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Introduction: Iron accumulation in the brain has been linked to diabetes, but its

role in subcortical structures involved in motor and cognitive functions remains

unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive

quantification of iron deposition in the brain. This systematic review and meta-

analysis examined magnetic susceptibility measured by QSM in the subcortical

nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls.

Methods: PubMed, Scopus, and Web of Science databases were systematically

searched [following Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray

matter (DGM) regions of patients with T2DM and controls. Pooled standardized

mean differences (SMDs) for susceptibility were calculated using fixed-effects

meta-analysis models, and heterogeneity was assessed using I2. Sensitivity

analyses were conducted, and publication bias was evaluated using Begg’s and

Egger’s tests.

Results: Six studies including 192 patients with T2DM and 245 controls were

included. This study found a significant increase in iron deposition in the

subcortical nuclei of patients with T2DM compared to the control group. The

study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to

0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00)

but weak associations between increased iron levels in the caudate nucleus

(SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI

0.00 0.44, p = 0.05). No statistical significance was found for iron deposition

alterations in the globus pallidus (SMD = 0.19; 95% CI −0.01 to 0.38; p = 0.06) and

substantia nigra (SMD = 0.12, 95% CI −0.10, 0.34, p = 0.29). Sensitivity analysis

showed that the findings remained unaffected by individual studies, and

consistent increases were observed in multiple subcortical areas.
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Discussion: QSM revealed an increase in iron in the DGM/subcortical nuclei in

T2DM patients versus controls, particularly in the motor and cognitive nuclei,

including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus,

QSMmay serve as a potential biomarker for iron accumulation in T2DM patients.

However, further research is needed to validate these findings.
KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder that is

characterized by elevated blood glucose levels (1). Sun et al. (2022)

estimated that in 2021, approximately 10.5% (equivalent to 536.6

million individuals) of people aged 20–79 years were affected by

diabetes worldwide. This figure is projected to increase to 12.2%

(equivalent to 783.2 million individuals) by 2045 (2). In addition to

its well-established impact on systemic health, diabetes has been

increasingly linked to a wide range of complications affecting

various organ systems (3, 4). Among these, the implications of

diabetes on neurological health have attracted considerable

attention (5). The intricate relationship between diabetes and

neurological disorders has sparked extensive research aimed at

elucidating the underlying mechanisms and potential biomarkers

associated with this complex interaction (6).

Although the impact of diabetes on cognitive function and the

development of neurodegenerative conditions has been explored,

the assessment of iron accumulation in the subcortical or deep gray

matter (DGM) nuclei of the brain, such as the basal ganglia, is

relatively uncharted (7–9). Iron, a crucial element in various

neurophysiological processes, plays a vital role in brain functions

(10). However, excessive iron accumulation or deposition can have

detrimental consequences including oxidative stress and

neurodegeneration (10–12).

Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic

disorder characterized by pancreatic b-cell damage, hyperglycemia,

insulin resistance, and insufficient insulin production (8, 13). This

condition is intricately associated with cognitive decline, affecting

various aspects such as executive function, memory, attention, and

visuospatial abilities (8, 14–16), and manifests as structural brain

alterations, such as atrophy and iron accumulation (16, 17). The

perturbation of insulin signaling exacerbates the distribution of iron

in neuronal tissues, resulting in neuronal iron overload and

potential complications including neuropathy (18). Furthermore,

T2DM is implicated in the genesis of diverse comorbidities and

complications including iron deficiency anemia (IDA) (19). Iron
02
metabolism parameters undergo modifications due to the influence

of T2DM, leading to changes such as elevated ferritin and hepcidin

levels (19). Notably, serum ferritin levels exhibit a discernible

association with T2DM (13). Increased hepcidin production in

the brain has the potential to impede iron release from

macrophages, thereby contributing to iron deposition in the brain

(20, 21).

Recent advances in neuroimaging techniques have opened new

possibilities for the non-invasive monitoring and quantification of

brain iron levels (22, 23). Quantitative susceptibility mapping

(QSM) is an advanced magnetic resonance imaging (MRI)

technique that is a powerful tool for this purpose (23–25). QSM

allows for precise measurement of the magnetic susceptibility (c) of
tissues, including those of the brain (26, 27). It has shown great

promise in assessing iron concentrations within various brain

structures, offering a potential window into the neurological

complications associated with DM (17, 28).

The DGM nuclei and basal ganglia, including the putamen

(PUT), globus pallidus (GP), caudate nucleus (CN), red nucleus

(RN), substantia nigra (SN), and the largest deep cerebellar cluster

of neurons such as the dentate nucleus (DN), which are particularly

susceptible to iron overload owing to their high metabolic activity,

have become a region of interest (ROI) in diabetes-related

neuroimaging studies (29–31). These nuclei play crucial roles in

motor control, cognition, and emotion regulation (32, 33).

Understanding the implications of iron accumulation in these

structures in T2DM patients can provide valuable insights into

the neurological manifestations of the disease (17, 28).

Therefore, it is essential to undertake a systematic review and

meta-analysis to consolidate the current body of literature on QSM

to delineate iron accumulation within DGM structures specific to

T2DM. This systematic investigation is critical for assessing the

viability of QSM as a potential biomarker for T2DM, shedding light

on the depth and distribution of iron deposition. The results of this

analysis will contribute significantly to refining our understanding

of the intricate relationship between iron dynamics and

neurodegenerative processes in T2DM.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1331831
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mohammadi et al. 10.3389/fendo.2024.1331831
2 Methods

2.1 Search strategy

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) was used (34). The PubMed, Scopus, and Web

of Science databases were systematically searched to identify

relevant studies published between 2000 and September 2023.

The reference lists of eligible studies were manually searched to

identify additional relevant publications through a citation search.

The search strategy included a combination of terms related to

quantitative susceptibility mapping and diabetes mellitus. The

following search terms were used: “quantitative susceptibility

mapping”, “diabetes mellitus”, and “brain”. The syntax search

strategy was adapted for PubMed, Scopus, and Web of Science

before searching these databases (Supplementary Table 1).
2.2 Eligibility criteria

The study developed its inclusion and exclusion criteria and

research questions using the Population, Exposure, Comparison,

and Outcome (PECO) framework. All studies that assessed changes

in magnetic susceptibility in the DGM (Outcome) using QSM

(Exposure) in individuals with T2DM (Population) and Controls

(Comparison) were eligible for inclusion without any language

restrictions. The exclusion criteria included in vitro and in vivo

investigations, books, letters, notes, editorials, surveys, case reports

and series, and reviews. Furthermore, studies with findings not

related to QSM (utilization of other quantitative MRI techniques,

such as R2*) and studies that were not specifically focused on QSM

were also excluded.
2.3 Screening and study selection

Titles and abstracts were screened by S.G. to identify studies

that utilized QSM in T2DM to quantify iron in the DGM nuclei,

including the PUT, GP, CN, RN, SN, and DN. S.G. and S.M.

independently conducted the selection process, and any

disagreements were resolved through discussion. The full texts

were screened by two independent reviewers (S.G. and S.M.) to

identify the studies that met the eligibility criteria. Any

disagreements were resolved through discussion.
2.4 Data extraction and quality assessment

Two authors (S. G. and S.M.) collected data extracted from each

study. The main data extraction process was organized into several

major subdivisions that met the eligibility requirements. The most

important factors to note are the characteristics of the study,

including the first author’s name and publication year, country of

the first author’s affiliation, field strength, coil channels, subjects

(patients and controls), DGM nucleus QSM values (formerly

noted), and the main findings. The Newcastle–Ottawa scale
Frontiers in Endocrinology 03
(NOS) was used by two authors to independently assess quality

and evaluate selection, comparison, and outcome biases (35–37).

The study was classified from 0 to 9, with a score of 4 indicating a

high bias risk, a score of 5–6 indicating a moderate bias risk, and a

score of 7 indicating a low bias risk (25).
2.5 Meta-analysis

This systematic review and meta-analysis was performed to

compare the iron concentrations in patients with T2DM and

controls using the QSM method in different regions of the

subcortical nuclei using Stata version 17 (Stata Corp, College

Station, TX, USA). After data extraction, a meta-analysis was

performed to determine whether adequate data were available for

a specific region. The standardized mean difference (SMD) between

the patient and control groups was used to analyze iron levels. The

cut-off values set by Cohen’s d were used to interpret the low,

moderate, and high effect sizes (0.2, 0.5, and 0.8, respectively).

Analyses were performed using a fixed-effects model. I2 statistics

were used to assess heterogeneity, and values greater than 50% were

considered to indicate moderate to high heterogeneity. Publication

bias was visually inspected using funnel plots and quantitatively

investigated using Begg’s and Egger’s tests (38, 39). In addition, a

sensitivity analysis was performed to assess the effect of excluding

each investigation from the combined outcomes.
3 Results

3.1 Overview of results

Six studies including 192 patients with T2DM and 245 controls

were included in this systematic review and meta-analysis

(Figure 1). The basic characteristics and QSM values of the

included studies are summarized in Table 1. All six studies were

cross-sectional in design and published between 2018 and 2023.

They were conducted in Asian populations, with five studies from

China and one from South Korea. Magnetic field strengths of 3T

were used in all studies. QSM values have been reported for various

subcortical and DGM nuclei, including the PUT, GP, CN, RN, SN,

and DN.
3.2 Meta-analysis and quality
assessment results

The systematic review and meta-analysis demonstrated a

significant increase in iron deposition, as measured by QSM, in

the subcortical nuclei, including the PUT, CN, and DN, in patients

with T2DM compared with controls (Table 2, Figure 2). Specifically,

the pooled SMD showed a moderate increase in iron in the PUT

(SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and the DN (SMD =

0.56, 95% CI 0.27 to 0.85, p = 0.00) in T2DM patients versus

controls. A weak association was found between increased iron

levels in the CN (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and the
frontiersin.org
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RN (SMD = 0.22, 95% CI 0.00 to 0.44, p = 0.05) of T2DM patients

and controls. Iron deposition alteration in the GP (SMD = 0.19;

95% CI −0.01 to 0.38; p = 0.06) and the SN (SMD = 0.12, 95% CI

−0.10, 0.34, p = 0.29) between T2DM patients and controls showed

no statistical significance. Heterogeneity ranged from low to

moderate in the brain regions. The overall findings remained

largely unaffected by any of the individual studies as per the

sensitivity analysis (Supplementary Figure 1). The methodological

quality of the included studies was assessed using NOS scores

ranging from 8 to 9 stars, indicating good overall quality of the

included studies.

Subgroup analysis is commonly used to determine the

source of heterogeneity and evaluate differences in effect sizes

between subgroups. However, in our study, heterogeneity was

inconsiderable. Furthermore, owing to the limited number of

studies and the similarity of most characteristics among the

included studies, such as geographic distribution, field strength,

disease type, magnetic susceptibility measurement method, and

methodological quality assessment, subgroup analysis was not

deemed necessary for our study.
3.3 Publication bias analysis

Begg’s funnel plot in Figure 3 showed no publication bias (p =

0.348), which was also confirmed by Egger’s test (p = 0.305). The
Frontiers in Endocrinology 04
authors used Egger’s funnel plot and Begg’s test to assess the

publication bias of the selected articles, where p < 0.05 indicated

a significant publication bias. The authors analyzed publication bias

using linear regression analysis, which included intercept and slope

parameters. This was calculated using the formula yi = a + bxi + ϵi
(1) i = 1 ··· r (r = the number of studies), where yi is the standardized

estimate, xi is the precision of studies, and ϵi is the error term.
4 Discussion

The occurrence and development of T2DM can be directly or

indirectly influenced by iron metabolism. Previous evidence has

linked diabetes with elevated serum ferritin levels, which is a risk

factor for T2DM (21). High iron levels can have negative effects on

key aspects of T2DM, such as insulin secretion, insulin resistance,

and glucose production in the liver (42). This is true even when iron

levels are within the normal range or in cases of excessive

accumulation. Although previous evidence has shown that iron

overload increases the risk of T2DM and cognitive impairment (16,

42), our meta-analysis revealed that T2DM patients have more iron

deposition in the DGM. This may be due to the reciprocal effects of

T2DM and iron overload/accumulation (13, 43, 44).

Iron plays a crucial role in metabolic processes and regulation,

determining metabolic rates, glucose production, oxygen transport,

protein synthesis, fuel utilization, muscle oxygenation, insulin
FIGURE 1

PRISMA flow diagram for systematic review. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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TABLE 1 Study characteristics and QSM values for deep gray matter nuclei in type 2 diabetes mellitus and controls.

trols PUT
(P)

QSM
value
± SD

PUT
(C)
QSM
value
± SD

GP (P)
QSM
value
± SD

GP (C)
QSM
value
± SD

CN (P)
QSM
value
± SD

CN (C)
QSM
value
± SD

RN (P)
QSM
value
± SD

RN (C)
QSM
value
± SD

SN (P)
QSM
value
± SD

SN (C)
QSM
value
± SD

DN (P)
QSM
value
± SD

DN (C)
QSM
value
± SD

7 28.46
± 11.21

24.98
± 11.05

113.02
± 42.46

100.26
± 48.23

16.42
± 6.00

12.67
± 6.34

60.35
± 27.84

53.06
± 33.28

113.74
± 76.2

115.85
± 79.24

NR NR

4 114.25
±

21.165

103.60
± 8.03

194.15
± 20.18

182.32
± 9.44

89.77
±

11.571

89.90
± 6.90

178.70
± 20.05

169.85
± 16.81

194.38
± 22.60

186.68
±

11.192

155.11
± 16.96

147.34
± 11.48

2 110.36
± 23.92

95.54
± 33.36

183.20
± 44.64

186.54
± 48.46

94.02
± 18.77

80.21
± 23.18

164.02
± 37.45

145.53
± 43.31

166.41
± 45.93

156.87
± 38.16

129.10
± 34.91

106.12
± 41.18

4 52.55
± 16.86

38.66
± 19.08

121.72
± 29.54

109.33
± 36.03

28.03
± 10.99

25.17
± 12.46

168.55
± 37.11

179.18
± 36.59

177.43
± 40.58

179.60
± 42.89

NR NR

2 121.6
± 25.37

96.43
± 25.03

198.78
± 42.08

196.18
± 43.51

94.89
± 44.18

88.29
± 22.01

179.18
± 36.59

168.55
± 37.11

179.93
± 42.89

177.38
± 40.58

129.96
± 33.86

108.02
± 41.98

6 122.95
± 44.02

114.64
± 36.95

148.94
± 55.97

148.22
± 55.64

96.75
± 27.89

88.83
± 26.84

NR NR NR NR NR NR

, putamen; QSM, quantitative susceptibility mapping; RN, red nucleus; SN, substantia nigra; T2DM, in type 2 diabetes.
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effectiveness, deoxyribonucleic acid (DNA) synthesis, and the

characteristics of fat cells (16, 42, 45). Although iron is necessary

for neurotransmitter synthesis and mitochondrial function, its

excessive accumulation can lead to various diseases, including

oxidative stress, diabetic retinopathy, neuronal damage, chronic

inflammation, and abnormal glucose and lipid metabolism (10, 16,

46–49).

Previous studies have established a significant link between

excessive iron accumulation in the body and the risk of developing

T2DM (50). High iron levels can be a risk factor for T2DM and its

complications (16, 51–56). Notably, diabetes has also been

associated with increased iron accumulation in the brain through

multiple mechanisms (16). Elevated levels of iron have been noted

in neurodegenerative diseases and disorders (57–60), and excessive

iron accumulation could be a significant focus in the treatment of

T2DM, as it contributes to and exacerbates damage to the central

nervous system (CNS) (16).

Disruption of insulin signaling is one of the primary factors that

can lead to impaired iron metabolism and dysregulation of iron

homeostasis. Additionally, diabetes-related oxidative stress and

inflammation can cause iron release from storage sites and its

subsequent accumulation in the brain. These iron accumulations

can lead to neurodegenerative diseases such as Alzheimer’s disease

(AD), Parkinson’s disease (PD), Huntington’s disease (HD), and

amyotrophic lateral sclerosis (ALS) (60–63).

Poor glycemic control can contribute to the development of

oxidative stress and inflammation, both of which can disrupt iron

balance in neurons and glia (64, 65). Hyperglycemia, in particular,

can enhance oxidative stress and inflammation and impair the

blood–brain barrier, ultimately leading to excessive accumulation of

iron in the brain (66, 67). This accumulation of iron can catalyze the

formation of free radicals, which can cause damage to neurons (68,

69). Furthermore, there is a correlation between higher iron levels

and impaired cognition in individuals with diabetes (70).

The basal ganglia play a crucial role in working memory,

adaptive motor and non-motor functions, executive function

tasks, and sensorimotor learning (16, 71–74). Our study offers

insights into variations in iron levels across important subcortical

nuclei in different regions. In patients with T2DM, abnormalities in

iron metabolism may occur in the brain, particularly in the basal

ganglia. These abnormalities could potentially contribute to the

neurological complications often observed in T2DM patients.

Overall, these findings suggest that there is increased deposition

of iron in the PUT and DN and to a lesser extent in the CN and RN.

These regions play crucial roles in motor control, learning, memory,

and cognition through cortico-striato-thalamic circuitry or cortico-

striato-thalamocortical neural pathways (8, 16, 17, 28, 31, 40, 41).

Degeneration caused by excess iron in these regions likely

contributes to the higher prevalence of cognitive decline and

movement disorders in patients with T2DM (8, 16, 60, 75). The

RN (8, 17, 28, 31, 40) and the DN (28, 31, 40) also play important

roles in cognitive and motor functions. Increased iron levels in these

nuclei may be related to a higher prevalence of cognitive decline,

dementia, and movement disorders in T2DM patients. The

neurotoxic effects of iron can lead to degeneration, atrophy, and

dysfunction of these structures (17, 31, 40, 62–64).
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Moreover, the increase in iron deposition seen in the PUT

suggests a potential involvement of iron accumulation in the

development of T2DM and age-related iron deposition (16, 31,

40, 63, 75). Iron is known to play a critical role in oxidative stress

and neuroinflammation, both of which have been linked to the

progression of T2DM (76–78). The greater increase in iron
Frontiers in Endocrinology 07
deposition in the DN further supports the idea that iron

dysregulation may be related to its important role in cerebellar

functions that rely on iron-rich mitochondria (10, 79). The

consistent increase in QSM in subcortical regions suggests that

abnormal iron accumulation may occur in T2DM, possibly due to

mechanisms such as neuronal damage from high blood glucose

levels, impaired blood–brain barrier function, inflammation, and

microvascular pathologies (8, 17, 28, 31, 40, 41, 62, 63).

Finally, despite the variability across brain regions, consistent

findings of increased iron deposition in multiple subcortical areas,

such as the main basal ganglia nuclei, support the overall conclusion

that QSM could be a useful biomarker for monitoring iron

dysregulation in T2DM. To sum up, this meta-analysis helps

confirm QSM as a promising biomarker for detecting subcortical

iron abnormalities in T2DM (8, 17, 28, 31, 40, 41). QSM offers

several advantages over other MRI techniques, such as susceptibility

weighted imaging (SWI), for quantifying iron because of its

specificity for iron and insensitivity to confounding factors (17,

61). The consistency of QSM findings across studies supports its

utility in multi-center studies (80). Longitudinal measurements

could help to characterize iron deposition dynamics in diabetes

and their relationship with cognitive outcomes.
5 Limitations and recommendations

The small number of studies and patients is a significant

limitation. To allow subgroup analyses based on diabetes

duration, control status, and cognition, larger sample sizes are

necessary. Additionally, all studies analyzed in this research were

conducted in Southeast Asian countries, with five from China and

one from South Korea. This can be attributed to the high prevalence

and large population of individuals with diabetes in these areas.

China has the highest number of people with diabetes, with

estimates of over 140 million in 2021, which is projected to reach

174 million by 2045 (33). The role of researchers in conducting

these studies and paying attention to these cases is crucial because of
FIGURE 3

The assessments for publication bias include Begg’s funnel plots.
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FIGURE 2

Meta-analysis of QSM values in various subcortical nuclei: (A)
putamen, (B) globus pallidus, (C) caudate nucleus, (D) red nucleus,
(E) substantia nigra, and (F) dentate nucleus. QSM, quantitative
susceptibility mapping.
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the high incidence of diabetes in these regions. Moreover, the

findings of this study highlight the importance of paying

attention to the prevalence and occurrence of T2DM as well as

the potential brain effects caused by the deposition of substances

such as iron. The use of advanced techniques such as QSM to better

understand these effects is important and promising.

These findings have important implications for both research

and clinical practice. Further investigation is warranted to

understand the underlying mechanisms and potential

consequences of the observed increase in iron deposition in

T2DM patients. In recent years, combining QSM with other MR

neuroimaging techniques, such as diffusion-based imaging and

functional MRI (17), has allowed for a more accurate

examination of alterations in both iron content and myelin

density within white matter regions. Such multimodal approaches

may provide better information on the interaction between iron

dysregulation and myelin disruption or the simultaneous

assessment of iron distribution and functional connectivity in

T2DM patients. Moreover, integrating QSM with detailed

neuropsychological tests in future studies could better define the

relationship between regional brain iron levels and neurological

complications in T2DM patients.
6 Conclusions

This study suggests that patients with T2DM have higher levels

of iron in specific brain regions than the controls. This increased

iron deposition was more observed in the PUT and DN and less in

the CN and RN. These findings indicate that QSM may serve as a

potential biomarker for iron accumulation in T2DM patients.

Further research with larger sample sizes, longitudinal designs,

and multimodal imaging approaches is warranted to validate the

role of QSM in assessing iron accumulation and its impact on

neurological outcomes in T2DM patients.
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