, q value

= 0.09). The other ten GM were considered to be suggestive

of T2DM.

Following the second MR analysis involving 418 GM sub-species

and T2DM, we identified several taxa with potential causal

relationships. Specifically, the genera Lachnoclostridium,

Ruminococcustorquesgroup, and Streptococcus, along with

Betaproteobacteria, Micrococcaceae, Bacteroidales, Rothia,

Bacteroidales (specifically Roseburia), Burkholderiales, and

Bacteroidales_bacterium_ph8 were associated with an increased

risk of T2DM. Conversely, the family Alcaligenaceae, along with the

genera RuminococcaceaeUCG003 and RuminococcaceaeUCG010,

Clostr idiaceae , and Coprobacter_fast idiosus exhibited

a causal re lat ionship with a reduced risk of T2DM

(Supplementary Figure 1).
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3.3 Sensitivity analysis

Cochran’s Q test and MR-Egger regression results showed that

there is no significant heterogeneity and pleiotropy in this study (P

> 0.05) (Supplementary Table 3). Funnel plots showed that the

possible interference factors are less likely to have an impact on

causality (Supplementary Figures 2A-K). LOO analysis showed that

the remaining SNPs had no significant effect on the analysis results

after removing individual SNP in turn (Supplementary Figures 3A-

K). These analyses proved the robustness of the results of this study.
3.4 Bidirectional MR analysis

The reverse MR analysis revealed no evidence of a causal

relationship between T2DM and the heightened risk associated

with the positively identified GM (Figures 7A-J). Notably, the

unknown genus was excluded from this analysis.
3.5 Mediation analysis

Through mediation analysis, we found that Leucine (OR = 4.33,

95%CI 1.08-17.36, P = 3.9e-02), Carnitine (OR = 2.49, 95%CI 1.04-

5.97, P = 4.1e-02), and 1-arachidonoylglycerophosphocholine (OR

= 1.50, 95%CI 1.17-1.92, P =1.5e-03) had a causal relationship with

the increased risk of T2DM (Figure 8). Both GM and metabolites

exhibit causal effects on T2DM. Although metabolites appear to

mediate the relationship between GM and T2DM, the requirement

for mediation is a significant association between GM and

metabolites. However, our results indicate no causal relationship

between GM associated with T2DM and metabolites related to

T2DM. This suggested that metabolites do not act as mediators in

the pathway from GM to T2DM (Supplementary Table 4).
A B

FIGURE 4

MR estimates of the causal effects of 11 GM on T2DM. Forest plot of estimates of the causal effects of 11 GM on T2DM. (A) The green triangle
represents the WME method, the red square represents the MR-Egger method, and the grey circle represents the IVW method. (B) Circular graph of
estimates of the causal effects of 11 GM on T2DM.
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4 Discussion

In this study, based on large-scale GWAS data, a two-sample MR

method was used to analyze the causal relationship between GM and

T2DM. The results showed that genus Actinomyces, genus Bilophila,

genus Lachnoclostridium, genus Ruminococcus gnavus group, and genus

Streptococcus had a causal relationship with the increased risk of T2DM,
Frontiers in Endocrinology 06
while genus Eubacterium oxidoreducens group, genus Oscillospira, genus

Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and genus

Sellimonas had a causal relationship with the reduced risk of T2DM.

Further sensitivity analysis results indicated that the above results are

consistent and reliable.

Research indicates a close relationship between T2DM and GM,

with GM’s structural composition and metabolites exerting
A B

D E F

G IH

J K

C

FIGURE 5

Forest plot of single SNP MR results. (A) genus Actinomyces. (B) genus Bilophila. (C) genus Eubacterium oxidoreducens. (D) genus
Lachnoclostridium. (E) genus Oscillospira. (F) genus Ruminococcaceae UCG003. (G) genus Ruminococcaceae UCG010. (H) genus Ruminococcus
gnavus group. (I) genus Sellimonas. (J) genus Streptococcus. (K) unknown genus.
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influence on T2DM (27). Actinomycetes, known for their efficacy in

steroid conversion, play a pivotal role in this process (28).

Specifically, cholesterol in the liver undergoes conversion into

primary cholic acid, subsequently forming secondary cholic acid

through enterohepatic circulation. Notably, secondary cholic acid, a

predominant metabolite of intestinal bacteria, has been implicated

in regulating glucose homeostasis via bile acid sensing mediated by

Takeda G protein-coupled receptor 5 (TGR5) (29). Activation of

TGR5 by bile acid prompts an increase in energy expenditure,

thereby mitigating diet-induced obesity. Furthermore, TGR5

signaling stimulates the release of intestinal glucagon-like peptide-

1 (GLP-1), enhancing liver and pancreas function and improving

glucose tolerance in obese mice (30).

Bilophila plays a multifaceted role in gut health, contributing to

both intestinal inflammation and disturbances in bile acid metabolism
Frontiers in Endocrinology 07
and microbial composition. These disruptions ultimately culminate in

metabolic impairment and host dysfunction. Notably, Bilophila

exhibits a negative correlation with glucose metabolism, indicating its

involvement in regulating susceptibility not only to inflammatory

diseases but also to metabolic disorders (31). These findings

underscore the intricate interplay between GM and energy

metabolism, highlighting their correlation with clinical indicators.

Blandino highlighted a positive correlation between the

abundance of the genus Lachnoclostridium and fasting blood

glucose as well as glycosylated hemoglobin levels (32). Elevated

levels of Lachnoclostridium are associated with decreased

circulating acetic acid, potentially leading to increased abdominal

fat accumulation and exerting a detrimental effect on T2DM.

Ruminococcaceae-producing ursodeoxycholic acid (UDCA)

plays a key role in promoting bile acid secretion. In a study
A B

D E F

G IH

J K

C

FIGURE 6

Scatter plots of SNP analysis (A) genus Actinomyces. (B) genus Bilophila. (C) genus Eubacterium oxidoreducens. (D) genus Lachnoclostridium. (E) genus
Oscillospira. (F) genus Ruminococcaceae UCG003. (G) genus Ruminococcaceae UCG010. (H) genus Ruminococcus gnavus group. (I) genus Sellimonas.
(J) genus Streptococcus. (K) unknown genus. The X-axis represents the influence of SNP on GM, the Y-axis represents the influence of SNP on T2DM,
the black dot represents a single SNP, the line segment represents 95% CI, and the slope of the straight line represents the causal estimation of the MR
method. The light blue line represents IVW method, the blue line represents MR Egger method, and the green line represents WME method.
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investigating the impact of exercise on insulin sensitivity and

glucose homeostasis in individuals with pre-T2DM, findings

revealed a negative correlation between the abundance of

Ruminococcaceae and fasting plasma glucose (FPG), fasting

insulin levels, and homeostatic model assessment of insulin

resistance (HOMA-IR). Conversely, a positive correlation was
Frontiers in Endocrinology 08
observed with the insulin sensitivity index (33). Moreover,

enhanced jejunal-ileal bypass surgery in Goto-Kakizaki rats led to

significant reductions in weight gain and serum lipid levels,

accompanied by marked improvements in pancreatic islet b-cell
function, glucose tolerance, and insulin resistance. Postoperatively,

there was an increase in the abundance of Ruminococcaceae, which
A

B

D

E

F

G

I

H

J

C

FIGURE 7

Forest plot of the bidirectional MR analysis of the positively identified 10 GM. (A) genus Actinomyces. (B) genus Bilophila. (C) genus Eubacterium
oxidoreducens. (D) genus Lachnoclostridium. (E) genus Oscillospira. (F) genus Ruminococcaceae UCG003. (G) genus Ruminococcaceae UCG010.
(H) genus Ruminococcus gnavus group. (I) genus Sellimonas. (J) genus Streptococcus.
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FIGURE 8

Forest plot of the MR results of metabolites on T2DM.
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exhibited a negative correlation with blood glucose levels and a

positive correlation with insulin levels (34).

Streptococcus is positively correlated with insulin, connexin, and

the steady-state model evaluation index of insulin resistance (35).

SCFAs represent crucial metabolites synthesized by beneficial

microorganisms (36). They exert influence on glucose homeostasis

by modulating glucose absorption and utilization across various organs

(37). Research has indicated a correlation between alterations in SCFA

levels in diabetic mice and the regulation of lipopolysaccharide-binding

protein by Streptococcus (38). SCFAs have demonstrated favorable

effects on T2DM by diminishing the production of pro-inflammatory

cytokines such as TNK-a, IL-6, MCP-1, and NF-kB (39). Notably, this

study marks the first instance of identifying the Eubacterium

oxidoreducens group, genus Ruminococcaceae UCG003, and genus

Ruminococcaceae UCG010 as negative regulators in the progression

of T2DM. Additionally, there is scant literature on the relationship

between the Eubacterium oxidoreducens group and T2DM.

Oscillospira is negatively correlated with fasting blood glucose,

which is an index of glucose metabolism disorder (40). In addition,

Oscillospira can produce butyrate (41). Julienne Siptroth described

the fermentation to butyrate for T2DM, which tend to have high

potential for disease detection (42). Oscillospira plays an important

role in GM, and its abundance is closely related to host health (43).

Sellimonas, identified as a Gram-positive obligate anaerobe (44),

exhibits increased relative abundance in individuals recovering from

intestinal ecological disturbances triggered by tumors or chronic

metabolic ailments, eventually stabilizing at a steady state (45, 46).

Consequently, Sellimonas emerges as a potential biomarker candidate

for the restoration of intestinal homeostasis.

In this study, the relative abundance expression of GM was

employed to delineate their potential “beneficial” or “harmful” roles

in the context of T2DM. However, the precise mechanisms underlying

howGM contribute to the development of T2DM remain elusive. It was

postulated that metabolites could serve as the mediating factor between

GM and T2DM. Our findings identified Leucine, Carnitine, and 1-

arachidonoylglycerophosphocholine as causally linked to an increased

risk of T2DM. Nonetheless, our analysis revealed that metabolites did

not function as mediators in the pathway from GM to T2DM.

Recent studies have delved into the impact of GM on the etiology

of T2DM. The SCFA theory, bile acid theory, and endotoxin theory
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represent three potential mechanisms through which GM may

contribute to the onset and progression of T2DM. Based on the

findings of this investigation, we postulate that the genus

Actinomyces, genus Bilophila, genus Lachnoclostridium, genus

Ruminococcus gnavus group, and genus Streptococcus may disrupt

pancreatic islet cell function by influencing the metabolism of

SCFAs, bile acids, and endotoxin reactions. Consequently, this

disruption could diminish the body’s insulin sensitivity, thereby

facilitating the initiation and progression of T2DM (47). However, it

is plausible that these alterations in microbial abundance may be a

response to environmental stress or high sugar environments aimed at

mitigating systemic dysfunction. Conversely, the increased abundance

of the genus Eubacterium oxidoreducens group, genus Oscillospira,

genus Ruminococcaceae UCG003, genus Ruminococcaceae UCG010,

and genus Sellimonas exhibited a causally negative effect on the risk of

T2DM. These findings deepen our comprehension of the intricate

interplay between GM and T2DM, potentially paving the way for novel

preventive strategies against T2DM. Moreover, it is noteworthy that

T2DM itself could influence changes in GM and metabolite profiles.

Based on the findings of this study, there is potential for further

investigation into the protective mechanisms of GM in mitigating

T2DM. This could lead to the development of foods or beverages

enriched with genera such as Eubacterium oxidoreducens group,

Oscillospira, Ruminococcaceae UCG003, Ruminococcaceae UCG010,

and Sellimonas, aiming to prevent T2DM. Such endeavors could

open up a novel avenue for drug research in the field of T2DM.

The study possesses several strengths. Firstly, it benefits from a large

sample size, which minimizes the impact of confounding factors on the

results. Secondly, it employs robust methodologies to estimate causal

relationships between exposure factors and disease outcomes, thus

mitigating the issues of reverse causality often encountered in

traditional observational studies. Thirdly, it marks the first

identification of the genetic-level association between GM and the

risk of T2DM. However, there are certain limitations to consider.

Firstly, the outcome data used in the study are derived from European

populations, limiting the generalizability of the findings. Future research

should aim to validate these results in larger, more diverse populations.

Secondly, the available data lack detailed information such as general

health status, dietary habits, geographic location, age, and gender,

precluding further subgroup analyses. Thirdly, additional mediation
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MR analyses, particularly focusing on SCFAs, are warranted to validate

the findings. Fourthly, considering the multifactorial influence of GM

on human health, it is imperative to conduct sequencing verification

using clinical samples in future studies. Lastly, the intricate interactions

among the gut mycobiome, virome, and microorganisms necessitate

further clinical validation to elucidate their specific roles in T2DM.

Determining the precise role of these interactions in T2DM

pathogenesis represents a crucial research objective.
5 Conclusion

There is a causal relationship between GM and T2DM, the

genus Eubacterium oxidoreducens group, genus Oscillospira, genus

Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and

genus Sellimonas are protective factors of T2DM. Metabolites did

not appear to act as mediators in the pathway from GM to T2DM.
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