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Background: The relationship between basal metabolic rate (BMR) and Chronic

kidney disease (CKD) remains unclear and controversial. In this study, we

investigated the causal role of BMR in renal injury, and inversely, whether

altered renal function causes changes in BMR.

Methods: In this two-sample mendelian randomization (MR) study, Genetic data

were accessed from published genome-wide association studies (GWAS) for

BMR ((n = 454,874) and indices of renal function, i.e. estimated glomerular

filtration rate (eGFR) based on creatinine (n =1, 004, 040), CKD (n=480, 698), and

blood urea nitrogen (BUN) (n =852, 678) in European. The inverse variance

weighted (IVW) random-effects MR method serves as the main analysis,

accompanied by several sensitivity MR analyses. We also performed a reverse

MR to explore the causal effects of the above indices of renal function on

the BMR.

Results: We found that genetically predicted BMR was negatively related to

eGFR, (b= −0.032, P = 4.95*10-12). Similar results were obtained using the MR-

Egger (b= −0.040, P = 0.002), weighted median (b= −0.04, P= 5.35×10-11) and

weightedmodemethod (b= −0.05, P=9.92×10-7). Higher BMR had a causal effect

on an increased risk of CKD (OR =1.36, 95% CI = 1.11-1.66, P =0.003). In reverse

MR, lower eGFR was related to higher BMR (b= −0.64, P = 2.32×10-6, IVW

analysis). Bidirectional MR supports no causal association was observed between

BMR and BUN. Sensitivity analyses confirmed these findings, indicating the

robustness of the results.

Conclusion: Genetically predicted high BMR is associated with impaired kidney

function. Conversely, genetically predicted decreased eGFR is associated with

higher BMR.
KEYWORDS
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1 Introduction

Chronic kidney disease (CKD) has become one of the major

global public health problems (1). In 2017, the worldwide

prevalence of CKD was 9.1%. 1.2 million people died from CKD

worldwide in 2017. The global all-age mortality rate has increased

by 41.5% from 1990 to 2017 (2). It has been one of the fastest-

growing causes of death worldwide and is expected to become the

second most common cause of death within the next century in

some countries (3, 4). CKD not only causes a high mortality rate but

also carries a significant economic burden. In 2020, the United

States Renal Data System estimated that healthcare expenditures for

CKD patients exceeded $85.4 billion, representing 23.5% of total

healthcare expenditures (5). Besides increasing the risk of mortality

and economic burden, CKD patients are usually affected by frailty

(6), functional and cognitive impairment, reduced quality of life,

and disability (7–9). Therefore, early screening for modifiable CKD

risk factors to prevent or delay deterioration in kidney function is of

great importance.

Major known risk factors for CKD include obesity,

hypertension, diabetes, and metabolic abnormalities (10). All of

the known risk factors listed above are associated with an abnormal

basal metabolic rate (BMR) (11, 12). In an earlier study, BMR had

been suggested to be lower in patients with worse renal function

(13), although a recent study did not find a direct relationship

between reduced kidney function and metabolic rate (14). It is

unknown whether BMR might have an impact on susceptibility to

kidney injury/CKD and whether a genetically predicted risk of

CKD/kidney injury may influence the level of BMR (i.e.,

reverse causation).

Mendelian randomization (MR) is an emerging method in

genetic epidemiology, which has allowed for the inference of

causality in the putative exposure-outcome pathway. This

approach can effectively overcome the shortcomings of traditional

epidemiological studies, such as confounders, reverse causation, and

selection bias. To further identify the potential causal effect of BMR

on the incidence of CKD/renal injury, we conducted a bidirectional

two-sample MR analysis to explain the relationship from a

genetic perspective.
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2 Materials and methods

2.1 Study design

We conducted a 2 sample MR analysis to investigate the causal

effect of BMR on renal injury using GWAS summary statistics.

Figure 1 shows a prime description of the bidirectional MR design.

The MR analysis emulates the RCT concerning the random

assignment of single-nucleotide polymorphisms (SNPs) in the

offspring (independent of confounding factors such as sex and

age). In addition, this MR design must meet three assumptions:

first, that genetic instruments are robustly associated with exposure;

second, the association of the instruments with the exposure is

independent of the confounders; third, the instruments affect the

outcome only through the exposure (15). Ethics approval was not

required in our study as all data used were derived from publicly

available summary statistics.
2.2 Data sources and SNP selection
for BMR

The summary-level data for BMR was obtained from a large

GWAS database (ID: ukb-b-16446), which included 454,874 cases of

European ancestry. Given theMR design in our study, the SNPs should

meet the following 3 main assumptions. First, relevance to the

exposure. SNPs, associated with BMR were extracted as instrumental

variables for corresponding BMR-related traits at the genomewide

significance level (P < 5×10−8). This approach ensures that genetic

variation can effectively serve as a proxy for BMR exposure. Second,

independence from confounding factors. SNPs with significant linkage

disequilibrium with the measured SNPs (r2 = 0.001) were therefore

removed in the range of 10,000 kb. Third, effect on outcomes through

the exposure. The selected SNPs were further filtered in the

Phenoscanner database, a platform with comprehensive information

on the association of genotype and phenotype, to ensure that the

included instrumental variables were not correlated with confounding

factors (16). To avoid weak instrument bias, only SNPs with an F-

statistic greater than 10 were included in our study (17).
FIGURE 1

Study flame chart of the al two-sample Mendelian randomization study.
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2.3 Data sources for kidney function

Renal function was assessed using three sets of parameters:

estimated glomerular filtration rate (eGFR) based on creatinine,

CKD, and blood urea nitrogen (BUN). eGFR (N=1, 004, 040) and

BUN (N=852, 678) were obtained from a meta-analysis of the UK

Biobank. The summary CKD data were obtained from CKDGen

Consortium, the largest meta-analysis of renal function GWAS to

date for European ancestry participants, which consisted of 23

cohorts of European ancestry (n = 480, 698; 41, 395 patients and

439, 303 controls) (18). CKD was defined as eGFR of < 60 mL/min/

1.73 m2 in the present study. All GWAS data used in our study were

from individuals of European ancestry. The details of the

participant characteristics of the CKDGen Consortium studies

have been reported by Wuttke and Stanzick et al. (18, 19).
2.4 Reverse MR analyses of the effect of
eGFR, CKD and BUN on the BMR

We also explored whether renal injury affects BMR. Thus, we

reversed the exposure and outcome inputs and performed a

bidirectional MR analysis to determine the impact of kidney

injury on BMR. We extracted independent SNPs significantly

associated with eGFR, CKD and BUN in the aforementioned

large GWAS database and applied the same MR analyses and

sensitivity analyses.
2.5 MR analysis

Four different methods including inverse-variance weighted

(IVW) (20), weighted median (21), MR-Egger (22), and weighted

mode were performed. Among these four approaches, the IVW was

used as the primary MR effect estimate as it obtains unbiased

estimates of the status without horizontal pleiotropy whereas MR-

Egger, weighted median, and weighted mode were used as

complements to the IVW as they could provide more robust

estimates over a wider range of scenarios but were less efficient.

We considered a causal relationship between exposure and outcome

to exist if the result was significant in the IVWmodel. We also used

the MR-Egger model, weighted median model, and weighted mode

model as references, and if positive findings were replicated in these

models, we considered them more robust.
2.6 Sensitivity analysis

Sensitivity analysis is pivotal in MR studies to detect underlying

pleiotropy and heterogeneity. Cochran’s Q statistic, funnel pot,

leave-one-out (LOO) analyses and MR-Egger intercept tests were

further conducted to detect the presence of pleiotropy and assess the

robustness of the results. In particular, a Cochran Q-value of P <

0.05 was taken as an indication of heterogeneity and an MR-Egger

test of the intercept of p < 0.05 shows evidence of directional
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pleiotropy (23). The MR-PRESSO method is also used to assess and

correct for horizontal pleiotropy as it has less bias and better

accuracy than the IVW method, MR-Egger when the percent of

variants with horizontal pleiotropy is below 10% (24).
2.7 Statistical analysis

All analyses were performed in R software version 4.3.0.

Analyses were implemented by the package TwoSampleMR

(version 7.6.2) and MRPRESSO (version 1.0) in R (version 4.3.0).

Considering multiple testing (3 tested outcomes: eGFR, BUN and

CKD), we also use the Bonferroni corrected P value for significance.

The MR P value threshold for significance was set to 0.05/3 = 0.017.
3 Results

3.1 Causal effect of BMR on reduced eGFR

We identified 546 independent genome-wide significant SNPs

for BMR, 67 of which were available in the CKDGen GWAS. After

removing SNPs that were significantly associated with the outcomes

(p < 5 × 10-5) and being palindromic with intermediate allele

frequencies, 56 SNPs were remaining for use in the MR analyses.

Hypertension, obesity and diabetes are associated with an abnormal

basal metabolic rate and they are also well-accepted risk factors for

CKD (25, 26). They may be potential confounding factors between

BMR and kidney injury. 6 SNPs were filtered by the PhenoScanner

database as they correlated with confounding factors including

obesity, hypertension and diabetes. The F-statistics range from

11.56 to 152.78. SNPs with potential pleiotropy identified with

the MR-PRESSO approach were further removed. Finally, we

included 49 instrumental variants for the MR analysis of BMR

with eGFR.

As shown in Table 1, the result of IVW unveiled a negative

effect of BMR on eGFR (b= −0.032, P = 4.95×10-12). Similar results

were gained using the MR-Egger (b= −0.040, P = 0.002), weighted

median (b= −0.04, P= 5.35×10-11) and weighted mode approaches

(b= −0.05, P=9.92×10-7). Steiger directionality test showed that all

instrumental SNPs for BMR were stronger predictors of BMR than

eGFR, suggesting the causal direction of our analysis.

As shown in Table 2, the P value of the MR-Egger intercept

between BMR and eGFR was nonsignificant (P=0.46), implying the

absence of unbalanced horizontal pleiotropy in our instruments. The

IVW and MR Egger Q statistics suggested significant heterogeneity in

the estimates (Q = 74.23, p = 0.009 and Q = 73.38, p=0.008). The leave-

one-out analysis and funnel plot also revealed that the results were

robust (Figures 2A, C).
3.2 Causal effect of BMR on CKD

After harmonization, 66 genetic variants were available in both

exposure and outcome datasets. All the extracted SNPs passed the MR-

Steiger filtering. The F-statistics range from 11.56 to 176.59 (mean
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32.40). The result of IVW indicated strong evidence that higher BMR

had a causal effect on an increased risk of CKD (OR =1.36, 95% CI =

1.11-1.66, p =0.003). The direction of effects was mainly consistent

across different methods. As shown in Table 2, no horizontal pleiotropy

existed between BMR and CKD as the P value of the MR-Egger

intercept tests was > 0.05 in our study. There was no heterogeneity in

our study as well (Q = 70.46, P = 0.27). TheMR-PRESSO did not detect

any outliers. Moreover, the leave-one-out analysis revealed that no SNP
Frontiers in Endocrinology 04
drove the results, and funnel plots were symmetrical (Supplementary

Figures 1A, B) indicating that neither estimate was violated.
3.3 Causal effect of BMR on BUN

Of the 546 BMR-associated SNPs, 74 were available from the

CKDGen GWAS. After harmonization, 6 SNPs were excluded for
TABLE 2 Tests of heterogeneity, pleiotropy and MR-Steiger causal direction.

Exposure Outcome Heterogeneity test MR-Egger
intercept

p-
value

MR-Steiger
causal direction

MR method Q Q_p-
value

BMR eGFR MR-Egger 73.38 0.008 0.0001 0.46 True

IVW 74.23 0.009

BMR CKD MR-Egger 70.46 0.270
-0.001

0.76 True

IVW 70.56 0.300

BMR BUN MR-Egger 100.54 0.003
0.0002

0.41 True

IVW 101.60 0.003

eGFR BMR MR-Egger 60.70 0.001
-0.0003

0.71 True

IVW 60.98 0.002

CKD BMR MR-Egger – –

IVW 1.75 0.19 –

BUN BMR MR-Egger 28.10 0.014
-0.002

0.27 True

IVW 30.75 0.009
eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; CKD, chronic kidney disease; BMR, basal metabolic rate; IVW, Inverse variance weighted (random).
Significant P-values are denoted in bold.
TABLE 1 MR analyses of the effect of BMR on eGFR, CKD and BUN.

Exposure Outcome MR method B/OR se Lo-CI Up-CI p-value

BMR eGFR IVW -0.03 0.005 -0.04 -0.02 4.95E-12

MR Egger -0.04 0.012 -0.06 -0.02 0.002

Weighted
median

-0.04 0.006 -0.05 -0.03 5.35E-11

Weighted mode -0.04 0.008 -0.06 -0.03 9.92E-07

BMR CKD IVW 1.36 0.103 1.11 1.66 0.003

MR Egger 1.45 0.235 0.91 2.30 0.119

Weighted
median

1.39 0.1615 1.01 1.90 0.042

Weighted mode 1.84 0.313 1.00 3.40 0.056

BMR BUN IVW 0.01 0.0071 -0.01 0.02 0.31

MR Egger -0.01 0.018 -0.04 0.03 0.71

Weighted
median

0.01 0.009 -0.01 0.03 0.27

Weighted mode 0.02 0.016 -0.01 0.053 0.19
fro
eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; CKD, chronic kidney disease; BMR, basal metabolic rate; IVW, Inverse variance weighted (random).
Significant P-values are denoted in bold.
ntiersin.org

https://doi.org/10.3389/fendo.2024.1319753
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2024.1319753
being palindromic with intermediate allele frequencies from BMR.

One of the SNPs with potential pleiotropy identified using the MR-

PRESSO approach was excluded further. Therefore, we included 67

SNPs in the MR analysis. No causal association was detected between

genetic BMR and BUN (Table 1). No horizontal pleiotropy was

identified by the MR-Egger test. No heterogeneity was observed

between BMR and BUN (IVW analysis: Q = 70.56, P=0.29) (Table 2).
3.4 Effects of eGFR, CKD and BUN on BMR

We identified 47, 2 and 24 independent genome-wide significant

SNPs for eGFR, CKD, and BUN, respectively. After applying

harmonization and MR-PRESSO, 33 index SNPs were selected to

genetically predict BMR and 16 index SNPs were used to genetically

predict BUN. Since only two SNPs were found to be significantly and

independently associated with CKD, the MR-PRESSOmethod was not

applied. Overall, all selected SNPs displayed F-statistic >10. Our reverse

analysis showed strong evidence of a negative effect of genetically

determined eGFR on BMR(b= −0.64, P = 2.32×10-6, IVW analysis)

(Table 3). Similar results were gained using the weighted median (b=
−0.85, P= 3.45×10-8) and weighted mode approaches (b= −0.95,
Frontiers in Endocrinology 05
P=4.34×10-5). The results from MR-Egger indicated a nonsignificant

but consistent direction. No horizontal pleiotropy existed as the P value

of the MR-Egger intercept test was > 0.05 (Table 2). The leave-one-out

analysis also revealed that no single SNP drove the MR estimates, and

the funnel plots were symmetrical, indicating that the results were

robust (Figures 2B, D). MR Steiger test identified no evidence of reverse

causality, and the causal direction was reliable. However, heterogeneity

was observed in the Q-test analysis between eGFR and BMR (Table 2).

There was no significant association between genetic liability and CKD,

BUN and BMR (all p > 0.05). Heterogeneity was observed between

BUN and BMR with a Cochran Q-test derived p-value of 0.01 of MR-

Egger and p-value of 0.009 of IVW. No horizontal pleiotropy existed

between BUN and BMR.
4 Discussion

We conducted a bi-directional two-sample Mendelian

randomized study, which could preclude confounding factors and

identify causal determinants of a certain outcome efficiently. To the

best of our knowledge, this is the first large-scale MR analysis that

has sought to explore the causal association between BMR and
A B

C D

FIGURE 2

The leave-one-out analyses and funnel plots from exposure on outcome. (A, C) From BMR on eGFR; (B, D) From eGFR on BMR. eGFR, estimated
glomerular filtration rate; BMR, basal metabolic rate.
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eGFR, CKD, and BUN. We find a potential bidirectional negative

causal relationship between BMR and eGFR. These relationships

were mostly consistent across the different MR methods, suggesting

the reliability of our findings.

Data are conflicting concerning the association between BMR

and CKD. A small number of studies have assessed BMR/resting

energy expenditure (REE) in CKD patients (13, 27, 28). But the

results were contradictory. Some found the REE in patients with end-

stage kidney disease to be increased (29), whereas others came to the

opposite conclusion (13, 30). The major limitation of these studies, is

that they are all observational studies that could potentially lead to

biased associations and conclusions, as they could not entirely rule

out the possibility of reverse causality and confounding factors (31).

In addition, the sample sizes in these studies are small. Although

there was some evidence of heterogeneity in our study, pleiotropy was

not detected by Egger’s intercepts, suggesting that no pleiotropic bias

was introduced to the MR estimates in the setting of heterogeneity. In

addition, the LOO analyses did not reveal any outlier SNPs, and

funnel plots were approximately symmetric, indicating that none of

the estimates were violated. Our study also supported a potential

causal relationship between higher BMR and risk of CKD as IVW

yielded P-values less than 0.017 and the directions of MR-Egger

regression and Weighted mode approach were consistent with IVW.

No heterogeneity and pleiotropy were detected. Our findings provide

novel insight into the prevention of CKD and eGFR decline.

Increased BMR appears to be an indicator of perturbations within

the metabolic and/or endocrine systems. A higher BMRmay indicate

metabolic abnormal conditions such as diabetes (32), hypertension

(33), obesity and vascular disorders, which may mediate the causal

effect of BMR on reduced eGFR or CKD. Patients with diabetes,

hypertension and obesity are at an increased risk of CKD and

worsening kidney function. Furthermore, a higher rate of
Frontiers in Endocrinology 06
metabolism may produce excessive harmful reactive oxygen species.

It has been suggested in previous studies that uncontrolled or

persistent increases in reactive oxygen species (ROS) can lead to

inflammation and fibrosis resulting in kidney injury and CKD

progression (34). In addition, a higher BMR is also associated with

higher systemic inflammation, which plays a key role in the etiology,

progression, and pathophysiology of CKD (35).

In agreement with previous observational studies (29, 36), our

findings of inverse MR suggested that lower eGFR was related to

higher BMR. The mechanisms are not well understood but several

potential mechanisms can be postulated. Patients with decreased

eGFR often suffer from increased sympathetic and renin‐

angiotensin system (RAS) overactivation or hypertension. A

recent study has suggested that the elevated resting metabolic rate

(RMR) can be normalized by antagonizing the renin‐angiotensin

system in obese or overweight patients with hypertension (37).

Thus, the association between decreased eGFR and increased BMR

may be attributed to the overactivation of the RAS. On the other

hand, the mitochondrial uncoupling proteins (UCPs), which

regulate ATP synthesis and the production of reactive oxygen

species, may also contribute to the increased BMR in patients

with decreased eGFR. Previous studies have suggested that UCP-1

and UCP-3, two key regulators of energy expenditure in humans

were increased in uremic status (38, 39). Furthermore,

complications associated with worsening kidney function such as

increased fluid overload, chronic cardiac failure, chronic anemia,

and secondary hyperparathyroidism could lead to an increase in

REE (40, 41). Future work is warranted to decipher the underlying

mechanisms that link BMR to eGFR.

There are several limitations associated with our study. First, we

assessed only genetic liability to BMR and kidney injury, with no

regard to the effects of the environment, which are critical for both
TABLE 3 Reverse MR analyses of the effect of eGFR, CKD and BUN on BMR.

Exposure Outcome MR method B/OR se Lo-CI Up-CI p-value

eGFR BMR IVW -0.64 0.13 -0.90 -0.37 2.32E-06

MR Egger -0.53 0.31 -1.14 0.08 0.10

Weighted
median

-0.85 0.15 -1.15 -0.55 3.45E-08

Weighted mode -0.95 0.20 -1.34 -0.56 4.34E-05

CKD BMR IVW 1.01 0.02 -0.03 0.05 0.60

MR Egger – – – – –

Weighted
median

– – – – –

Weighted mode – – – – –

BUN BMR IVW 0.21 0.14 -0.01 0.02 0.31

MR Egger 0.74 0.48 -0.04 0.03 0.71

Weighted
median

0.19 0.15 -0.01 0.03 0.27

Weighted mode -0.02 0.29 -0.01 0.05 0.19
fro
eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; CKD, chronic kidney disease; BMR, basal metabolic rate; IVW, Inverse variance weighted (random).
Significant P-values are denoted in bold.
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BMR and kidney function. Second, as this study was conducted

among European ancestry participants, the finding may not extend to

other ethnic populations. Third, even though we had excluded SNPs

that were associated with hypertension, obesity, and diabetes, the

causal associations identified in our study could be mediated by other

potential confounding factors that could not be entirely excluded.
5 Conclusion

In summary, genetically predicted high BMR is associated with

impaired kidney function. Conversely, genetically predicted

decreased eGFR is associated with higher BMR.
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