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Background: Vitamin D deficiency is strongly associated with the development

of several diseases. In the current context of a global pandemic of vitamin D

deficiency, it is critical to identify people at high risk of vitamin D deficiency. There

are no prediction tools for predicting the risk of vitamin D deficiency in the

general community population, and this study aims to use machine learning to

predict the risk of vitamin D deficiency using data that can be obtained through

simple interviews in the community.

Methods: The National Health and Nutrition Examination Survey 2001-2018

dataset is used for the analysis which is randomly divided into training and

validation sets in the ratio of 70:30. GBM, LR, NNet, RF, SVM, XGBoost methods

are used to construct the models and their performance is evaluated. The best

performedmodel was interpreted using the SHAP value and further development

of the online web calculator.

Results: There were 62,919 participants enrolled in the study, and all participants

included in the study were 2 years old and above, of which 20,204 (32.1%)

participants had vitamin D deficiency. The models constructed by each method

were evaluated using AUC as the primary evaluation statistic and ACC, PPV, NPV,

SEN, SPE, F1 score, MCC, Kappa, and Brier score as secondary evaluation

statistics. Finally, the XGBoost-based model has the best and near-perfect

performance. The summary plot of SHAP values shows that the top three

important features for this model are race, age, and BMI. An online web

calculator based on this model can easily and quickly predict the risk of

vitamin D deficiency.

Conclusion: In this study, the XGBoost-based prediction tool performs flawlessly

and is highly accurate in predicting the risk of vitamin D deficiency in

community populations.
KEYWORDS
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1 Introduction

Vitamin D is a unique fat-soluble vitamin, and as it is produced

primarily through exposure of human skin to sunlight, few foods

contain natural vitamin D (1). Its main role in humans is to increase

the absorption of calcium and phosphate to mineralize the bones

(2). In children, vitamin D deficiency leads to growth retardation

and rickets (3). In adults, vitamin D deficiency can lead to

osteochondrosis and osteoporosis (3). Vitamin D deficiency and

its health consequences first gained attention with the

industrialization of Northern Europe. As research progressed,

vitamin D deficiency was also found to be strongly associated

with the development of diabetes (4), sarcopenia (5), psychiatric

disorders (6), autoimmune diseases (7), cardiovascular diseases (8),

and tumors (9). Because of the role of vitamin D in the antiviral

immune response (10, 11), vitamin D-related studies have gained

more attention since the COVID-19 pandemic. Vitamin D levels

have also been shown to be associated with the prevention and

prognosis of COVID-19 (12–14). Vitamin D deficiency has now

been defined as a pandemic. As an important part of public health,

identifying vitamin D deficiency is vital. However, a single

measurement of vitamin D costs £9.86 and between 70.4% and

77.5% of tests are likely to be inappropriate (15). Testing for vitamin

D in all populations does not appear to be appropriate. An

Endocrine Society Clinical Practice Guideline recommends

screening for vitamin D in people at risk for deficiency; they do

not recommend screening for vitamin D in people who are not at

risk (16). The use of prediction tools to identify patients at high risk

of vitamin D deficiency is necessary. As of now, there are no

prediction tools for predicting vitamin D risk in the general

community population.

Machine learning is one of the fastest growing technology areas

today and is widely used to enable evidence-based decision making

in industries such as healthcare, manufacturing, and education (17).

Machine learning is primarily based on large datasets to develop

robust risk models and predict the type of person being studied

(18, 19). Prediction tools developed using machine learning can be a

good predictor of vitamin D deficiency risk in participants. The

purpose of this study was to construct a prediction tool to predict

participants’ risk of vitamin D deficiency using a machine learning

method based on data that can be easily collected in a general

community population.
2 Materials and methods

2.1 Data sources and study population

Data for this study were obtained from the National Health and

Nutritional Examination Surveys (NHANES), a population-based,

cross-sectional survey study conducted in two-year cycles since

1999 to assess the health and nutritional status of adults and

children in the United States. Serum 25(OH)D as a good

biomarker for evaluating vitamin D status was used in this

study as a laboratory test to determine vitamin D deficiency (20).
Frontiers in Endocrinology 02
The definition of vitamin deficiency used in this study was 25(OH)

D < 50 nmol/L as recommended by an Endocrine Society Clinical

Practice Guideline (16). Data from NHANES 2001-2018 containing

25(OH)D measurements were included in this study. In particular,

serum 25(OH)D data from NHANES 2001-2006 were determined

by the radioimmunoassay (RIA) method, which, due to excessive

methodological bias and inaccuracy, was switched to liquid

chromatography-tandem mass spectrometry (LC-MS/MS), a

method that has better specificity and sensitivity, in the follow-up

to NHANES 2007-2018 (21). Whereas serum 25(OH)D data from

NHANES 2001-2006 have been converted to 25(OH)D

measurements from equivalent LC-MS/MS methods by

using regression.

For simplicity and ease of use of the model, only information

that could be obtained in the community through a simple

interview was included as variables for instrument development:

gender, age, race, total number of people in the Household (H.Size),

household income to poverty income ratio (H.PIR), body mass

index (BMI), whether or not someone smokes in the household

(H.Smoke), past 30-day milk product consumption (Milk),

diabetes. Race is categorized as Mexican American, Non-Hispanic

White, Non-Hispanic Black, Other Hispanic, or Other Race. For

H.Size over 7 or more defined as 7. For H.PIR more than 5 is

defined as 5. For the past 30-day milk product consumption, four

frequencies were used to distinguish between never, rarely,

sometimes, and often, with never meaning never drinking milk;

rarely meaning less than once a week; sometimes meaning once a

week or more but less than once a day; and often meaning once a

day or more.

The data analyzed in this study were obtained from NHANES

and did not require additional ethical review by the investigator’s

affiliated institution. NHANES has received approval from the

National Center for Health Statistics (NCHS) Research Ethics

Review Board.
2.2 Statistical analysis

Normally distributed continuous variables are expressed as

mean ± standard deviation, non-normally distributed continuous

variables as median (interquartile range), and categorical variables

as percentages. Continuous variables were analyzed with the

Independent Student’s t-test or Mann-Whitney U analysis;

categorical variables were analyzed with the chi-square test or

Fisher’s test. All statistical analyses were realized based on the

“CBCgrps” package in R software.
2.3 Model construction, evaluation
and validation

Data from the NHANES database for nine cycles from 2001-

2018 were included for analysis. The included data were randomly

divided into training and validation sets in the ratio of 70:30. We

used the extracted variables as machine learning features for

analysis. Six machine learning algorithms, Gradient Boosting
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Machine (GBM), Logistic Regression (LR), Neural Network (NNet),

Random Forest (RF), Support Vector Machine (SVM), and eXtreme

Gradient Boosting (XGBoost), were used to construct the

classification model. Ten 10-fold cross validation resampling was

used to ensure stability and reproducibility of model performance.

Receiver operating characteristic (ROC) curves were plotted to

evaluate the discriminative performance of the model, and the

area under the curve (AUC) of the ROC curve was calculated.

The AUC value was used as the main statistical indicator to evaluate

the predictive performance of the model. To evaluate the predictive

performance of the model more comprehensively, this study also

reports accuracy (ACC), positive predictive value (PPV), negative

predictive value (NPV), sensitivity (SEN), specificity (SPE), F1

score, Matthews correlation coefficient (MCC). The closer these

statistics are to 1 the better the predictive performance of the model.

Kappa values are used to determine whether the model’s results are

consistent with actual results. The Kappa value is between -1 and

+1, the closer the Kappa value is to 1, the better the consistency is,

and if it is greater than 0.75, the consistency is excellent. The Brier

Score combines the differentiation and calibration of the model and

is used to evaluate the overall performance of the model, and the

closer the Brier Score is to 0, the closer the predicted value is to the

actual value (22). Decision curve analysis (DCA) is used to assess

the clinical utility of models in decision making (23). The best

machine learning predictive model was selected using AUC statistic

value as the main statistic combined with various statistical

indicators. Shapely Additive exPlanations (SHAP) values were

used to interpret the best machine learning models (24). In

addition, for the best machine learning models, an online web

calculator is further constructed to facilitate the use of the models.

All statistical analyses, model construction and validation in

this study were based on R software (version 4.1.3).
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3 Results

There were 62,919 participants enrolled in the study, all the

participants included in the study were 2 years old and above, of

which 20,204 (32.1%) participants had vitamin D deficiency. The

entire flow of the analysis is shown in the flowchart (Figure 1). The

included data were randomly divided into training and validation

sets in a ratio of 70:30, and the characteristics of the patients in the

training set are shown in Table 1. The performance of the models

constructed by each method was determined by resampling with ten

ten-fold cross validation. AUC values were calculated based on the

ROC curves (Figures 2A, B). The AUC values of GBM, LR, NNet,

RF, SVM, and XGBoost in the training set are 0.796, 0.76, 0.778,

0.96, 0.8, and 0.995, respectively; and in the validation set are 0.786,

0.767, 0.79, 0.979, 0.837, and 1, respectively (Table 2). The model

constructed by the XGBoost method has the best and near-perfect

prediction performance in both the training and validation sets. To

avoid the bias caused by data imbalance, this study further

calculates ACC, PPV, NPV, SEN, SPE, F1 score, and MCC to

evaluate the prediction performance of the model more

comprehensively, as shown in Table 2. XGBoost obtained

excellent results on all types of statistical metrics used to evaluate

differentiation. The Kappa values of GBM, LR, NNet, RF, SVM,

XGBoost in the training set are: 0.407, 0.353, 0.382, 0.745, 0.476,

0.928; and in the validation set are: 0.395, 0.36, 0.38, 0.821, 0.53,

0.997 (Table 2). The Brier score values of GBM, LR, NNet, RF,

SVM, XGBoost in the training set are: 0.165, 0.178, 0.172, 0.084,

0.166, 0.042 respectively; and in the validation set are: 0.168, 0.175,

0.166, 0.068, 0.154, 0.013 respectively (Table 2). The XGBoost

method also shows excellent consistency. The DCA curves show

that the XGBoost-based model achieves higher net gains than the

“all intervention” or “no intervention” strategies over the full range
FIGURE 1

Flowchart of data screening and analysis. NHANES, National Health and Nutritional Examination Surveys; GBM, Gradient Boosting Machine; LR,
Logistic Regression; NNet, Neural Network; RF, Random Forest; SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; ACC,
accuracy; PPV, positive predictive value; NPV, negative, predictive value; SEN, sensitivity; SPE, specificity; MCC, Matthews correlation coefficient.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1327058
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guo et al. 10.3389/fendo.2024.1327058
of thresholds, both in the training set (Figure 2C) and the validation

set (Figure 2D). Combined with the various model performance

evaluation statistics, the XGBoost-based model has the best and

almost perfect performance.

We further plotted a summary of SHAP values (Figure 3) to

interpret the XGBoost model results. For each feature, a point

corresponds to a patient. The position of the point on the X-axis

(i.e., the actual SHAP value) indicates the effect of the feature on the
Frontiers in Endocrinology 04
model output for that particular patient.The higher the feature on

the Y-axis, the more important the feature is to the model.

The results show that for this model, the features included are, in

order of importance, Race, Age, BMI, H.PIR, Milk, H.Size, Gender,

H.Smoke, and Diabetes. We also constructed an online web

calculator based on the XGBoost method in order to facilitate the

use of the model (Figure 4, https://jialeguo.shinyapps.io/

vitamin_D_deficiency/).
TABLE 1 Characterization of participants in the training set.

Variables Total (n = 44043) NVDD (n = 29818) VDD (n = 14225) p

Gender, n (%) < 0.001

Female 22419 (51) 14712 (49) 7707 (54)

Male 21624 (49) 15106 (51) 6518 (46)

Age, Median (Q1, Q3) 31 (14, 54) 31 (12, 56) 30 (17, 51) < 0.001

Race, n (%) < 0.001

Mexican American 8954 (20) 5636 (19) 3318 (23)

Non-Hispanic Black 9958 (23) 4191 (14) 5767 (41)

Non-Hispanic White 17339 (39) 14743 (49) 2596 (18)

Other Hispanic 3538 (8) 2463 (8) 1075 (8)

Other Race 4254 (10) 2785 (9) 1469 (10)

H.Size, n (%) < 0.001

1 3935 (9) 2635 (9) 1300 (9)

2 9364 (21) 6673 (22) 2691 (19)

3 7570 (17) 4964 (17) 2606 (18)

4 8782 (20) 6030 (20) 2752 (19)

5 6991 (16) 4750 (16) 2241 (16)

6 3746 (9) 2462 (8) 1284 (9)

7 3655 (8) 2304 (8) 1351 (9)

H.PIR, Median (Q1, Q3) 1.87 (0.99, 3.69) 2.04 (1.05, 3.98) 1.6 (0.88, 3.1) < 0.001

BMI, Median (Q1, Q3) 25.2 (20.45, 30.2) 24.4 (19.6, 29.2) 26.9 (22.16, 32.49) < 0.001

H.Smoke, n (%) < 0.001

No 34722 (79) 23934 (80) 10788 (76)

Yes 9321 (21) 5884 (20) 3437 (24)

Milk, n (%) < 0.001

Never 5329 (12) 3029 (10) 2300 (16)

Often 22374 (51) 16986 (57) 5388 (38)

Rarely 5618 (13) 3172 (11) 2446 (17)

Sometimes 10722 (24) 6631 (22) 4091 (29)

Diabetes, n (%) < 0.001

No 40652 (92) 27637 (93) 13015 (91)

Yes 3391 (8) 2181 (7) 1210 (9)
NVDD, non-vitamin D deficiency; VDD, vitamin D deficiency; H.Size, total number of people in the Household; H.PIR, household income to poverty income ratio; BMI, body mass index;
H.Smoke, whether or not someone smokes in the household; Milk, past 30-day milk product consumption.
frontiersin.org

https://jialeguo.shinyapps.io/vitamin_D_deficiency/
https://jialeguo.shinyapps.io/vitamin_D_deficiency/
https://doi.org/10.3389/fendo.2024.1327058
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guo et al. 10.3389/fendo.2024.1327058
4 Discussion

This study uses data collected through interviews in a

community-based population: gender, age, race, H.Size, H.PIR,

BMI, H.Smoke, Milk, and diabetes. These nine variables were
Frontiers in Endocrinology 05
used as machine learning features to construct the model. Six

machine learning methods (GBM, LR, NNet, RF, SVM, and

XGBoost) were used to construct the model, and the model was

evaluated for discrimination, fit, and clinical efficacy. Figures 2A, B

show the main evaluation result of the discrimination: the ROC
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FIGURE 2

ROC and DCA curves for each method. (A) ROC in the training set. (B) ROC in the validation set. (C) DCA curves in the training set. (D) DCA curves
in the validation set.
TABLE 2 Evaluation metrics of the models constructed by each method.

Method AUC ACC PPV NPV SEN SPE F1 score MCC KAPPA
Brier
score

Tra

GBM 0.796 0.717 0.546 0.849 0.736 0.708 0.627 0.419 0.407 0.165

LR 0.76 0.685 0.509 0.837 0.728 0.664 0.599 0.368 0.353 0.178

Nnet 0.778 0.706 0.534 0.836 0.71 0.705 0.61 0.392 0.382 0.172

RF 0.96 0.882 0.76 0.962 0.928 0.86 0.835 0.754 0.745 0.084

SVM 0.8 0.747 0.577 0.887 0.808 0.718 0.674 0.494 0.476 0.166

XGBoost 0.995 0.968 0.937 0.984 0.967 0.969 0.952 0.929 0.928 0.042

Val

GBM 0.786 0.716 0.539 0.842 0.709 0.719 0.612 0.404 0.395 0.168

LR 0.767 0.689 0.506 0.847 0.74 0.665 0.601 0.378 0.36 0.175

Nnet 0.79 0.694 0.511 0.865 0.78 0.654 0.618 0.404 0.38 0.166

RF 0.979 0.919 0.817 0.98 0.96 0.9 0.882 0.828 0.821 0.068

SVM 0.837 0.772 0.597 0.921 0.866 0.728 0.706 0.554 0.53 0.154

XGBoost 1 0.999 0.998 0.999 0.998 0.999 0.998 0.997 0.997 0.013
fr
Tra, training set; Val, validation set; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; SEN: sensitivity; SPE: specificity, MCC, Matthews
correlation coefficient.
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curve. The higher the convexity and the more skewed towards the

upper left corner of the corresponding curve for each machine

learning model, the better its differentiation. The results of the ROC

curves in this study show that XGBoost-based has the best

discrimination performance both in the training and validation

sets. This is also confirmed in other complementary evaluation

metrics: ACC, PPV, NPV, SEN, SPE, F1 score, and MCC. The

results of the evaluation of clinical efficacy are presented in

Figures 2C, D: DCA curves. The line corresponding to “Treat All”

in the DCA curves shows the net benefit of intervening on all

participants, and the line corresponding to “Treat None” shows the

net benefit of not intervening on all participants. Therefore, it

makes sense to construct a model that has a threshold probability

that the net benefit is higher than both “Treat All” and “Treat
Frontiers in Endocrinology 06
None”. In this study, all the models have some clinical utility within

a certain threshold. In particular, the model constructed by the

XGBoost method has a higher net benefit than the “Treat All” or

“Treat None” strategies within all thresholds. Ultimately, the model

of the XGBoost method has the best and near perfect performance.

This study further used SHAP values to interpret the model of

XGBoost method, and among the variables included, race, age, and

BMI were the top three important characteristics. In addition, an

online web calculator was constructed based on the model of the

XGBoost method for ease of use. Using this online web calculator, it

is possible to screen community populations for vitamin D

deficiency through a simple interview. The population in this

study originated from the American community, where the

prevalence of vitamin D deficiency was 32.11%. Vitamin D
FIGURE 3

Summary plot of SHAP values for the model constructed by XGBoost algorithm. The horizontal position “SHAP value” indicates whether the impact
of the value is associated with a higher or lower prediction, and the color of each SHAP value point indicates whether the observed value is higher
(purple) or lower (yellow). The vertical coordinates show the importance of the features, sorted by the importance of the variables in descending
order, with the upper variables being more important to the model.
FIGURE 4

Online web calculator based on XGBoost modeling. Race is categorized as Mexican American, Non-Hispanic White, Non-Hispanic Black, Other
Hispanic, or Other Race. Household Size: total number of people in the Household. Household Size over 7 or more defined as 7. Household PIR:
household income to poverty income ratio. Household PIR more than 5 is defined as 5. BMI, body mass index; Household smoking, whether or not
someone smokes in the household; Milk consumption, past 30-day milk product consumption. For Milk consumption, four frequencies were used
to distinguish between never, rarely, sometimes, and often, with never meaning never drinking milk; rarely meaning less than once a week;
sometimes meaning once a week or more but less than once a day; and often meaning once a day or more.
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deficiency, a global public health problem, has different prevalence

rates in different regions. Defined as vitamin D deficiency with 25

(OH)D less than 50 nmol/L as recommended by an Endocrine

Society Clinical Practice Guideline, the prevalence of vitamin D

deficiency is 34.22% in Africa (25); 34.76% in South America (26);

and 57.69% in Asia (27).

Both major forms of vitamin D forms (vitamin D2 and vitamin

D3) are rarely found in food; vitamin D2 is found in plants and

mushrooms; vitamin D3 is found in foods of animal origin, e.g.,

salmon, butter, and liver. Vitamin D in the body comes mainly from

ultraviolet light exposure of the skin rather than through food intake.

When human skin is exposed to ultraviolet light at wavelengths

between 290 and 315 nm, it converts 7-dehydrocholesterol present in

the epidermis to pre-vitamin D3 (28, 29). In turn, it is rapidly

metabolized to vitamin D3 by thermal isomerization, which in turn

is bound to vitamin D-binding proteins in the blood and transported

to the liver. Converted to 1a,25(OH)2D3, the major biologically

active metabolite form of vitamin D, sequentially by primary

hydroxylation in the liver and kidney, respectively (28). This major

source form of vitamin D in the body determines differences in

vitamin D levels among different races and populations. The risk of

vitamin D deficiency is related to race (30, 31), with darker-skinned

races being less able to synthesize vitamin D from sunlight (32). In

addition, latitude, season, atmospheric pollution, time spent

outdoors, use of sunscreen, and habitual dress of some races, all

factors that can affect the skin’s exposure to ultraviolet light,

contribute to differences in vitamin D levels (32). The effect of age

on vitamin D deficiency presents a different role in adults andminors.

The results of a multicenter cross-sectional study of adults aged 30-75

years in Saudi Arabia suggest that older age is a protective factor

against vitamin D deficiency (33). This has been confirmed in studies

from other regions (34–36). Instead, for minors, a higher risk of

vitamin D deficiency was predicted with increasing age (37, 38).

Obesity increases the risk of vitamin D deficiency in different regions

and ages (39–41). The results of a meta-analysis showed a positive

association between BMI and vitamin D deficiency (42). Several

Mendelian randomization studies have also demonstrated this

relationship at the causal level (43, 44). Low vitamin D levels in the

obese population may be caused by the deposition of vitamin D in the

adipose zone of the body, which reduces its bioavailability (45).

Vitamin D plays a crucial role in the maintenance of calcium

and phosphate homeostasis, normal bone growth and

mineralization (46). The effect of vitamin D on mineral

homeostasis is mediated by 1,25(OH)2 D activation of the

vitamin D receptor (VDR) to stimulate intestinal calcium and

phosphate absorption, renal tubular calcium reabsorption, and

skeletal calcium mobilization (47). Vitamin D deficiency leads to

decreased calcium and phosphorus absorption and lower

c i r cu l a t i ng b l ood ca l c i um , wh i ch i s s e conda ry to

hyperparathyroidism. Parathyroid hormone (PTH) increases renal

tubular calcium reabsorption and inhibits phosphorus reabsorption

in order to maintain blood calcium levels (48), and ultimately,

insufficient calcium phosphate products lead to systemic bone

mineralization, causing rickets in children and osteomalacia in

adults (49). Vitamin D is essential for bone health, and

supplementation is essential for patients at risk for fractures and/
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or vitamin D deficiency (50). Besides roles closely related to calcium

and phosphate homeostasis and bone metabolism, vitamin D has

many roles to play, especially in the immune response. It can act

directly on immune cells to promote an anti-inflammatory state and

maintain the balance between pro- and anti-inflammatory (51).

However, although vitamin D can affect the immune system in a

number of ways, it tends to be interconnected with the microbiome

and influence each other and the immune system (52). Vitamin D

plays an important role in the immune response and maintenance

of intestinal homeostasis by influencing the number and pathways

of innate lymphoid cells (ILCs), which affect the immune response

in the gut (53, 54). Recent studies have shown that the composition

of the gut microbiota is altered by vitamin D levels (55, 56). The gut

microbiota also influences calcium and vitamin D absorption,

regulates intestinal permeability, hormone secretion and immune

response (57). The intestinal epithelial VDR regulates autophagy

and innate immune function through genes such as ATG16L1,

which may influence the microbiota profile in the gut (58). Vitamin

D deficiency also plays a key role in airway microbiome

composition, as weekly oral supplementation has an impact on

cystic fibrosis patients (59). Therefore, it is extremely important to

use vitamin D and probiotics to regulate the immune system (60).

Prediction tools are widely used in the medical field to predict

clinical disease diagnosis and prognosis. Several prediction tools

have been used to predict vitamin D deficiency. However, there are

no prediction tools for predicting the risk of vitamin D deficiency in

the general community, including young people. In addition, the

sample size included in this study far exceeds that of similar

previous studies. The machine learning prediction tools developed

by Sluyter et al. (61) are similar to ours: both are tools developed

using data that could have been collected in the community through

simple inspection and interviews. However, Sluyter et al.’s study was

only applicable to adults older than 50 and performed worse than

the XGBoost method in this study: the best AUC value for Sluyter

et al.’s prediction tool was only 0.73; whereas the AUC value for the

XGBoost method in this study was 0.995. Carretero et al. (62) and

Kheir et al. (63) on the other hand developed prediction tools

applied to hypertensive population and ICU admitted population

respectively. Their AUC values were 0.74 and 0.64, respectively.

This study is the first predictive tool that can be widely applied to

predict vitamin D deficiency in community populations. The best

performing XGBoost method in this study had perfect predictive

performance. The large number of subjects is one of the strengths of

this study, which resulted in the high accuracy of the results. The

results of this study show that an online web calculator using the

XGBoost method can be a good predictor of vitamin D deficiency in

the general population. Using this predictive tool, screening for

vitamin D deficiency in the community or primary care settings can

be achieved at almost no cost, avoiding much of the public health

expenditure on unnecessary vitamin D testing and providing an

intuitive and powerful scientific tool for health education and

further testing. Based on the results of the online web calculator

in this study, primary care providers can give appropriate clinical

advice to their patients and make timely interventions for those at

high risk of vitamin D deficiency, especially for children, pregnant

women, and the elderly.
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However, we need to recognize that there are still some

limitations to this study. First, in order for the predictor tool to

be widely applicable to various scenarios, the vast majority of the

predictors used in this study were based on participants’ self-

reports, which may be subject to some bias. The NHANES

database, on the other hand, has a strictly standardized process

for data collection, and the large sample size of the studies included

in this study can avoid these biases to a certain extent. Second,

although internal validation was performed in this study by dividing

the entire dataset into training and validation sets, we lacked

external cohort studies to validate the performance of the

prediction tool. All of the populations studied in this study were

from the United States, and since vitamin D levels are related to

factors such as race and latitude, the results of the study need to be

viewed with caution when applied to populations in other regions.

External validation of the study results using external datasets,

especially from other continents, is necessary in the future.
5 Conclusion

The machine learning model constructed by the XGBoost

method in this study possesses almost perfect performances.

Based on this model, an online web calculator was further

constructed, through which the risk of vitamin D deficiency in

community populations can be predicted easily and quickly, and the

public health expenditures caused by unnecessary vitamin D testing

can be reduced.
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12. Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, Zurita-Cruz JN,
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