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Prediction of immunotherapy
response in idiopathic
membranous nephropathy
using deep learning-pathological
and clinical factors
Xuejiao Wei, Mengtuan Long, Zhongyu Fan, Yue Hou,
Xiaoyu Zhu, Zhihui Qu*† and Yujun Du*†

Department of Nephrology, The First Hospital of Jilin University, Changchun, China
Background: Owing to individual heterogeneity, patients with idiopathic

membranous nephropathy (IMN) exhibit varying sensitivities to immunotherapy.

This study aimed to establish and validate a model incorporating pathological and

clinical features using deep learning training to evaluate the response of patients

with IMN to immunosuppressive therapy.

Methods: The 291 patients were randomly categorized into training (n = 219) and

validation (n = 72) cohorts. Patch-level convolutional neural network training in a

weakly supervised manner was utilized to analyze whole-slide histopathological

features. We developed amachine-learningmodel to assess the predictive value of

pathological signatures compared to clinical factors. The performance levels of the

models were evaluated using the area under the receiver operating characteristic

curve (AUC) on the training and validation tests, and the prediction accuracies of

the models for immunotherapy response were compared.

Results: Multivariate analysis indicated that diabetes and smoking were

independent risk factors affecting the response to immunotherapy in IMN

patients. The model integrating pathologic features had a favorable predictive

value for determining the response to immunotherapy in IMN patients, with AUCs

of 0.85 and 0.77 when employed in the training and test cohorts, respectively.

However, when incorporating clinical features into the model, the predictive

efficacy diminishes, as evidenced by lower AUC values of 0.75 and 0.62 on the

training and testing cohorts, respectively.

Conclusions: The model incorporating pathological signatures demonstrated a

superior predictive ability for determining the response to immunosuppressive

therapy in IMN patients compared to the integration of clinical factors.
KEYWORDS

deep learning training, immunotherapy response, idiopathic membranous nephropathy,
pathological signatures, clinical factors
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1 Introduction

Membranous nephropathy is an autoimmune disease of the

kidney glomerulus, which mainly manifests as immune complexes

deposited on the epithelial cell side of the glomerular basement

membrane (1). Approximately 70% of cases cannot be attributed to

secondary factors (such as systemic lupus erythematosus, hepatitis

B infection, and drug toxicity) and are referred to as idiopathic

membranous nephropathy (IMN) (2, 3). The natural course of

untreated IMN is variable: spontaneous remission occurs in 30% of

cases within months, while 30–40% will slowly progress to end-

stage renal disease within 10–15 years (4, 5).

Although the recommendations in the Kidney Disease:

Improving Global Outcomes (KDIGO) 2021 guidelines regarding

IMNmanagement include significant changes as compared to those

published in, 2012 (6, 7). However, for patients with persistent 24-h

proteinuria ≥ 3.5 g or 4 g, the combination of an alkylating agent

(cyclophosphamide) and corticosteroids for 6 months is still one of

the optional treatment schemes.

Studies have shown that the response of patients with IMN to

immunosuppressive therapy varies widely owing to differences in

pathological features, individual heterogeneity, and genetic

polymorphisms (8). Approximately one-third exhibit persistent

exacerbations after treatment (9–12). Furthermore, almost all

patients treated with immunosuppressive drugs relapsed after

discontinuation or dose reduction (13). These issues have

prompted further research into predicting immunotherapy

responses in patients with IMN for clinically accurate treatment

and individualized dosing.

In recent years, the development of deep neural networks has

greatly improved the accuracy and reproducibility of renal tissue

pathology examination (14, 15). Specifically, convolutional neural

networks, one promising application of deep neural networks, have

demonstrated the ability to accurately segment the glomerular and

non-glomerular areas in kidney transplant biopsies, which have a

better understanding of renal pathological features and enhances the

practicality of quantitative studies in renal tissue pathology (16, 17). In

this study, we aimed to develop and examine a model using deep

learning training, assessing the predictive effective of pathological

signatures in contrast to clinical variables in evaluating the response

of patients with IMN to immunosuppressive therapy.
2 Methods

2.1 Study design and population

This retrospective cohort study was approved by the Ethics

Committee of the First Hospital of Jilin University (approval

no.2023-453). Between January, 2018 and April, 2022, 291

patients with IMN who underwent renal biopsy and received

regular immunosuppressive therapy for 6 months at our hospital

were analyzed.

Inclusion criteria: (1) age≥18 years; (2) renal biopsy puncture

during hospitalization; (3) first diagnosis of IMN was based on the

pathological results of renal biopsy; (4) no hemodialysis treatment;
Frontiers in Endocrinology 02
(5) administering corticosteroids and cyclophosphamide

continuously for 6 months; (6) complete baseline and follow-up data.

Exclusion criteria: (1) hematological diseases, malignant

tumors, and infectious diseases; (2) receiving long-term systemic

hormone or immunosuppressive therapy before admission; (3)

being in a stressful condition (such as surgery, infection, and

burns); (4) withdrawal midway or switch to other treatment

methods; (5) incomplete clinical and pathological data. Finally,

291 patients enrolled in this study, and all patients were randomly

assigned to the training (75%; n = 219) and validation (25%; n = 72)

cohorts. The workflow of the study is shown in Figure 1.
2.2 Data collection

Basic information of the patients, previous diseases, and serum

and urine biomarkers, were collected. IMN patients’ blood samples

were collected into EDTA tubes after an overnight fast, kept at room

temperature for 30 minutes, and then centrifuged for 10 minutes to

obtain serum. Serum creatinine (sCr), blood urea nitrogen (BUN),

cystatin C (Cys-C), cholesterol, triglycerides, high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), albumin (ALB), calcium, magnesium, and

phosphorus levels were measured using a fully automated

biochemical analyzer. Meanwhile, 24-h proteinuria data were

collected at baseline and after 6 months of immunosuppressive

treatment. Although renal function can be assessed based on sCr

level alone, measuring the estimated glomerular filtration rate

(eGFR) using the Modification of Diet in Renal Disease Study

equation is more accurate (18).
FIGURE 1

The workflow chart of enrolled patients in the study.
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2.3 Definition of diagnosis, treatment and
clinical remission of IMN

IMN is a pathological diagnosis that can be confirmed by

removing secondary factors on a case-by-case basis. The treatment

of IMN according to the KDIGO guidelines, all patients received

standardized immunotherapy regularly, including low-dose

prednisolone combined with cyclophosphamide, for a total

treatment period of 6 months. The degree of 24-h proteinuria

reduction is used to express the clinical remission of IMN patients.

The following definitions are used: 1) Clinical complete remission

(CR) is defined as urinary protein being reduced to ≤ 300 mg/d. 2)

Clinical partial remission (PR) is defined as urinary protein

excretion < 3.5 g/day and ≥ 50% reduction compared to initial

values. 3) No remission (NR) means that the urine protein is

decreased by < 50% or the urine protein is ≥3.5 g/d compared with

the baseline.
2.4 Acquisition and visualization of
pathological images

Periodic acid shiff-stained human renal biopsy tissues were

collected from the department of pathology. Sections were

scanned at multiple magnifications (20x, 40x) using an Aperio

Scanscope CS2 slide scanner, and the whole-slide image (WSI)

was stored in the SVS format before being converted to the TIFF

format at full resolution. We adopted a preprocessing strategy by

splitting the WSI into 256 × 256-pixel tiles. This nonoverlapping

division was performed at a resolution of 0.5 mm/pixel. These

patches from various scales were merged to represent the data for

each patient. Using the Reinhard method, we normalized the

colors of the small tiles. To obtain a typical normal distribution of

image intensities, which served as the input for our model, we

applied Z-score normalization to the RGB channels. Online data

augmentation, such as random horizontal and vertical flipping,

was used throughout the training phase. However, for the test

patches, only normalization was applied. This preprocessing

approach enabled us to incorporate information from various

scales and optimize the model’s performance in capturing the

intricate details in the images.

A class activation map (CAM) is generated by visualizing the

gradients that flowed into the final convolutional layer of the

network immediately before the fully connected layers. This layer

was chosen because it retains class-specific spatial information from

the input image, which may be lost in the fully connected layers.

The Grad-CAM method allowed the generation of these maps

without modifying the existing model architecture or requiring

additional training. The application of Grad-CAM by visualizing

the activation of the last convolutional layer for model prediction

(Supplemental Figure 1). We can view the regions of the input

image that contribute the most to the model’s prediction by

rendering the last convolutional layer transparent. This method

provides valuable insight into the decision-making process of a
Frontiers in Endocrinology 03
model without the need for complex architectural changes or

model retraining.
2.5 Deep learning training

Our deep-learning workflow involved WSI-level and patch-

level predictions. Given the size and heterogeneity of the

pathological images, we separated the WSIs into smaller patches.

An ensemble learning algorithm was used to assemble patch

likelihoods to acquire a WSI-level prediction. For the patch-level

prediction, we employed ResNet50, Resnet101, and DenseNet121,

widely used convolutional neural networks that achieve medical

image detection and classification (19). This network was trained to

compute the probability of each patch being assigned a label

corresponding to the WSI to which it belonged. To optimize the

network, we used softmax cross-entropy loss and applied a

minibatch gradient descent method. Furthermore, we used

transfer learning to promote the model in various cohorts with

significant heterogeneity. This involved initializing the model

parameters using pretrained weights from the ImageNet dataset.

The weights of the patch-level discriminators were reused, and the

entire model was fine-tuned using a small amount of labeled data

specific to our job. The details of the training can be found in the

Supplementary Material.
2.6 Patch to WSI fusion

Upon completing the deep learning model training, we

predicted the labels and corresponding probabilities for all the

patches. These patch likelihoods are aggregated using two distinct

machine-learning methods to represent the WSIs: the Patch

Likelihood Histogram (PLH) pipeline and the Bag of Words

(BoW) pipeline (20). In the PLH pipeline, a histogram is used

to represent the incidence of the patch likelihood, effectively

capturing the likelihood distribution. In contrast, the BoW

pipeline adopts Term Frequency-Inverse Document Frequency

(TF-IDF) mapping for each patch, generating TF-IDF feature

vectors. These feature vectors are then used to train traditional

machine-learning classifiers, predicting the microsatellite status

of WSIs. By employing these two independent pipelines, we

aimed to explore different approaches for aggregating patch

likelihoods and leveraging traditional machine learning

techniques to enhance predictions at the WSI level. The weakly

supervised process is outlined in this section, while specific details

of the multiple instance learning are provided in the

Supplementary Material.
2.7 Pathology signature evaluation

Our study integrated patch-level predictions, probability

histograms, and TF-IDF features. These combined features were
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then entered into multiple machine-learning algorithms, such as

SVM, Random Forest, ExtraTrees, XGBoost, and LightGBM, to

construct a risk model. The model with most favorable performance

was selected on the basis of the validation dataset. Hyperparameters

of the WSI-level classifier were optimized through a grid-search of

the training dataset.
2.8 Clinical signature evaluation

Univariate and multivariate logistic regression analyses were

employed to determine clinical features. Features with significant

differences from the multivariate regression analysis were selected

to build the clinical model. Similar to the approach used for

pathological signatures, we employed an algorithm to construct

the clinical model.
2.9 Statistical analysis

All experiments were implemented on the OnekeyAI platform

using Python (version 3.7.12), and the deep learning model used to

extract pathology features was trained with the Pytorch package

(version 1.8.0). Preprocessing, such as background removal and patch

normalization, were performed using Onekey Tools. All machine-

learning methods were implemented using Scikit-learning (version
Frontiers in Endocrinology 04
1.0.2). Quantitative data are expressed as mean ± standard deviation

(SD). The level of significance was set at p < 0.05.
3 Results

3.1 Clinical factors of IMN patients

The clinical characteristics of patients with IMN in the training

and test cohorts are presented in Table 1. The clinical features of

diabetes, hypertension, smoking, drinking and triglyceride levels

were significantly different between the two sets (p < 0.05).

Multivariate analysis revealed that smoking (p =0.00) and diabetes

(p = 0.00) were independent predictors in the clinical model. The

findings of the univariate and multivariate analysis are shown

in Table 2.
3.2 Assessment of the path-level efficiency
of each model

We evaluated the performances of ResNet50, ResNet101, and

DenseNet121 on the training and test datasets (Table 3). These

models were assessed based on accuracy (ACC), the area under the

receiver operating characteristic curve (AUC), and corresponding

95% confidence intervals (CI). These results suggested that the
TABLE 1 Clinical factors of the training and validation cohorts.

Variables
Training cohort (n=219) Validation cohort (n=72)

CR PR RR p CR PR RR p

Age (years)
(mean ± SD)

49.71 ± 12.08 53.08 ± 9.79 51.82 ± 10.28 0.16 47.93 ± 12.03 48.21 ± 12.74 45.70 ± 9.07 0.71

BUN (mmol/L)
(mean ± SD)

5.83 ± 2.33 5.84 ± 2.30 5.45 ± 1.57 0.41 5.57 ± 1.92 5.14 ± 1.47 7.16 ± 6.94 0.35

sCr (mmol/L)
(mean ± SD)

75.19 ± 19.38 76.06 ± 21.45 78.18 ± 25.63 0.47 78.82 ± 15.58 71.50 ± 19.62 68.20 ± 28.21 0.09

eGFR(mL/(min*1.73m2))
(mean ± SD)

1.23 ± 0.45 1.22 ± 0.37 1.21 ± 0.38 0.80 1.16 ± 0.38 1.09 ± 0.27 1.04 ± 0.24 0.26

Cys-C (mg/L)
(mean ± SD)

93.51 ± 18.89 91.83 ± 18.99 92.04 ± 25.64 0.64 91.67 ± 14.82
100.50
± 23.07

115.25
± 57.19

0.02

Triglycerides (mmol/L)
(mean ± SD)

2.02 ± 0.12 2.03 ± 0.13 2.00 ± 0.15 0.49 1.99 ± 0.15 2.05 ± 0.14 2.06 ± 0.21 0.15

Cholesterol (mmol/L)
(mean ± SD)

0.91 ± 0.08 0.90 ± 0.07 0.91 ± 0.07 0.49 0.92 ± 0.11 0.89 ± 0.10 0.87 ± 0.14 0.24

HDL-C (mmol/L)
(mean ± SD)

1.20 ± 0.17 1.21 ± 0.17 1.22 ± 0.18 0.42 1.20 ± 0.22 1.21 ± 0.20 1.20 ± 0.26 0.93

LDL-C (mmol/L)
(mean ± SD)

2.64 ± 1.49 3.35 ± 3.13 3.89 ± 3.83 0.01 2.44 ± 1.13 2.98 ± 1.85 4.50 ± 3.15 0.01

ALB
(g/L) (mean ± SD)

8.24 ± 2.75 8.28 ± 2.29 8.54 ± 2.55 0.57 7.39 ± 2.23 8.26 ± 2.55 9.66 ± 4.01 0.02

Calcium
(mmol/L)

(mean ± SD)
1.81 ± 0.58 1.72 ± 0.48 1.67 ± 0.46 0.14 1.54 ± 0.34 1.76 ± 0.63 1.73 ± 0.67 0.18

(Continued)
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ResNet50, ResNet101, and DenseNet121 models performed well in

discriminating between classes in the training dataset.
3.3 Feature importance visualization and
statistical analysis of top features

Our Random Forest analysis revealed the most important

features, consisting of one histogram feature and nine TF-IDF

features (Figure 2A). Interestingly, the TF-IDF features were more

influential than the histogram features, indicating their significant

contributions. The histogram feature demonstrated greater

importance than the TF-IDF feature, suggesting a superior

representation of patient information. Furthermore, the

distribution of features varied significantly across the different

categories, highlighting the dataset’s heterogeneity. Understanding
Frontiers in Endocrinology 05
the importance of features enhances interpretability and guides

future model refinement.

We statistically analyzed the top three features and observed

significant differences in their sample distributions (Figures 2B–D).

This finding highlights the discriminatory power of these features in

distinguishing between the different groups. By identifying these

distinct statistical difference groups, we gained insight into the

potential predictive capacity of these features and their relevance to

the underlying task or problem.
3.4 Assessment of the predictive
performance of integrated pathological
signatures model

We evaluated the performance of various common machine-

learning algorithms, including SVM, Random Forest, ExtraTrees,
TABLE 1 Continued

Variables
Training cohort (n=219) Validation cohort (n=72)

CR PR RR p CR PR RR p

Magnesium
(mmol/L) (mean ± SD)

5.21 ± 2.04 5.08 ± 1.64 5.21 ± 1.56 0.91 5.03 ± 1.55 5.33 ± 1.75 6.26 ± 2.90 0.10

Phosphorus (mmol/L)
(mean ± SD)

23.25 ± 4.52 23.80 ± 5.35 23.38 ± 5.39 0.78 22.46 ± 5.85 23.84 ± 5.68 26.26 ± 7.60 0.09

Gender 0.90 0.30

female 34(39.53) 33(37.50) 16(35.56) 7(25.00) 13(38.24) 5(50.00)

male 52(60.47) 55(62.50) 29(64.44) 21(75.00) 21(61.76) 5(50.00)

Diabetes 0.00 0.03

0 85(98.84) 77(87.50) 36(80.00) 26(92.86) 30(88.24) 6(60.00)

1 1(1.16) 11(12.50) 9(20.00) 2(7.14) 4(11.76) 4(40.00)

Hypertension 0.04 0.96

0 63(73.26) 57(64.77) 23(51.11) 18(64.29) 21(61.76) 6(60.00)

1 23(26.74) 31(35.23) 22(48.89) 10(35.71) 13(38.24) 4(40.00)

CHD 0.16 0.45

0 81(94.19) 86(97.73) 45(100.00) 27(96.43) 34(100.00) 10(100.00)

1 5(5.81) 2(2.27) null 1(3.57) null null

Stroke 0.59 0.69

0 83(96.51) 83(94.32) 44(97.78) 26(92.86) 32(94.12) 10(100.00)

1 3(3.49) 5(5.68) 1(2.22) 2(7.14) 2(5.88) null

Smoking <0.001 0.90

0 75(87.21) 79(89.77) 23(51.11) 23(82.14) 29(85.29) 8(80.00)

1 11(12.79) 9(10.23) 22(48.89) 5(17.86) 5(14.71) 2(20.00)

Drinking <0.001 0.87

0 78(90.70) 82(93.18) 31(68.89) 25(89.29) 29(85.29) 9(90.00)

1 8(9.30) 6(6.82) 14(31.11) 3(10.71) 5(14.71) 1(10.00)
fr
CR, complete remission; PR: partial remission; NR: no remission; SD, standard deviation; CHD, coronary heart disease; BUN, blood urea nitrogen; sCr, serum creatinine; eGFR, estimated
glomerular filtration rate; Cys-C, cystatin C; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ALB, albumin.
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XGBoost, and LightGBM. The models were tested with cross-

validation in order to identify the most optimal one (Figure 3A).

Among the models, LightGBM demonstrated the highest AUC

scores on the training dataset, with a value of 0.85. The AUC for

LightGBM was 0.77 in the testing dataset (Table 4). Figures 3B, C

displayed the ROC curves of the model for the two sets. Comparing
Frontiers in Endocrinology 06
LightGBM with other models, we observed that LightGBM

outperformed SVM, Random Forest, ExtraTrees, and XGBoost

regarding ACC and AUC on the training and test sets. These

results suggest that LightGBM performed well in discriminating

between classes in the training and test datasets.
3.5 Assessment of the performance of
integrated clinical factors model

We evaluated the performance of the above five machine-learning

algorithms, and the models were subjected to cross-validation. The

LightGBM model exhibits a commendable ability to distinguish

between classes as evidenced by its AUC scores in both training

(0.75) and testing (0.67) cohorts, positioning it as a potentially

valuable tool for classification tasks (Table 5). ROC curves for the

model are shown in Figures 4A, B for both training and test datasets.
4 Discussion

IMN is the primary cause of nephrotic syndrome in adults, and

its outcomes have significant heterogeneity. Patients who fail to

experience spontaneous relief or have any of the risk factors are

considered for immunosuppressive therapy (21). Unfortunately,

patients with IMN respond to immunosuppressive therapy in

various ways and are, to a large extent, at risk of relapse after

discontinuation. Currently, there is no approach for predicting the

effects of patients with IMN. Therefore, this study aimed to develop

a model that could accurately predict the response of patients with

IMN to immunosuppressive therapy.

In our study, multivariate regression analysis revealed that

diabetes and smoking were independent risk factors affecting the

response to immunotherapy in patients with IMN. Our present

results were consistent with previous papers (22–24). Patients with

IMN and diabetes respond poorly to immunosuppressive regimens,

with poor glycemic control being the most common side effect.

Smoking may exacerbate dysfunction in both glomeruli and renal

tubules, promoting mesangial cells and matrix proliferation,

inducing inflammatory responses and oxidative stress, further

accelerating the progression of renal disease (25, 26).

Furthermore, as a common bad habit, the oxidative stress

triggered by smoking, may exacerbate renal progression (27).

Second, nicotine can stimulate mesangial cell proliferation and

enhance extracellular matrix production (28). Third, nicotine may

elevate plasma endothelin levels, influencing renal blood flow (29).

Based on these data, we conclude that the immunosuppressive

treatment of patients with IMN requires active and stringent

control of blood glucose and modification of undesirable behaviors.

Important clinical information supporting the diagnosis of IMN

includes massive proteinuria and high levels of phospholipase A2

receptor 1 (PLA2R1). Several studies have verified the presence of

autoantibodies against PLA2R in 50–80% of IMN cases (30, 31).

The levels of PLA2R1 antibodies are closely associated with the

severity of IMN and the response to immunosuppressive therapy
TABLE 2 Univariate and multivariate logistic regression analysis of the
predictive clinical factors in the training cohort.

Variables

Univariate analysis Multivariate analysis

p
OR

(95% CI)
p

OR
(95% CI)

Age 0.16
1.01

(1.00, 1.01)

Gender 0.65
1.05

(0.88, 1.25)

Diabetes 0.00
1.87

(1.42, 2.47)
0.00

1.63
(1.24, 2.15)

CHD 0.06
0.58

(0.36, 0.93)

Stroke 0.89
0.96

(0.63, 1.47)

Hypertension 0.01
1.31

(1.10, 1.55)
0.65

1.05
(0.88, 1.26)

Smoking 0.00
1.74

(1.42, 2.14)
0.00

1.52
(1.19, 1.93)

Drinking 0.00
1.58

(1.24, 2.03)
0.46

1.13
(0.86, 1.49)

BUN 0.41
0.98

(0.94, 1.02)

sCr 0.47
1.00

(1.00, 1.01)

eGFR 0.64
1.00

(1.00, 1.00)

Cys-C 0.80
0.97

(0.79, 1.19)

Triglycerides 0.01
1.05

(1.02, 1.08)
0.12

1.03
(1.00, 1,06)

Cholesterol 0.57
1.01

(0.98, 1.05)

HDL-C 0.14
0.86

(0.74, 1.02)

LDL-C 0.91
1.00

(0.95, 1.04)

ALB 0.78
1.00

(0.99, 1.02)

Calcium 0.49
0.76

(0.39, 1.46)

Magnesium 0.49
0.61

(0.19, 1.95)

Phosphorus 0.42
1.27

(0.78, 2.08)
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TABLE 3 Path-level efficiency of each model.

Model ACC AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Resnet50 0.74 0.83 0.82-0.84 0.72 0.76 0.66 0.81 Train-CR

Resnet50 0.73 0.82 0.81-0.83 0.72 0.73 0.64 0.80 Train-PR

Resnet50 0.74 0.82 0.81-0.83 0.71 0.75 0.42 0.91 Train-NR

Resnet50 0.66 0.61 0.59-0.64 0.25 0.93 0.69 0.66 Test-CR

Resnet50 0.54 0.57 0.55-0.60 0.79 0.31 0.51 0.63 Test-PR

Resnet50 0.28 0.54 0.50-0.57 0.91 0.17 0.15 0.92 Test-NR

Resnet101 0.90 0.97 0.96-0.97 0.88 0.92 0.87 0.92 Train-CR

Resnet101 0.90 0.97 0.96-0.97 0.85 0.93 0.89 0.90 Train-PR

Resnet101 0.90 0.96 0.96-0.97 0.86 0.91 0.72 0.96 Train-NR

Resnet101 0.62 0.55 0.52-0.57 0.21 0.88 0.52 0.64 Test-CR

Resnet101 0.52 0.53 0.51-0.56 0.76 0.30 0.49 0.58 Test-PR

Resnet101 0.20 0.50 0.46-0.53 0.96 0.08 0.14 0.92 Test-NR

Densenet121 0.82 0.91 0.90-0.91 0.79 0.83 0.75 0.86 Train-CR

Densenet121 0.82 0.90 0.90-0.91 0.79 0.83 0.76 0.86 Train-PR

Densenet121 0.78 0.90 0.89-0.91 0.86 0.76 0.48 0.95 Train-NR

Densenet121 0.61 0.54 0.52-0.57 0.21 0.87 0.51 0.63 Test-CR

Densenet121 0.51 0.53 0.50-0.55 0.79 0.27 0.49 0.58 Test-PR

Densenet121 0.17 0.47 0.44-0.50 0.98 0.04 0.14 0.94 Test-NR
F
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ACC, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; CR, complete remission; PR,
partial remission; NR, no remission.
B

C D

A

FIGURE 2

Feature importance visualization and statistical analysis of top features. (A) RandomForest analysis was used to visualized one histogram feature and
nine TF-IDF features. (B–D) Statistical analysis of top three features and observed significant differences in their sample distributions.
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(32). In this study, we defined the outcome based on the extent of

24-h proteinuria reduction before and after treatment. Given the

observed linear correlation between proteinuria and the outcome,

we assert that alterations in proteinuria levels significantly influence

the outcome. In this context, protein levels are unlikely to offer

additional information or impact. Hence, we have opted to exclude

proteinuria levels from the statistical analysis. Additionally, it is
Frontiers in Endocrinology 08
noteworthy that the positive rate of PLA2R antibodies reached 95%

among the included patients. Therefore, the information associated

with PLA2R antibodies may not confer adequate uniqueness or

decisive impact within the predictive framework of the model. This

led to the decision to exclude it from the model.

It is well established in previous research that combining

radionics signatures improves the diagnosis and prediction of

disease, which inspired us to undertake this study. Renal biopsy is

useful for elucidating the pathological classification of IMN and

serves as a crucial foundation for formulating treatment strategies

and assessing disease prognosis. This study demonstrated that a

machine-learning model incorporating pathological features, as

opposed to clinical factors alone, exhibits a favorable predictive

value for determining the response of patients with IMN to

immunosuppressive therapy, with AUCs of 0.85 and 0.77 when

applied to the training and validation cohorts, respectively. In

general, this study supports the use of machine learning models,

particularly those incorporating pathological features rather than

solely relying on clinical factors, to more accurately predict the

response of patients with IMN to immunosuppressive therapy. The

emphasis is placed on the significance of pathological features in

predicting immune therapy responses.

One significant advantage of this study lies in the utilization of

machine learning technology applied to periodic acid shiff-stained

histological images from renal biopsies. No special processing or

operation is required, except for digital scanning. The construction
B C

A

FIGURE 3

The ROC curves of training and test cohorts in the pathology model. (A) Five- fold cross-validation of training cohort. (B) LightGBM showed strong
discriminative performance on the training set with high AUC (0.85). (C) The performance of LightGBM on the test set outperformed other models
regarding AUC.
TABLE 4 Specific results of each machine-learning model for
pathology signatures.

Model ACC AUC 95%CI Cohort

SVM 0.96 0.98 0.65-0.73 Train

SVM 0.66 0.65 0.54-0.69 Test

RandomForest 0.92 0.96 0.66-0.74 Train

RandomForest 0.68 0.67 0.56-0.71 Test

ExtraTrees 0.80 0.85 0.67-0.75 Train

ExtraTrees 0.69 0.68 0.57-0.72 Test

XGBoost 0.67 0.98 0.75-0.82 Train

XGBoost 0.67 0.70 0.56-0.71 Test

LightGBM 0.67 0.85 0.71-0.79 Train

LightGBM 0.67 0.77 0.60-0.74 Test
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of the CNN architecture involves operators such as convolution,

pooling, activation, and full connection. These operations are

systematically applied multiple times, converting pixel-level

information into high-level features of input images. These

features are then employed for classification tasks, enabling a

direct association of machine learning analysis results with the

clinical phenotype of the same specimen. Afterwards, two separate

multi-instance learning methods have been developed to aggregate

patch possibilities and enhance the prediction performance of the

WSI level. Furthermore, we employed five types of machine

learning models to evaluate the image features, utilizing a strict

cross-validation strategy on the training set and then testing it on

the test data set, providing a guarantee for obtaining the model with

optimal performance.

The response of patients with IMN to immunotherapy has

always been challenging. Some patients can be induced to remission

by drugs, whereas others are intolerant or ineffective to
B

A

FIGURE 4

The ROC curves of training and test cohorts in the clinical model. (A, B) The AUC of LightGBM in training and test sets.
TABLE 5 Specific results of each machine-learning model for
clinic factors.

Model ACC AUC 95%CI Cohort

SVM 0.67 0.69 0.651-0.734 Train

SVM 0.63 0.62 0.541-0.693 Test

RandomForest 0.69 0.70 0.657-0.738 Train

RandomForest 0.66 0.64 0.564-0.710 Test

ExtraTrees 0.68 0.71 0.667-0.748 Train

ExtraTrees 0.67 0.65 0.573-0.723 Test

XGBoost 0.73 0.79 0.752-0.822 Train

XGBoost 0.66 0.64 0.563-0.714 Test

LightGBM 0.70 0.75 0.710-0.786 Train

LightGBM 0.68 0.67 0.598-0.742 Test
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immunosuppressive regimens, which gradually progresses to

uremia. Therefore, developing a machine-learning model with

optimal predictive efficiency may provide better guidelines for

immunotherapy at an early stage of diagnosis, potentially

complementing the clinical decision-making process.

This study had some limitations. First, as a case-control study,

the diagnostic accuracy of the training set was typically

exaggerated, necessitating prospective external validation.

Second, the samples were drawn from a single institution; a

larger sample size from multicenter studies is required. Third,

compared with fully supervised learning, weakly supervised

learning suffers from missing labeled data, and a lack of data

may cause model overfitting.
5 Conclusion

In conclusion, we have developed and validated a machine-

learning model for predicting immunotherapy response in

patients with IMN. In comparison to models integrating

clinical factors, models incorporating pathological features

demonstrate higher AUC values in both the training and

validation cohorts, indicating a more pronounced predictive

efficacy. Further validation is needed before widespread

clinical application.
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