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kidney disease
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Vascular calcification (VC) has emerged as a key predictor of cardiovascular

events in patients with chronic kidney disease (CKD). In recent years, an

expanding body of research has put forth the concept of accelerated vascular

aging among CKD patients, highlighting the significance of vascular cells

senescence in the process of VC. Within the milieu of uremia, senescent

vascular endothelial cells (VECs) release extracellular microvesicles (MV) that

promote vascular smooth muscle cells (VSMCs) senescence, thereby triggering

the subsequent osteogenic phenotypic switch and ultimately contributing to the

VC process. In addition, senescent vascular progenitor or stem cells with

diminished ability to differentiate into VECs and VSMCS, compromise the repair

of vascular integrity, on the other hand, release a cascade of molecules

associated with senescence, collectively known as the senescence-associated

secretory phenotype (SASP), perpetuating the senescence phenomenon.

Furthermore, SASP triggers the recruitment of monocytes and macrophages,

as well as adjacent VECs and VSMCs into a pro-adhesive and pro-inflammatory

senescent state. This pro-inflammatory microenvironment niche not only

impacts the functionality of immune cells but also influences the differentiation

of myeloid immune cells, thereby amplifying the reduced ability to effectively

clear senescent cells of senescent macrophages, promoted calcification of

VSMCs. The objective of this paper is to provide a comprehensive review of

the contribution of vascular cell senescence to the emergence and advancement

of VC. Gaining a comprehensive understanding of the involvement of cellular

senescence within the vessel wall is pivotal, especially when it comes to its

intersection with VC. This knowledge is essential for advancing groundbreaking

anti-aging therapies, aiming to effectively mitigate cardiovascular diseases.
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GRAPHICAL ABSTRACT

Overview of the role of cellular senescence in regulating vascular calcification. The complex landscape of CKD hastens the senescence of vascular
endothelial cells (VECs) and undermines their functional integrity, exhibiting a distinctive profile characterized by the reduced expression of nitric
oxide (NO) and an elevation in reactive oxygen species (ROS). Senescent VECs release microvesicles (MVs) to trigger senescence and calcification in
VSMCs. On the other hand, senescent VECs attract monocytes to the endothelium and induce the proliferation and migration of VSMCs. Pro-inflam-
matory phenotypic macrophages subsequently promote VSMC calcification by stimulating carbonic anhydrase I (CA1) and CA2 via secreting TNFa,
or NLRP3 inflammasome. Mesenchymal stromal cells (MSCs) and adventitial fibroblasts (AFs) exhibit a potential for differentiation, with the ability to
transform into VECs and VSMCs, contributing to the replenishment of senescent cells. However, the proliferation and differentiation capacities of se-
nescent MSCs and AFs are diminished.
1 Introduction

Cardiovascular disease is the leading cause of death in patients

with chronic kidney disease (CKD), a reality that persists even

during the initial CKD stages (CKD stages 1-3). Vascular

calcification (VC) emerges as both an independent predictor and

a pivotal driving force behind the onset and progression of

cardiovascular disease in this patient demographic (1). Despite

significant advancements in VC drug development, such as

SNF472 and sodium thiosulfate, the incidence of cardiovascular

mortality among CKD patients persists at elevated levels.

There is a growing focus on the role of senescent cells,

particularly in the context of accelerated vascular aging among

CKD patients, with VC emerging as a significant phenotype of this

aging process (2). Accumulating data suggests that the transition of

pro-calcificatory/osteoblastic phenotype of senescent vascular

smooth muscle cells (VSMCs) play a vitol role. However, the
Abbreviations: Afs, adventitial fibroblastsL AKI, acute kidney injury; ALP,

alkaline phosphatase; APCs, adventitial pericytes; CaSRs, calcium-sensing

receptors; CDKI, cyclin-dependent kinase inhibitor; CKD, chronic kidney

disease; EndMT, endothelial-to-mesenchymal transition; MAC, medial arterial

calcification; MSCs, mesenchymal stromal cells; MV, microvesicles; NMN,

nicotinamide mononucleotide; NRF2, nuclear factor erythroid 2-related factor

2; PWV, pulse wave velocity; RS, replicative senescence; SASP, senescence-

associated secretory phenotype; SAHF, senescence-associated heterochromatin

foci; SIPS, stress-induced premature senescence; VC, Vascular calcification;

VECs, vascular endothelial cells; VSMCs, vascular smooth muscle cells.
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deviation between vascular aging and chronological aging still

need further invesatigated.

Improving our understanding of the interplay between aging

and VC is of utmost importance. To gain a comprehensive

understanding of the pathophysiological processes driving VC

and to develop prospective therapies for CKD patients with VC,

this review explores the current knowledge of VC in CKD, with a

particular emphasis on the role of vascular cell senescence and

cellular interactions in the progression of VC.

2 Vascular calcification

The type of VC that develops depends on its location, and it

commonly takes the following forms: intimal calcification, media

calcification, and valve calcification. Intimal calcification often

presents as atherosclerosis, primarily impacting larger and

medium-sized arteries along with their branches. This condition

arises from chronic vascular inflammation and involves the

infiltration of vascular smooth muscle cells (VSMCs) and

macrophages in the lipid-rich regions of atherosclerotic plaques.

Ischemic heart disease stems from the formation, rupture, and

obstruction of these plaques within arteries (3). Monckeberg’s

sclerosis, also known as medial arterial calcification (MAC), is an

age-related degenerative aiflment first proposed by Johann Georg

Monckeb in 1903 (4). The hallmark of MAC is the diffuse and

continuous deposition of hydroxyapatite in the medial layer (5).

The presence of MAC can be observed in the walls of vessels with

varying internal diameters, which may experience stiffness. This
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stiffness often leads to increased pulse wave velocity (PWV),

reduced blood flow to the heart (cardiac hypoperfusion), elevated

systolic blood pressure, left ventricular hypertrophy, and eventually

heart failure (4–6). MAC is frequently associated with abnormalities

in calcium and phosphorus metabolism, as well as mineral and bone

metabolism, the severity of CKD, dialysis vintage, aging (7),

diabetes (5), and rapid progression of medial calcification in

patients with end-stage renal disease who are undergoing

hemodialysis (8).

In contemporary medical practices, conventional X-rays,

ultrasonography, and computed tomography (CT) scans have been

used for detecting and monitoring calcification. Additionally,

circulating biomarkers, which reflect pathophysiological changes,

thus contribute valuable insights. However, despite these

advancements, the clinical challenge in the context of CKD persists

due to the limited sensitivity of VC diagnosis (9). Previously, it was

believed that VC occurred passively, involving the deposition of

calcium and phosphate as hydroxyapatite in the arterial wall.

However, mounting evidence now suggests that VC is an active,

highly regulated, and resembling the bone-forming process known as

osteogenesis. This active process is driven by a osteogenic-like

phenotypic transformation of VSMCs (5). Beyond, a range of factors

contribute to the complex process of VSMCs calcification, including

imbalances in the regulation of calcium and phosphate levels, cell death

(apoptosis, ferroptosis), diminished presence of calcification inhibitors,

the release of vesicles containing mineral-forming components

(mineralizing matrix vesicles or MVs), and crosstalk between

VSMCs and VECs (10–12). In an environment with high calcium

levels, the quantity of calcium-sensing receptors (CaSRs) on the surface

of VSMCs decreases, resulting in an increase in intracellular calcium

content. This heightened calcium concentration triggers apoptosis in

VSMCs, leading to the formation of hydroxyapatite deposits sites from

these apoptotic cells. The release of calcium from dying cells

perpetuates apoptosis, thus accelerating the vicious cycle of VC (13,

14). Elevated levels of phosphorus have a direct effect, triggering

monocytes to synthesize and release tumor necrosis factor-alpha

(TNF-a) via the PiT-1 pathway. This initiates an inflammatory state,

furthering the transformation of VSMCs into an osteogenic phenotype

and the subsequent calcification process (15). As a result, VSMCs shift

toward a cell phenotype resembling that of osteoblasts, leading to an

increase in the expression of regulatory proteins like Runx2, Osterix,

Msx2, and Sox9. Additionally, these cells release mineralized MVs

while reducing the presence of endogenous calcification inhibitors

within these vesicles, such as MGP (16–18). Moreover, VSMCs

produce alkaline phosphatase (ALP), which deactivates the

mineralization-inhibiting effects of pyrophosphate, releasing free

phosphate that serves as a building block for VC (19).

Recent advancements highlight abnormalities in epigenetic

modifications (such as DNA methylation, histone modifications,

and noncoding RNAs), ferroptosis of VSMCs, autophagy

dysfunction, and senescence as active participants in the cellular

processes leading to VC (12, 20, 21). Extensive studies have delved

into the involvement of senescent vascular cells, including VECs,

VSMCs, and macrophages, in propagating senescence through

paracrine mechanisms (e.g., SASP and MV) (22–24). Through
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immunostaining and analysis of protein expression in abdominal

aortic samples from 61 kidney transplant recipients, it was disclosed

that CKD patients exhibiting coronary artery calcification, showed

notably elevated levels of p16. Remarkably, the count of cells

displaying both p16 and SA-b-Gal-positivity exhibited a positive

correlation with the severity of medial calcification in CKD (25).

Furthermore, eliminating senescent cells yielded significant

reductions in aortic aging markers and osteogenic marker, osterix

(26). The burden of senescent cells may drive the VC process.
3 Cellular senescence

Cellular senescence forms the cornerstone of organismal aging.

Professor Leonard Hayflick’s breakthrough discovery in the 1960s

revealed that human diploid cells, when cultured in vitro, possess a

finite capacity for proliferation, eventually culminating in an

irreversible state of growth arrest irrespective of culturing

conditions. This phenomenon, termed cellular senescence, defines

the maximum number of cellular divisions, referred to as the

Hayflick limit (27, 28). Cellular senescence entails the irreversible

and enduring cessation of cell division, accompanied by observable

morphological alterations such as cell flattening, expanded

cytoplasm, and nucleus changes. Cellular senescence is currently

divided into two main categories: replicative senescence (RS) and

stress-induced premature senescence (SIPS). Replicative senescence

occurs during normal physiological processes when cells

continuously replicate, leading to telomere shortening and cell

exit from the cell cycle, which also represents a cause for the

Hayflick limit. However, replication is not the only factor causing

telomere shortening, environmental stress can indeed lead to

telomere shortening (29). SIPS refers to aging that occurs in cells

before the Hayflick limit in response to various environmental

stimuli. Stimulating factors include excessive activation of

oncogenes, loss of tumor suppressor factors, damage to DNA or

chromosome structures, mitochondrial dysfunction, oxidative

stress, wound healing, various cytokines, and intercellular signal

transduction (30). This process is also marked by the expression of

the senescence-associated secretory phenotype (SASP), which

bridges cellular senescence with tissue dysfunction and

organismal aging (27, 31). The SASP components exhibit strong

autocrine activity and can also transmit senescence via paracrine

signaling to adjacent cells. This characterization creates an pro-

inflammatory microenvironment, resulting in a persistent low-level

chronic inflammation, a state known as inflammaging, and causing

age-related diseases (32). Indeed, senescent cells play a dual role:

they not only generate a pro-inflammatory microenvironment

primarily through the senescence-associated SASP but also

impede stem cell proliferation and regeneration. This dual action

serves to blunt the tissue regeneration and repair processes, further

complicating the overall health and recovery mechanisms (33). On

one hand, senescent cells display anti-proliferative attributes that

prevent the propagation of damaged cells, thus averting the

development of potential malignant cells. Additionally, senescent

cells release SASP factors that extend senescence to neighboring
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healthy cells while recruiting immune cells for removal (34). On the

other hand, senescent cells express BCL-2 family proteins that

confer resistance to apoptosis (35), allowing them to amass within

the body as age advances, and ultimately leading to the progression

of age-related diseases.

Targeting the elimination of senescent cells as a strategy to

alleviate age-related diseases has been a focal point for scientists.

The use of senolytics, a cocktail designed to selectively clear

senescent cells, has shown promising outcomes. By reducing the

number of senescent cells, this approach not only ameliorates

physical dysfunction but also decreases mortality hazard and

enhances healthspan, providing direct evidence that cellular

senescence is a causative factor in age-related diseases (36). In the

field of Geroscience, researchers advocate for a shift in perspective

by focusing on the aging process itself rather than individual

diseases. This approach holds the potential to delay or even halt

the development of age-related diseases (37). However, the

complexity of cellular senescence poses challenges, particularly in

identifying specific biomarkers for senescent cell detection.

Researchers have made strides in this regard, developing tools

such as DNAm PhenoAge, inflammatory aging clock (iAge), and

others, to predict physiological age. Since the introduction of the

epigenetic clock by Prof. Horvath (38–40), various methods

combining multiple markers have been employed to confirm the

occurrence of cellular senescence at the cellular level. These

markers encompass senescence-associated b-galactosidase
(SA-b-gal), cell cycle-dependent protein kinase inhibitors (p16,

p21, p53), cell proliferation indicators (Ki67), senescence-

associated heterochromatin foci (SAHF), DNA damage response,

and SASP (41–43). The cell cycle arrest that characterizes cellular

senescence is primarily governed by the p53/p21 and p16/RB

pathways (44, 45). Notably, p53 functions upstream of p21, while

p16 and p21 belong to the cyclin-dependent kinase inhibitor

(CDKI) family, inhibiting cyclinD-CDK4/6 and cyclinE/A-CDK2,
Frontiers in Endocrinology 04
respectively. This action binds minimally phosphorylated RB

closely to E2F, halting cells in the G1 phase (46) (Figure 1). It is

important to acknowledge that p21 is mainly expressed in the early

stages of senescence induction and does not persist, while p16 is not

highly expressed in all senescent cells (49–51). While SASP is a

prevalent feature of senescent cells, its composition is not entirely

fixed. Components of SASP differ due to variations in cell

characteristics, stimulus methods, and senescence duration (52).

Nevertheless, the significance of employing a combination of

multiple markers to identify cellular senescence cannot be

emphasized enough.

4 Role of cell senescence in vascular
calcification: insights from chronic
kidney disease

In 1989, Professor Virchow first introduced a captivating

discovery: individuals suffering from CKD manifest the same

pathological transformations of medial calcification commonly

observed in the elderly population (53). Foley et al. made a

comparable observation regarding vascular traits among young

hemodialysis patients, likening them to those found in individuals

in their eighties and nineties (54). A study featured in NEJM in 2000

disclosed that the occurrence of VC among young hemodialysis

patients aged 20 to 30 years reached a staggering 87.5% (14 out of

16), markedly surpassing the corresponding age group in the

general population (3.3%, 2 out of 60) (55). Furthermore, Girndt

et al. proposed that the extent of VC could serve as an indicator of

an individual’s biological age (2). Collectively, these findings

indicate an accelerated vascular aging progress in CKD patients.

In the realm of CKD, a milieu defined by the presence of uremic

toxins, inflammatory processes, and oxidative stress persists,

impervious even to renal transplantation. This environment fosters
FIGURE 1

Regulation of cell cycle and senescence pathways. During cell division, cyclin and CDK combine forming a cyclin-CDK complex that initiates the
downstream phosphorylation of RB. The phosphorylated RB then disengages the transcription factor E2F from the RB-E2F complex, facilitating DNA
transcription and propelling the cell cycle into the S phase. CDKI can inhibit this process. Cell cycle arrest during cellular senescence primarily hinges
on the p53/p21 and p16/RB pathways (47, 48), p53 acts as an upstream regulator of p21, while both p16 and p21 belong to the CDKI family. These
members inhibit cyclinD-CDK4/6 and cyclinE/A-CDK2, respectively, tightly tethering low-phosphorylated RB to E2F and halting cells in the G1
phase. CDK, cyclin-dependent kinase, CDKI, cyclin-dependent kinase inhibitor.
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a state of premature aging, a condition further exacerbated by

hemodialysis, which accelerates telomere attrition (56, 57). Within

this complex scenario, the burden of senescent cells emerges as a

substantial factor contributing to VC in the CKD milieu. Notably,

interventions aimed at eliminating senescent cells using genetic

approaches or dasatinib plus quercetin (D+Q) yielded significant

reductions in aortic aging markers and calcification in aging and

atherosclerotic mice. This was accompanied by a downregulation of

the osteogenic marker, osterix (26). Furthermore, the pro-

inflammatory secretome (SASP) derived from senescent cells has

been found to elevate in both uremic mouse models and patients

(58, 59). However, the direct impact of SASP on vascular cells

remains underexplored, with potential mechanisms possibly

involving the propagation of senescence or amplification of

localized inflammation. However, numerous studies have shown

that sirtuins, histone deacetylases, or known as the family of

longevity proteins, play a protective role in VC. For example,

sirtuin 6 mediated the deacetylation of Runx2, which subsequently

facilitated its nuclear export via exportin 1 (XPO1). This event

eventually triggered the degradation of Runx2 through the

ubiquitin-proteasome system, thereby inhibiting the osteogenic

transdifferentiation of VSMCs (60). Additionally, sirtuin 1 was

upregulated by spermidine, thus alleviating VC in CKD (61).

Moreover, compelling evidence suggests a decline in nicotinamide

adenine dinucleotide (oxidized form, NAD+) levels in both CKD and

acute kidney injury (AKI). This molecule plays a pivotal role as a

coenzyme in crucial cellular metabolic activities. The

supplementation of its precursor, nicotinamide mononucleotide

(NMN), has demonstrated positive effects on physical endurance

and the maintenance of biological age (62). The popularity of NMN is

significant due to its potential to activate longevity proteins, improve

mitochondrial metabolism, and contribute to the repair of damaged

DNA. In the near future, there is hope that NMN could become a

promising choice for extending healthy lifespan. Furthermore,

nuclear factor erythroid 2-related factor 2 (NRF2) has emerged as a

proposed protective factor against calcification and aging. Its

transcriptional suppression of pro-inflammatory genes and

antioxidant effects contribute to its role in mitigating these

processes (63).

Senescent cells are not quiescent, nonfunctional and may be

continuously releasing inflammatory mediators, microparticles,

etc., affecting the level of transcription, post-transcriptional

regulation, translation, and metabolism by autocrine/paracrine

means, which in turn affects phenotypic transformation and

microenvironmental niche on itself or adjacent cells, resulting

acceleration of calcification. The intricate association between

aging and VC implies that delving deeper into their interaction

could potentially pave the way for novel avenues in diagnosing and

treating VC.
5 Role of vascular cell senescence in
vascular calcification

Both VECs and VSMCs constitute essential cellular

components residing within the intimal and medial layers of
Frontiers in Endocrinology 05
blood vessels, respectively. The adventitial layer, on the other

hand, is comprised of a diverse array of cells, fibroblasts,

lymphocytes, vascular progenitors/stem cells, pericytes, and

primarily monocytes/macrophages-based immune cells. This rich

composition could potentially open novel avenues for advancing

the diagnosis and treatment of VC. A growing body of evidence is

highlighting the pivotal role played by adventitial cells in blood

vessel remodeling and the maintenance of vascular homeostasis

(64, 65). Interestingly, adventitial fibroblasts (AFs) exhibit the

remarkable ability to transdifferentiate into VSMCs in response to

microenvironmental cytokines, subsequently migrating to the

luminal side of the vessel (66). Recent advancements have shed

light on the role of exosomes derived from AFs, predominant cells

in the adventitia. These exosomes expedite VSMC calcification by

delivering miR-21-5p, which, in turn, inhibits cysteine-rich motor

neuron 1 (Crim1) (67). Conversely, adventitial pericytes (APC)

counteract calcification by triggering an anti-calcific effect through

the upregulation of microRNA-132-3p (68). Cells constitute the

fundamental constituents of tissues, organs, and organisms. And it

is the progression of cellular senescence that propels the aging

process across these levels.
5.1 Role of vascular endothelial cell
senescence in vascular calcification

VECs adeptly sense a myriad of stimuli coursing through the

bloodstream and promptly respond, upholding vascular

equilibrium via autocrine or paracrine mechanisms. These

mechanisms play a role in regulating diverse functions, including

blood pressure maintenance, promotion of angiogenesis, and

coagulation regulation (69). In the complex landscape of CKD,

characterized by heightened inflammation, oxidative stress,

leukocyte migration, adhesion, cell death, and the emergence of a

thrombotic phenotype, an array of circulating molecules holds sway

over endothelial equilibrium These molecules exert their influence

through frequently activated cellular signaling pathways, including

ROS, MAPK/NF-kB, Aryl-Hydrocarbon Receptor, and RAGE

pathways (70). A noteworthy phenomenon within this milieu is

the endothelial-to-mesenchymal transition (EndMT) of VECs. This

transition involves endothelial cells adopting a mesenchymal-like

state, providing a conceptual link to the generation of osteogenic

cells that contribute to VC. Wang et al. proposed that EndMT

induced by Parathyroid hormone (PTH) plays a role in VC through

the miR-29a-5p/GSAP/Notch1 pathway in CKD rats (71). Notably,

indoxyl sulfate (IS) and sulfate paracresol emerge as significant

players, hastening the senescence of endothelial cells and

undermining their functional integrity (72). Senescent VECs

exhibit a distinctive profile characterized by reduced expression of

nitric oxide (NO) and an elevation in reactive oxygen species (ROS)

(73). Moreover, the accumulation of senescent VECs suppresses the

expression of adherens junction proteins and compromises the

endothelial migration potential in non-senescent VECs (74). This

intricate interplay underscores the impact of senescence on the

functional and molecular dynamics within the endothelial

environment. Given the spatial proximity of endothelial cells and
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VSMCs, an intriguing query arises: could endothelial cells,

especially senescent ones, exert an impact on VSMC calcification?

Intriguing in vitro findings add credence to this question. Under

high glucose stimulation, endothelial cells have been observed to

release exosomes housing Notch3 or versican proteins. This, in

turn, triggers senescence and calcification in VSMCs (10, 11).

Further studies reveal that senescent endothelial cells possess the

ability to attract monocytes to the endothelium and induce the

proliferation and migration of VSMCs (47). Additionally,

the release of microvesicles (MVs) from senescent endothelial

cells emerges as a key factor driving VSMC senescence and

calcification. Noteworthy is the intervention using IS on human

umbilical vein endothelial cells (HUVECs), which results in EC

senescence and subsequent MV release. These MVs are identified as

the primary instigators behind human aortic smooth muscle cells

(HASMCs) calcification, coupled with the upregulation of pro-

inflammatory factors (22). Furthermore, the influence of senescent

endothelial cells and their derived MVs does not end there.

Examination of plasma from elderly individuals and MVs sourced

from senescent HUVECs underscores their promoting effect on

HASMC calcification. These MVs are characterized by the

upregulated expression of membrane-associated proteins A2, A6,

and BMP2 (48).
5.2 Role of vascular smooth muscle cell
senescence in vascular calcification

The transformation of VSMCs into osteogenic phenotypes stands

as a pivotal cellular mechanism underlying VC (75). When VSMCs

undergo senescence, they adopt a pro-calcification and osteogenic

phenotype (76, 77). Microarray analysis of senescent VSMCs

cultured in vitro unveiled distinct gene expression patterns related to

VC including bonemorphogenetic protein-2 (BMP-2), osteoprotegerin

(OPG), osteopontin (OPN), secreted phosphoprotein 1 (SPP1), and

matrix Gla protein (MGP) (76). Senescent VSMCs exhibit upregulation

of RUNX2, while knockdown of RUNX2 resulted in a significant

reduction of osteoblast markers, as well as in calcification (77).

Furthermore, senescent VSMCs exhibit the expression of MMP9 and

SASP, which in turn triggers adjacent ECs and VSMCs to assume a

pro-adhesive and pro-inflammatory state. This cascade contributes to

the establishment of chronic vascular inflammation (78).

Within the context of CKD, VSMCs encountered by patients

face an array of pro-calcification environments. These include

reactive oxygen species (ROS), elevated calcium and phosphate

levels, and the influence of uremic toxins. This multifaceted assault

can induce DNA damage in VSMCs. If left unresolved, persistent

DNA damage prompts VSMCs to enter a state of senescence. The

release of SASP, including BMP2, IL-6, and OPG, by senescent cells

further spurs VSMCs toward osteogenic differentiation (23).

Notably, the uremic toxin IS triggers upregulation of p21, p53,

and nuclear lamin A in VSMCs through pathways driven by

oxidative stress (79). The landscape of molecular mechanisms

associated with VSMC senescence-induced calcification is
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intricate and multifaceted. For instance, the downregulation of

microRNA-34a culminates in the inhibition of Sirtuin1 and the

AXL receptor tyrosine kinase, thereby promoting both VSMC

senescence and calcification (80, 81). Another intriguing facet is

the involvement of long non-coding RNA (lncRNA) ES3, which

binds to Bhlhe40. This interaction effectively silences multiple small

interfering RNAs and subsequently ushers in the era of VSMC

senescence and calcification (82).
5.3 Role of vascular progenitor/stem cell
depletion in vascular calcification

The adventitia hosts an array of vascular progenitor/stem cells,

encompassing mesenchymal stromal cells (MSCs), AFs, and

pericytes. These vascular progenitor/stem cells exhibit a versatile

potential for differentiation, capable of transforming into VECs and

VSMCs. They play a pivotal role in vascular repair and remodeling

following vascular injury and in the replenishment of senescent

cells. The emergence of MSCs has ignited optimism within

regenerative medicine, due to their remarkable attributes such as

ease of procurement, isolation, immune regulation, and multi-

lineage differentiation capabilities (83). Notably, MSC-derived

extracellular vesicles (EVs) have demonstrated the ability to

alleviate VEC senescence through microRNA-146a, thereby

diminishing SASP expression while stimulating angiogenesis (84).

Stem cell senescence is also a prominent theory of organismal aging

(10). The depletion of vascular progenitor/stem cells can engender a

decline in the self-renewal potential of VECs and VSMCs,

potentially setting the stage for vascular aging and the

jsubsequent advancement of age-associated vascular disorders (85).

Similar to senescent cells, senescent MSCs undergo distinct

morphological alterations characterized by flattening and

enlargement . Concomitant ly , the ir prol i ferat ion and

differentiation capacities wane (83). Senescent MSCs also express

pro-inflammatory SASP, which inhibits the proliferation of

hematopoietic stem cells, thus expediting their premature

senescence (86). This, in turn, indirectly participates in the aging

and calcification trajectory of blood vessels. Senescent AFs, akin to

their cellular counterparts, release SASP laden with pro-

inflammatory and pro-tissue degradation factors, thus

perpetuating the senescence phenomenon (87). Aged AFs exhibit

significant differential expression of pro-inflammatory and

osteogenic genes via transcriptional analysis (88). Moreover, in

patients with calcification associated with rheumatoid arthritis, the

circulating osteogenic endothelial progenitor cells (EPC) are related

to vascular aging, encountering a decline in both number and

differentiation potential, culminating in hastened cellular

senescence (89, 90). A distinct viewpoint is proposed by Wu

et al., indicating that the proliferative and anti-apoptotic

capabilities of aged adipose stem cells tend to outshine those of

bone marrow stem cells (91). Consequently, adipose-derived stem

cells may offer greater suitability for autsue and organismal aging,

and chronic age-related conditions. Recent research underscores
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the potential of inhibiting the immune checkpoint protein

programmed death-ligand 1 (PD-L1) in senescent cells. Such

intervention appears to ameliorate the inflammatory state and

mitigate age-related manifestations (92). Zhang et al. found that

senescence characteristics of hematopoietic stem cells can be

reversed and their long-term multilineage reconstitution capacity

restored by harnessing matrix stiffness (93). In addition, senescent

cells do not invariably induce detrimental effects, indeed, p16INK4a+

fibroblasts can actually foster the regeneration of epithelial stem

cells (94). Although research on the role of vascular progenitor/stem

cell senescence in VC remains limited, delving deeper into this

avenue could yield strategies for anti-aging therapies aimed at

postponing calcification processes. This unexplored territory

holds promising potential for shedding light on the intricate

intersections of senescence, vascular health, and aging-

related outcomes.
5.4 Role of macrophage senescence in
vascular calcification

Immunosenescence, the progressive decline in immune

function with age, represents a causal contributor to systemic

aging (95). This phenomenon is marked by a shift in immune cell

differentiation, favoring myeloid lineage development while

diminishing lymphoid lineage differentiation (96). As a result,

immune cells experience a reduced ability to effectively clear

senescent cells from the body, leading to the accumulation of

these aged cells. Consequently, the role of immune cell senescence

in age-related diseases has garnered substantial attention.

As mentioned above, specific components of the SASP are adept

at recruiting immune cells. Significant contributors such as IL-6, IL-

7, IL-8, IL-1a, IL-1b, TNF-a, macrophage colony-stimulating

factor (M-CSF), G-CSF, and granulocyte-macrophage colony-

stimulating factor (GM-CSF) exert their influence, drawing in a

range of immune players including macrophages, granulocytes,

neutrophils, and T lymphocytes (97). Immunosenescence results

may lead to myeloid lineage bias, prompting us to consider that

macrophages might indeed hold a central position in the realm of

aging-related diseases. This notion finds its roots in the theory of

inflamm-aging, which initially highlighted the pivotal role

of macroph-aging – the gradual activation of macrophages as

time advances (98). Macrophages, critical constituents of innate

immunity, exhibit a tendency to shift from an anti-inflammatory

M2 phenotype to a pro-inflammatory M1 phenotype with

advancing age (99), and subsequently promote VSMCs

calcification by sitimulating carbonic anhydrase I (CA1) and CA2

via secreting TNFa, or NLRP3 inflammasome (100, 101). Calcified

smooth muscle cells induce the differentiation of macrophages into

osteoblasts through RANKL, fostering a positive feedback loop that

promotes VC (102). In a dystrophic muscle pathology model, the

accumulation of pro-inflammatory M1 macrophages at ectopic

calcification sites was evident. This accumulation was

accompanied by the upregulation of senescence markers such as

p21, C12FDG, and SASP (24). However, the specific molecular
Frontiers in Endocrinology 07
mechanisms by which senescent macrophages induce VC remain

unclear, and require further investigation.
6 Summary and conclusions

Throughout the extensive trajectory of human evolution,

cellular senescence emerges as the ultimate choice of cells when

confronted with diverse physical and chemical stimuli, carefully

weighing the pros and cons. While it acts as a brake on the

proliferation of aberrant cells, it concurrently propels the

advancement of age-related diseases. Notably, cardiovascular

incidents and mortality rates maintain a distressingly high

presence in patients with CKD. Within this context, the process

of vascular premature senescence stands as a pivotal player in the

intricate symphony of calcification. This article mainly focused on

the multifaceted role of senescence across various vascular cell

types, encompassing endothelial cells, vascular smooth muscle

cells, vascular progenitor/stem cells, and macrophages. The

ultimate aim is to distill the current corpus of literature,

culminating in an informative synthesis that paves the way for

prospective endeavors in the realm of anti-aging therapies,

specifically designed to counteract and alleviate the menace of VC.

Senolytics, such as D+Q, fisetin (103), and procyanidin C1

(PCC1) (104), among others, have experienced continuous

expansion and have even entered clinical trials since Professor

Kirkland and colleagues discovered the anti-aging effects of D+Q

in 2015 (105). Currently, D+Q appears to be the most promising

agent (106, 107). However, it is noteworthy that many senolytics

operate by suppressing antiapoptotic signal pathways in senescent

cells, potentially increasing the risk of off-target effects on healthy

tissues. To address this concern, chimeric antigen receptor (CAR)

T cells have shown promise in selectively and effectively removing

senescent cells by identifying proteins broadly induced in these

cells (108, 109). Additionally, Senolytic vaccination, targeting

glycoprotein nonmetastatic melanoma protein B (GPNMB), has

successfully extended lifespan) in progeroid mice (about 20%)

(110). The challenge lies in the variations in aging characteristics

among species, individuals, organs, and even cells. Tailoring anti-

aging regimens specifically to senescent cells is a future direction

of exploration in this field. Despite these challenges, the

development of a gene set (SenMayo) has made it possible to

identify senescent cells in vivo. Moreover, the application of deep

learning to discover senotherapeutics holds promise for the future

(111, 112).
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