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Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular

complications of diabetes mellitus, are currently the leading causes of end-

stage renal disease (ESRD) and blindness, respectively, in the adult working

population, and they are major public health problems with social and

economic burdens. The parallelism between the two in the process of

occurrence and development manifests in the high overlap of disease-causing

risk factors and pathogenesis, high rates of comorbidity, mutually predictive

effects, and partial concordance in the clinical use of medications. However,

since the two organs, the eye and the kidney, have their unique internal

environment and physiological processes, each with specific influencing

molecules, and the target organs have non-parallelism due to different

pathological changes and responses to various influencing factors, this article

provides an overview of the parallelism and non-parallelism between DN and DR

to further recognize the commonalities and differences between the two

diseases and provide references for early diagnosis, clinical guidance on the

use of medication, and the development of new drugs.
KEYWORDS
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Introduction

The International Diabetes Federation (IDF) Diabetes Map 2021 shows that the world’s

adult diabetic population has reached 537 million in 2021, while the adult population with

the disease grows by 1.7% to a projected 783 million in 2045 (1). Complications of diabetes

mellitus can be categorized into acute and chronic complications, and chronic

complications caused by long-term exposure to hyperglycemia can be categorized into

microangiopathy, macrovascular disease, and neuropathy (2, 3). Among them, diabetic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1336123/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1336123/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1336123/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1336123&domain=pdf&date_stamp=2024-02-14
mailto:lfm565@sohu.com
mailto:jihangyuecho@163.com
https://doi.org/10.3389/fendo.2024.1336123
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1336123
https://www.frontiersin.org/journals/endocrinology


Tang et al. 10.3389/fendo.2024.1336123
nephropathy (DN) and diabetic retinopathy (DR), as highly

prevalent microvascular complications of diabetes, have become

the leading causes of end-stage renal disease (ESRD) and blindness

in adult patients, and the disease puts enormous economic pressure

on the healthcare system as well as on the patients themselves (4–7).

The study provides a comprehensive and up-to-date assessment of

the current and 2045 global prevalence of DR through the largest

meta-analysis to date, showing that the global prevalence of DR in

the diabetic population is estimated to be 22.27%, in 2020, the

number of adults with DR will be approximately 103.12 million

globally. It will increase by 55.6% to 160.5 million in 2045 (6). DN is

now the leading cause of ESRD in the adult working population,

accounting for approximately 50% of developed countries (7). A

meta-analysis of the prevalence of comorbid DN in the Chinese

type 2 diabetes mellitus type 2 (T2DM) population (79,364 study

subjects) showed that nearly 1/5 of diabetic patients have comorbid

DN (8). It has been reported that type 1 diabetes mellitus (T1DM)

patients with DR and T2DM patients without DR are 13.39 and 3.51

times more likely to develop DN, respectively. The prevalence of

DN increases with the increasing severity of DR, and the two

diseases are closely related (9). A cross-sectional study based on

26,809 patients in five primary hospitals in China showed

prevalence rates of DN and DR of 32.3% and 34.6%, respectively,

with a positive predictive value of 47.4% for DN (10). Increases in

DR severity were strongly associated with increases in DN

severity (11).

DN and DR have parallelism and non-parallelism in disease

onset and progression. The parallelism of the two diseases includes

the mutual predictive effect of predicting the development of the

other diseases through one of them, the four aspects of common

causative factors, similar pathogenesis, and common use of

medication. Non-parallelism includes asynchrony of onset,

variability of pathogenic factors, different pathogenic mechanisms,

and medications. Exploring the parallelism of two diseases can, on

the one hand, predict the development of the other diseases through

one disease and take timely and effective preventive measures to

prevent the development and deterioration of the disease; on the

other hand, the use of generic drugs to treat the two diseases

through the parallelism of the diseases can reduce the use of drugs,

optimize the management of the disease and the use of medication,

and alleviate the financial burden of the patients and the country.

This paper reviews the parallelism and non-parallelism of the two

diseases, recognizes the commonalities and differences between the

two diseases, and guides the selection of clinical drugs, with a view

to early diagnosis, delaying the onset and progression of the two

diseases, improving patients’ quality of life, and reducing the

burden on society.
Parallelism between DN and
DR development

Microvascular pathological changes in diabetes mellitus include

the thickening of capillary basement membranes due to

hyperglycemia (12), increased permeability and dysfunction of
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endothelial cells (13–15), and vascular smooth muscle cell

dysfunction (16, 17). Despite their functional differences, the

kidney and the eye share similarities in developmental pathways

and molecular structure (18, 19); the glomerulus and choroid have

similar structures and vascular networks (19); the internal blood–

retina barrier (BRB) and the glomerular filtration barrier have similar

developmental pathways (20); the renin–angiotensin–aldosterone

system (RAAS) found in both organs, the eye and the kidney (21,

22), leads to parallelism in their pathogenesis. In the following, the

parallelism of the two diseases’ development will be described in

terms of their mutual predictive effects, disease-influencing factors,

identical pathogenesis, and common medication.
Reciprocal predictive effects of DN and DR

DN and DR are closely related as both microvascular

complications of diabetes mellitus (23). The severity of renal

impairment in DN correlates with the severity of ocular damage

in DR (24). The presence of DR can be diagnosed by fundus

examination. In contrast, the kidneys are hidden in the abdomen

of the human body, so doctors cannot accurately see the specific

situation, and the gold standard for diagnosing renal disease is renal

puncture biopsy (25). However, renal puncture biopsy is an invasive

test, which is often difficult for the majority of patients to accept, so

the use of fundus examination to predict renal disease is

increasingly becoming the primary means of clinical doctors to

screen for DN. At the same time, proteinuria in patients with DN is

also often used to predict the severity of DN and predict the

development of DR.

DN predicts DR
In a cross-sectional study, 250 T2DM patients with DN

diagnosed by renal biopsy were divided into two groups: 130

patients in the DN without DR group and 120 patients in the DN

and concomitant DR group. Logistic regression analysis was

performed on the above 250 patients to clarify the risk factors for

DR, and the results showed that the risk of DR was significantly

associated with the risk of developing DR by proteinuria, hematuria,

estimated glomerular filtration rate (eGFR) baseline correction,

glomerulopathy severity, and DM history >10 years were

significantly associated with the risk of developing DR (26).

Through a cross-sectional study of 1,102 T2DM patients aged not

less than 30 years recruited in Korea in 2010–2011, the results

showed that grouped according to DR severity, non-proliferative

diabetic retinopathy (NPDR), severe NPDR, and proliferative

diabetic retinopathy (PDR), with their early morning field urine

samples retained for urinary albumin–creatinine ratio (ACR)

measurement, the results showed that the optimal cutoff value of

ACR for predicting DR was 2.26 mg/mmol (20 mg/mg), and as the

severity of DR increased, ACR ≥ 2.26 mg/mmol tended to increase,

and the risk of severe NPDR and PDR also increased,

demonstrating that ACR is an independent risk factor for DR

(27). Also, in DR patients, even in the absence of proteinuria, we

can predict subclinical DN based on eGFR (11).
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DR predicts DN
DR was found to be associated with an increased risk of DN

prevalence in patients with T2DM through a prospective study.

However, the predictive value of DR for the risk of DN in patients

with T2DM was relatively low, possibly since the predictive value of

DR for DN may be affected by aspects such as mean age, proportion

of men, and study quality (28). In a 25-year follow-up based on a

cohort study of 184 patients from Denmark, it was suggested that

PDR in patients with T1DM may be an independent marker of

long-term nephropathy development (29). A deep learning model

validated with 115,344 retinal fundus photographs from 57,672

patients indicates that chronic kidney disease staging and eGFR

prediction can be performed by retinal fundus image testing and

that the model evaluates the level of agreement between the

algorithm’s predicted GFR and the measured eGFR by means of a

Bland–Altman plot. The results showed that the artificial

intelligence (AI) model was able to extract the information for

predicting GFR and embed it skillfully in the fundus images, and the

deployment of AI fundus diagnostic system can be used as a non-

invasive, high-throughput, and low-cost screening tool in the early

stage of renal disease regardless of geographic display to effectively

predict the progression of renal disease (30). A cross-sectional study

shows that DR, especially PDR, is an independent predictor of

kidney disease (9).
Risk factors associated with DN and DR

Age, male gender, hypertension, diabetes duration, diabetic

neuropathy, DN, diabetic foot ulcers, and foot amputation were

used as independent risk factors for DR based on two cross-

sectional studies in urban hospitals in China (31, 32). A cross-

sectional study based on 13,473 diabetic patients complemented

postprandial glucose, glycosylated hemoglobin (HbAlc),

triglycerides, and low-density lipoprotein as independent risk

factors for DR, with preprandial glucose, postprandial glucose,

and HbAlc all being significant predictors of the development or

progression of DR (33), which showed that each 1% increase in

HbAlc was associated with a 40% increase in the risk of

microvascular events (34). In addition, anemia (35, 36),

pregnancy (37), smoking (38), genetic factors (39), and

microalbuminuria (40, 41) have been shown in multiple trials to

increase the risk of DR. Meta-analysis of multiple prospective

cohort studies suggests that obesity is a risk factor for DR (42, 43).

Studies have shown that elevated blood glucose levels, long

duration of diabetes, hypertension, obesity, and dyslipidemia

can contribute to the development of DN (44). Elevated

microalbuminuria levels increase the risk of DN (45, 46).

Numerous epidemiologic investigations have shown that genetic

susceptibility contributes to the development of DN (47–49). A

systematic evaluation and meta-analysis based on 20 cohorts

identified age, body mass index, smoking, DR, glycosylated

hemoglobin, systolic blood pressure, high-density lipoprotein,

triglycerides, and urinary albumin/creatinine ratio as risk factors
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for the development of DN (50). The study results show a substantial

overlap in the causative risk factors of the two diseases.
Similar pathogenesis of DN and DR

DN and DR are microvascular complications of diabetes

mellitus, and the pathological features of retinal tissue in patients

with DR include loss of pericytes and endothelial cells, destruction

of BRB, and retinal neovascularization (51, 52). Pathological

changes in DN may include glomerular tunica dilatation,

basement membrane thickening, glomerular endothelial injury,

podocyte injury, and tubular junction abnormalities (53–56).

Diabetes-induced endothelial dysfunction in microangiopathy is

characterized by decreased nitric oxide (NO) bioavailability,

increased oxidative stress, imbalance between vascular endothelial

growth factor (VEGF) and NO, and impaired endothelial function

repair (57). In the diabetic microvascular system, intracellular

hyperglycemia induces vascular endothelial injury through

various pathophysiological processes, including inflammation,

endothelial cell–reticulocyte/pericyte conversation, and exocytosis

(58). In addition, several key regulators such as cell adhesion

molecule (CAM), VEGF family, and Notch signaling are involved

in developing DN and DR diseases (58). Since the eye and the

kidney share similarities in organizational structure and

physiological function, exposure to the same risk factors often

leads to the occurrence of the two diseases, with simultaneous

similarities in pathogenesis (Figure 1).

Oxidative stress
Oxidative stress plays a vital role in the development of

microvascular and cardiovascular complications in diabetes

mellitus (59). Excessive production of reactive oxygen species

(ROS) is a major cause of oxidative stress (60–62). Hyperglycemia

plays a central role in the development of microvascular

complications in diabetes mellitus (63), with a 37% reduction in

the incidence of microvascular end-point events for every 1%

reduction in HbAlc (64), and a sustained state of hyperglycemia

in the cell induces an overproduction of mitochondrial ROS (65).

This increased production of ROS is a central and primary mediator

of diabetic tissue damage, with this single upstream mediator

leading to the activation of five major pathways involved in the

pathogenesis of complications, including activation of the polyol

pathway (66), increased formation of advanced glycosylation end

products (AGEs) (67), increased expression of receptors for AGEs

and their activating ligands (68), activation of protein kinase C

(PKC) isoforms (69), and enhancement of the hexosamine pathway

(70), which are present in the mechanisms of DN and DR

production (65, 71) Hyperglycemia-induced ROS triggers renal

fibrosis and inflammation and causes significant tissue damage by

promoting lipid peroxidation, DNA damage and protein

modification, and mitochondrial dysfunction, inducing DN (72).

Overproduction of ROS in the diabetic retina leads to retinal cell

damage by altering cell signaling, ultimately leading to DR (73).
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AGEs aggregated in the hyperglycemic state play an important

role in DR (74). AGEs can induce the cross-linking of extracellular

matrix proteins through direct action, leading to endothelial

dysfunction and neural and vascular components (75, 76). AGEs

also interact with specific receptors and binding proteins to induce

oxidative stress and cellular dysfunction involved in the progression

of DN (77). The polyol pathway contains aldose reductase (AR),

mainly found in tissues such as the retina, lens, and kidney (78).

Abnormally elevated blood glucose can lead to activation of the AR,

which oxidizes glucose to sorbitol and can induce or exacerbate

intracellular oxidative stress (79–81), promoting diabetic

microangiopathy. Hyperglycemia triggers the glycolytic pathway,

which further enhances the synthesis of di-glycerol (DAG), and

PKC is activated as a target protein kinase for di-glycerol (82). Total

DAG levels in vascular tissues are increased in the retina (83, 84)

and glomeruli (85, 86) of diabetic patients. PKC activation impairs

glomerular blood flow and filtration, causing renal hypertrophy and

glomerular hyperplasia and contributing to the onset and

progression of DN, which is mainly characterized by proteinuria

(87, 88). PKC-mediated upregulation of extracellularly regulated

protein kinases ERK1/2 and matrix metalloproteinases (MMPs)

accelerates cell proliferation, migration, maturation, and formation

of new blood vessels (89). PKC activation affects blood flow, causes

retinal microvascular constriction, induces neovascularization, and

promotes the development of DR (90).
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Inflammatory response
Chronic subclinical inflammation underlies the vascular

pathology of DR, and the stimulated inflammation of leukocyte

adhesion to the retinal vascular system and the role of leukocytes

in leukocyte stasis with risk of capillary closure suggest that this

condition may represent a form of low-grade inflammation (91,

92). A study has shown that DR vascular leakage and no

perfusion are temporally and spatially associated with retinal

leukocyte stasis in a streptozotocin-induced diabetic rat model

(93). NLRP1, NLRP3, NLRC4, and AIM2 inflammatory vesicles

can lead to DR pathogenesis (94). DN is a chronic low-grade

inflammatory disease (95, 96). Proinflammatory cytokines,

chemokines and their receptors, adhesion molecules, and

transcription factors are involved in the development and

progression of DN (97). Low-grade inflammation accumulates

extracellular matrix in the glomerular basement membrane by

stimulating endothelial cells and podocytes, while excessive

extracellular matrix deposition can cause an acute phase

reaction (98). Nuclear factor kB (NF-kB), one of the major

factors involved in the inflammatory response, is a crucial link

in regulating chemokines, cell adhesion proteins, inflammatory

cytokines, and other molecules associated with DN mechanisms

(99). Meanwhile, thioredoxin-interacting protein (TXNIP),

macrophages, and various cytokines are involved in the

pathogenesis of DN and DR.
FIGURE 1

Diagram of the common mechanism of DN and DR. DN, diabetic nephropathy; DR, diabetic retinopathy.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1336123
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tang et al. 10.3389/fendo.2024.1336123
TXNIP is highly expressed in diabetic retina (100–103). TXNIP,

as an early response gene in the high-glucose environment, can

induce AGE receptor expression; at the same time, high glucose-

induced TXNIP expression enhances AGE receptor expression,

leading to feedback in the TXNIP expression loop, which

produces persistent chromatin remodeling and sustained

inflammatory gene expression in diabetic retinal capillary

endothelial cells (101), which can induce NLRP3 expression,

increase IL-1b production in Müller cells (103, 104), and promote

DR development. At the same time, hyperglycemia upregulates

TXNIP expression and induces ROS production and inflammatory

and fibrotic responses in diabetic kidneys, leading to dysregulation

of autophagy and contributing to the development of DN (101,

105). Macrophages were recruited in rat glomeruli early after the

onset of hyperglycemia (106). Macrophages cause tissue damage

and sclerosis by producing ROS, cytokines, and proteases (107,

108). Macrophage-restricted protein tyrosine phosphatase 1B

(PTP1B) is a crucial regulator of inflammation in the metabolic

syndrome resulting from insulin resistance, and aberrant regulation

of PTP1B may underlie retinal microvascular disease (109). Several

cytokines are involved in the pathogenesis of DN and DR, among

which VEGF is one of the essential cytokines (110, 111). Activation

of VEGF leads to neovascularization and glomerular injury, and loss

of late-stage podocytes induces a decrease in VEGF signaling, which

can trigger vascular thinning and renal fibrosis and promote the DN

process (58). The generation of neovascularization and enhanced

vascular permeability in the retina are associated with the

upregulation of VEGF, which is involved in pathological retinal

neovascularization and increased vascular permeability, and its

mechanism of action is to induce vascular endothelial cells to

divide and proliferate through the action of secreting high levels

of affinity receptors on retinal vascular endothelial cells (112, 113).

Hemodynamic changes
Early diabetes is characterized by increased blood flow, which is

reflected in the kidneys as glomerular hyperfiltration (114).

Abnormally elevated blood glucose leads to increased

permeability of the glomerular filtration membrane, which results

in an increased glomerular filtration rate (115). Hyperfiltration and

hyperperfusion can stimulate the proliferation of glomerular

mesangial cells, increase the mesangial matrix, damage the

endothelial cells, and increase platelet aggregation, leading to the

formation of micro-arteriolar flow. It can also cause inflammatory

cell infiltration, increase the apoptosis of the mesangial cells, and so

on. Thus, glomerulosclerosis is constantly progressing, and the loss

of renal units is progressive, inducing the DN (22, 115). High blood

glucose levels in the RAAS and its elevated angiotensin levels led to

a slowing of renal blood flow, impaired glomerular filtration barrier,

and proteinuria, leading to DN. At the same time, the pathological

changes of DN can lead to renal small, micro-arteriolar sclerosis

and micro-arteriolar constriction enhancement, so the renal blood

flow is reduced, and glomerular sclerosis is exacerbated, leading to

renal insufficiency (22, 116). Studies have shown that diabetic

patients have elevated blood and serum viscosity and elevated red

blood cell aggregation and adhesion, which increase the resistance
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to blood flow and reduce its stability in the flow process, leading to

slow blood flow and decreased blood flow rate and triggering

circulatory disorders (117). From a hemodynamic perspective,

ocular blood flow is determined by the balance between ocular

perfusion pressure and vascular resistance (118). Prolonged

hyperglycemia leads to endothelial dysfunction, increased vascular

resistance, abnormal retinal perfusion, and exacerbation of retinal

ischemia and hypoxia (119). As feedback from local ischemia,

excessive ischemic dilatation as well as uneven capillary resistance

cause other vessels to undergo overcompensation, resulting in a

vicious cycle that promotes the development of DR (120).

Hyperactivation of RAAS
Increased RAAS activity is an essential factor in the development of

DN, and the end product of this system is angiotensin II (AngII),

whose damaging effects include vasoconstriction, increased aldosterone

secretion, growth, fibrosis, thrombosis, inflammation, and oxidative

(121). Local expression of RAAS is upregulated by glomerular capillary

hypertension associated with hyperglycemia-induced hyperfiltration

state (122). Hyperactivation of RAAS leads to renal injury by pro-

fibrotic and pro-inflammatory factors (123). High glucose leads to

overactivation of the RAAS, causing AngII to activate AT1 receptors,

and AngII is involved in glucose- and lipid-induced oxidative stress,

inflammation, and apoptosis via AT1 receptors. It produces elevated

glomerular hydrostatic pressure, proteinuria, and structural damage

with sclerosis and fibrosis and promotes the development of DN (124,

125). Studies have shown that patients with DR have higher than

average concentrations of reninogen, renin, and AngII in the vitreous

humor (126). The presence of its own independent RAAS in the retina

regulates blood flow and intraocular pressure (IOP) (127); its key

effector molecule, AngII, modulates pericyte function (128); the retinal

RAS is activated to stimulate growth factors, such as VEGF, which leads

to vascular leakage, pericyte migration, angiogenesis, fibrosis, and

exacerbation of DR (129).

Kallikrein–kinin system
The kallikrein–kinin system (KKS) exerts multiple effects on

vascular and neuronal tissues through activation of B1 and B2

receptors, which are constitutively expressed in most tissues, and B1

receptors, which are induced to be expressed under stress

conditions such as inflammation and diabetes mellitus (130, 131).

In the eye, the KKS is one of the identified pathways in the vitreous

of patients with PDR and diabetic macular edema (DME) (132).

The KKS plays a key role in the pathophysiology of DR, including

vascular inflammation and hyperpermeability, oxidative stress,

vasodilation, retinal thickening, and neovascularization (133).

Activated plasma kinin-releasing enzymes in the retinal and

vitreous fluids of patients with PDR may directly contribute to

the development of interstitial swelling and macular edema in these

patients (134). In the kidney, B2 receptor deficiency has been shown

to increase albumin excretion and glomerular thylakoid sclerosis in

diabetic mice starting with the Akita mutation (130). Diabetic test

mice lacking bradykinin B2 receptors show a significant increase in

dominant albuminuria with increasing glomerular mesangial

sclerosis (135). Bradykinin has been shown to have NO-releasing
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properties, induce endothelium-dependent vasodilation, exert

antifibrotic and antihypertrophic effects, and stimulate glucose

uptake (136). The study suggests a novel role for the KKS in

preventing salt-induced and hypertension-induced kidney injury

by inhibiting oxidative stress and inflammatory responses (137).

MiRNAs
MiRNAs play an essential role in the pathogenesis of

microvascular diabetic complications DR and DN by regulating

various pathways including inflammation, apoptosis, and oxidative

stress (138). Growing evidence suggests that altered genomic DNA

methylation, chromatin histone modifications, and non-coding

RNA dysregulation are involved in the pathogenesis of DN (139).

Dysregulation of miRNAs promotes DR progression by affecting

pathways such as inflammation, oxidative stress, endothelial

apoptosis, and vascular cell function (138).

Studies have shown that plasma miR-21 expression is elevated

during the development of T2DM combined with DR and can be

used to indicate the severity of T2DM combined with DR (140). The

high glucose-induced upregulation of miR-21 expression in retinal

endothelial cells indirectly regulates NF-kB expression and

promotes apoptosis in retinal endothelial cells (141), as well as

having a pro-angiogenic effect (142, 143). Serum and renal tissue

miR-21 was found to be significantly elevated with the progression

of DN (144). MiR-21 promotes epithelial–mesenchymal transition

(EMT) and extracellular matrix (ECM) deposition through the

downregulation of bone morphogenetic protein 7 (BMP-7), and

EMT and ECM deposition in renal tubular epithelial cells is critical

for DN pathogenesis (145). Significant histopathological changes in

miR-21 expression in DN kidney biopsies can fully reflect the key

role of miR-21 in the development of DN (146). Meanwhile, the

pathogenic role of miR-21 in DN can also manifest as renal fibrosis

(147) and inflammation (148).

Hypoxia
Hypoxia plays a vital role in diabetic complications and occurs

in tissues central to the development of diabetes (pancreatic b-cells
and adipose tissue) and in tissues susceptible to diabetic

complications (nerves, retina, heart, blood vessels, kidneys, and

wounds) (149). Hypoxia-inducible factor 1a (HIF-1a) gene

polymorphisms may be associated with diabetes and diabetic

complications (150). HIF-1a is a transcription factor that is

expressed in response to decreased cellular oxygen partial

pressure and activated to participate in angiogenesis, glycolysis,

and regulation of vascular tone (151) The cellular adaptive response

to hypoxia is mediated by hypoxia-inducible factor-1a, and

hyperglycemia leads to decreased stability and low transcriptional

potency of the HIF-1a protein in response to hypoxia (152), which

also leads to a pseudo-hypoxic state that activates HIF-1a activity to

adapt to hypoxia (153). Hypoxia is present in the diabetic kidney

(154, 155), and renal tubular hypoxia is due to a combination of

increased energy demand and decreased perfusion with non-

hypoxia-related forces that drive the development of tubular

atrophy and interstitial fibrosis, promoting the progression of DN

in a vicious cycle (156). The maintenance of normal retinal function
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depends on a continuous supply of oxygen and the ability to detect

and respond to localized hypoxia rapidly (157). Hypoxia occurs

frequently during the development of DR (158, 159), and

hyperglycemia-induced endothelial dysfunction, as well as

inhibition of endothelial NO synthase and disturbances in

vascular self-regulation, can lead to the development of hypoxia

in retinal tissue (160). Oxygen (O2) is essential for the retina (161,

162), and reduced retinal blood flow in diabetic patients can lead to

retinal hypoxia (163). Retinal hypoxia can cause neuroretinal

dysfunction and degeneration, which directly lead to vision loss

(164) and promote the development of DR.
Co-medication of DN and DR

Because of the similarity between DN and DR in terms of

pathogenic factors and pathogenesis, there is partial concordance in

terms of the clinical use of drugs. Active control of blood glucose,

blood pressure, blood lipids, and other related risk factors can slow

down the development of the disease process, so the treatment of

the two diseases used in the choice of glucose control drugs,

antihypertensive drugs, lipid regulating drugs, and other related

drugs have essential consistency (165). In addition, some of the

drugs also have the effect of DN and DR at the same time, and the

therapeutic effects of some of the drugs are listed below.

Inhibition of aberrant activation of the polyol
pathway: the aldose reductase
inhibitor epalrestat

AR plays a crucial role in the etiology of long-term diabetic

microvascular complications such as retinopathy, nephropathy, and

neuropathy (166). Epalrestat is a carboxylic acid derivative that inhibits

aldose reductase in the polyol pathway, and the ability of epalrestat to

reduce intracellular sorbitol accumulation has been linked to the

pathogenesis of microvascular complications in diabetes mellitus

(167). A 3-year multicenter aldose reductase inhibitor-diabetic

complications trial in Japan, which included 594 patients, showed

that epalrestat was particularly effective in patients with reasonable

glycemic control and mild microvascular disease (168). Patients treated

with epalrestat have also been shown to slow the progression of diabetic

retinopathy–nephropathy, possibly due to the inhibition of oxidative

and inflammatory stress through the inhibition of the polyol pathway

by epalrestat (169).

Antioxidant: a-lipoic acid
a-Lipoic acid (ALA) is a potent antioxidant (170–172) and is

valuable in preventing and treating ocular complications such as

diabetic keratopathy and DR (170, 173, 174). ALA has insulin-

mimetic and anti-inflammatory activities (175), which increase

insulin sensitivity (176), prevent retinal lipid peroxidation in early

diabetes (177), inhibit the activation of NF-kB induced by late

glycosylation end products in endothelial cells (178), and inhibit

apoptosis in retinal capillary cells (179), thereby controlling the

development of DR. ALA attenuates oxidative stress by regulating

the expression of enzymes involved in the formation of reactive
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oxygen species (180), prevents glomerular thylakoid matrix

expansion (181), inhibits diabetic renal fibrosis by improving

mitochondrial function and regulating the expression and

activation of isotretinoin receptor a (RXRa) (182), and protects

the kidneys by possibly inhibiting neutrophil infiltration,

modulating inflammatory mediators (183), and delaying the

development of DN.

Inhibitors of the RAS system: angiotensin-
converting enzyme inhibitors and angiotensin II
receptor blockers

Angiotensin-converting enzyme inhibitor (ACEI) versus

angiotensin II receptor blocker (ARB) as first-line therapy for

hypertension in DN patients presenting with proteinuria has been

shown to have renal and cardiac-related benefits (184). Studies have

shown that RAS induces various tissue responses, including

vasoconstriction, inflammation, oxidative stress, cellular

hypertrophy, proliferation, angiogenesis, and fibrosis, triggering

diabetic microangiopathy (185). Mechanisms of ACEI and ARB

analogs for DR are mostly related to the RAS system (186). RAS

inhibition is the single most effective treatment for slowing the

progression of diabetic nephropathy (187). Some experiments

indicated that captopril, an ACEI representative drug, and

chlorosartan, an ARB representative drug, inhibited hyperglycemia-

induced leukocyte retention in the retinal vasculature in rats at 6

weeks and 1 week, respectively; that AngII-induced expression of

vascular cell adhesion molecules was inhibited by chlorosartan in

experimentally cultured human retinal endothelial cells; that

captopril blocks capillary degeneration in the early stages of DR;

and that the two drugs inhibit the development of DR by inhibiting

the RAS system, which can block the early retinal capillary

degeneration and the inflammatory response (188). Meanwhile, an

animal study has shown that captopril can reduce oxidative stress in

DR patients (189).

Vasoprotective drug: calcium
2,5-dihydroxybenzenesulfonate

Calcium 2,5-dihydroxybenzenesulfonate (CaD) is considered a

vasoprotective drug that alleviates microcirculatory and

hemorheological abnormalities (190), attenuates diabetes-induced

endothelial dysfunction and inflammation (191, 192), and reduces

diabetic vascular complications by interfering with acetyl heparin

sulfate binding sites to decrease VEGF signaling (193). A systematic

review and meta-analysis supports the validity of CaD’s multi-

targeted effects on DR through antioxidant, anti-free radical, and

vasoprotective effects and inhibition of inflammatory cytokines

(194). CaD, as an antioxidant and microvascular protector, has

significantly improved the renal impairment of DN. CaD controls

the development of DN by alleviating vascular damage, improving

microcirculation, delaying renal fibrosis, enhancing the barrier

effect on glomerular capillary filtration, preventing or reducing

the thickening of the glomerular capillary basement membrane,

preventing the disruption of the podocyte process, and maintaining

the integrity of the glomerular basement membrane, which then

protects the glomerular filtration barrier of DN from being further
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disrupted and improves the glomerular terminal filtration function

(195). CaD prevents DN by downregulating the key apoptotic factor

Bim and inhibiting apoptosis in renal proximal tubular epithelial

cells (196).
Non-parallelism of DN and DR

As two different organs, the kidney and the eye have their own

unique internal environment and physiological processes, each with

specific influencing molecules, and the target organs themselves

have different pathological changes and responses to various

influencing factors, leading to different manifestations of diabetic

microangiopathic damage in the two, and at the same time, the

diagnostic means of the two also make the two diseases have non-

parallelism. The article describes the non-parallelism of the two

diseases in terms of the differences in their causative factors, the

asynchrony of the disease, the differences in mechanisms, and the

different medications used (Figure 2).
Asynchrony in the onset of DN and DR

With DN without DR
In a prospective, randomized, blinded research trial of 144

Hispanics and 671 non-Hispanic white patients with non-insulin-

dependent diabetes mellitus (NIDDM), it was shown that dominant

albuminuria (urinary albumin excretion rate >200 mg/min) (197) was

a strong independent risk factor for DR in the Hispanic study

population, whereas non-Hispanic white patients did not show such

an association, and the study suggests that early care may differ

between the two ethnic groups due to differences in economic level

as well as healthcare, which may be a possible reason for differences in

the prevalence of diabetes complications, particularly DN and DR

(198). Renal biopsy is the gold standard for the diagnosis of DN, by

which renal disease and its prognostic classification can be accurately

diagnosed but may not be performed in diabetic patients due to the

limitations of the patient’s age, comorbidities, anticoagulant therapy,

and additional costs (199). By screening T2DM patients who

underwent renal biopsy, 96 (38.71%) in the DN group and 152

(61.29%) in the non-diabetic renal disease (NDRD) group, it was

found that DRwas prevalent in 79 (82.3%) and 12 (7.9%), respectively,

suggesting that diabetic patients without retinopathy were the most

likely to develop NDRD, which suggests that clinically, some DN

patients have no DR may be because clinically some patients

diagnosed with DN did not undergo renal biopsy, and some

patients with NDRD combined with IgE, for example, were

included. This suggests that diabetes mellitus without retinopathy

has the highest likelihood of developing NDRD, which suggests that

some patients with DN are not clinically comorbid with DR possibly

because renal biopsy is not practiced in some of the clinically

diagnosed patients with DN, and some patients with diabetes

mellitus comorbid with NDRD, e.g., IgA nephropathy, are included

and therefore do not have DR (200). Of the 98 patients with simple

DN, 64 (65.3%) had DR and 34 (34.7%) had no DR, and the analysis
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concluded that advanced age (p = 0.003) and male gender (p < 0.001)

were significantly associated with DN without DR (201).

With DR without DN
In 138 patients with insulin-dependent diabetes mellitus aged

between 25 and 34 years with onset before 30 years of age, it was

found that nephropathy was rare in patients without retinopathy,

but retinopathy was often seen in patients without nephropathy. In

both cases, DR was often detected earlier than DN in patients with

insulin-dependent diabetes mellitus (202). This may be due to the

higher vulnerability of the retina compared to the kidneys and the

higher detection rate of DR, as fundus photography or fundography

is more accessible to perform and therefore allows for easier

detection compared to renal biopsy (203). The trial studied 100

insulin-treated diabetic patients, 35% of whom had PDR without

DN changes, suggesting that the two types of microangiopathy, DN

and DR, may not evolve similarly (204).
Different Pathogenesis of DN and DR

Different susceptibility genes
The development of DN and DR is hereditary and has familial

aggregation, and the extent of disease damage is also determined by

the genetic determinants of individual susceptibility as well as the

presence of multiple independent risk factors (205–207). In a meta-

analysis of genome-wide association studies, the folliculin gene
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(FLCN) was identified as a susceptibility gene for DR (208).

Methylenetetrahydrofolate-reducing gene (MTHFR), a key

enzyme regulating nucleotide synthesis and DNA methylation, is

a susceptibility gene for DN and may be a risk factor for DN in

white people and Africans (209). Chromosome 7 and chromosome

20 are susceptibility genes for DN (210). Chromosome 1 (211) and

chromosome 6 (212) are susceptibility genes for DR.
DR: diabetic microvascular complications,
neurovascular lesions

The American Diabetes Association defines DR lesion as a highly

tissue-specific neurovascular complication (213, 214), a

neurovascular disease resulting from the destruction of the retinal

neurovascular unit (NVU) (214), which consists of retinal neurons,

glial cells, and vascular cells coordinately regulating blood flow,

vascular density, and permeability in response to the similarly

dynamic demands of the retinal neurons, through the supply of

oxygen and nutrients, the recycling of neurotransmitters, and the

removal of metabolic wastes, a vascular function whose fine-tuning is

essential for maintaining retinal homeostasis (215). Retinal

neurodegeneration is involved in the development of microvascular

abnormalities as an early event in DR (215, 216). In addition to

premature neuronal death, biochemical and structural changes in

neurons and glial cells contribute to neurodegeneration, and the

functional abnormalities that occur in DR may be due to early

changes in neural organization (217).
FIGURE 2

Schematic of the different mechanisms of DN and DR. DN, diabetic nephropathy; DR, diabetic retinopathy.
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Different cytokines
The growing agreement that DN is an inflammatory process is

because leukocyte infiltration occurs at all stages of kidney damage

(96). The involvement of proinflammatory factors, Th1, Th2, and

Th17 cytokines and TGF-b1 in the development of DN predicts

susceptibility and progression of DN (218, 219). Inflammatory

cytokines and oxidative stress-related pathways DR in different

systems such as red blood cells (RBC) and retinal pigment

epithelium (RPE) cells provide important potential biomarkers

(220). Some findings support the association of PDR bleeding

with IL-8, MCP-1, TNF-a, and other inflammatory cytokines in

atrial fluid (221).
Different medications for DN and DR

DN clinical use
Treatment of DN includes strict control of blood glucose and

blood pressure, restriction of protein intake, and maintenance of

water–electrolyte and acid–base balance (222). In addition to

hypoglycemic effects, dipeptidyl peptidase-IV (DPP-4) inhibitors

exert renoprotective effects through antioxidant and anti-

inflammatory mechanisms, and anti-fibrotic effects through

inhibition of TGF-b-mediated signaling (223). Inhibitors of

sodium-dependent glucose transporters 2 (SGLT-2) reduce

hyperglycemia while preventing glomerular hyperfiltration and

slowing the development of DN (224, 225). Aldosterone is pro-

inflammatory and pro-fibrotic and promotes kidney injury (226),

and aldosterone can elevate arterial and glomerular pressure (227).

Aldosterone receptors are present in glomerular endothelial and

epithelial cells, and abnormal aldosterone infusion can lead to

proteinuria and glomerulosclerosis by damaging glomerular

epithelial cells (228). Clinically available aldosterone receptor

antagonists are used to treat DN, and proteinuria continues to be

significantly reduced during spironolactone treatment; however, it

should be noted that aldosterone receptor antagonists, such as

spironolactone, increase the risk of hyperkalemia (229).

Currently, a number of new drug targets have recently been

identified against the underlying pathophysiological mechanisms

of DN that may contribute to the development of new drugs to

prevent renal and vascular damage and slow down the progression

of DN in patients with DN, including the development of

personalized medicines based on genetic and epigenetic variations

(230). New therapeutic targets such as the GSK3b signaling

pathway (231), NLRP3 inflammatory vesicles (232), PI3K/Akt

and JAK/STAT pathways (233), endothelin receptor (234), and

DPP-4 (235) are involved in the pathological progression of DN,

and there is still an urgent need to identify and validate new drug

targets and candidates for better DN therapy.

DR clinical use
The main methods of DR treatment include strict control of

blood glucose, blood pressure, and blood lipids, medication to

improve microcirculation and anti-neovascularization, laser

therapy, and vitrectomy (236). Lipid-lowering drug fenofibrate
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slows DR progression through anti-inflammatory, anti-

angiogenic, and retinal neuroprotective effects (237). VEGF

inhibitors: VEGF is a hypoxia-induced angiogenic peptide (238)

that mediates BRB destruction and angiogenesis in the pathogenesis

of DR (239). Clinicians reduce VEGF signaling in the retina by

vitreous cavity injections of anti-VEGF biologics. In a series of

disease models and clinical studies, it has been shown that multiple

pharmaceutical agents that successfully target VEGF significantly

improve vascular permeability and retinal edema (240). Anti-VEGF

drugs improve DR severity and are the first-line treatment for

diabetic macular edema with PDR (241). Current anti-VEGF agents

for the treatment of DR include bevacizumab, ranibizumab, and

abciximab (240, 242), which have demonstrated their safety in

several trials (243). Studies have shown that ranibizumab rapidly

and consistently improves vision and reduces the risk of further

vision loss in patients with diabetic macular edema (244). The anti-

VEGF regimen is usually 1 injection per month for 3 months and

every 4–6 weeks if necessary (245). Commonly used drugs for

treatment with intravitreal injections of corticosteroids include

dexamethasone, triamcinolone acetonide, and flurazepam (246).

Studies have shown that dexamethasone is safer, has the lowest risk

of causing glaucoma and cataracts, and can be classified as the drug

of choice for intraocular corticosteroid injections (247, 248).

Corticosteroids target pro-inflammatory mediators in DME,

including IL-6, IL-8, MCP-1, ICAM-1, and TNF-a (249),

producing anti-inflammatory effects through various mechanisms,

including reducing the synthesis of inflammatory mediators and

adhesion proteins and lowering VEGF (250). These drugs are

commonly used to treat patients with refractory and vision-

threatening DR and DME because of the bracketed IOP elevation

and cataract risk (251).

Future directions in DR treatment will focus on the following

two areas: the development of retinal imaging techniques and the

discovery of new molecules for the treatment of refractory patterns

of DME (252). The continued refinement of new technologies such

as AI (253) and ultra-wide-angle (UWF) retinal imaging (254)

provide important support for early screening for DR. New targets

such as anti-VEGF (255), anti-inflammatory (249), neuroprotection

(190, 194), soluble epoxide hydrolase (sEH) (256), nano molecules

(52), and photo-biomodulation (PBM) (257) provide more

directions for the development of new therapeutic approaches for

DR and suggest that the future trend in the management of DR may

be a multi-pathway targeted therapy. Among them, high treatment

burden, treatment adherence problems, and under-treatment are

the challenges that DR treatment needs to face.
Summary and outlook

DN and DR, as diabetic microvascular comorbidities, are the

main factors of end-stage renal disease and blindness, respectively,

which bring a heavy economic burden to society. Parallelism and

non-parallelism exist in the process of disease development of the two

diseases, and the parallelism of the two helps to guide the co-

medication of the two diseases. DN and DR homeopathic drugs
frontiersin.org

https://doi.org/10.3389/fendo.2024.1336123
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tang et al. 10.3389/fendo.2024.1336123
can be used as a future research direction for the treatment and

prevention of the two diseases to reduce the types of medication used

by patients, optimize the management, alleviate the burden of hepatic

and renal metabolism, and improve the patients’ quality of life, as well

as further alleviate the burden of patients and the country’s medical

care. Early comprehensive intervention is of great significance.

Current research suggests that the two diseases are treated with

polyol pathway inhibitors, antioxidants, RAS system inhibitors, and

vasoprotective agents, which have a better potential for development,

and in the development of new anti-inflammatory drugs, miRNA is a

new therapeutic target in seeking breakthroughs. The development of

drugs targeting these common molecular pathways may provide new

therapeutic approaches for both diseases.
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237. Simó R, Simó-Servat O, Hernández C. Is fenofibrate a reasonable treatment for
diabetic microvascular disease? Curr Diabetes Rep (2015) 15(5):24. doi: 10.1007/
s11892-015-0599-0

238. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: Direct
neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci (2000) 97(18):10242–7.
doi: 10.1073/pnas.97.18.10242
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Glossary

DN diabetic nephropathy

DR diabetic retinopathy

ESRD end-stage renal disease

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus

BRB blood–retina barrier

RAAS renin–angiotensin–aldosterone system

NPDR non-proliferative diabetic retinopathy

PDR proliferative diabetic retinopathy

VEGF vascular endothelial growth factor

NO nitric oxide

ROS reactive oxygen species

AngII angiotensin II

OS oxidative stress

AGEs advanced glycosylation end products

PKC protein kinase C

NF-kB nuclear factor kB

TXNIP thioredoxin-interacting protein

HIF-1a hypoxia-inducible factor 1a

KKS kinin–kinin system

AR aldose reductase

ALA alpha-lipoic acid

ACEI angiotensin-converting enzyme inhibitor

ARB angiotensin II receptor blocker

CaD calcium hydroxybenzenesulfonate

FLCN folliculin gene

RBC red blood cells

RPE retinal pigment epithelium

DPP-4 dipeptidyl peptidase-IV

SGLT-2 sodium-glucose cotransporter protein 2

AI artificial intelligence

HbAlc glycosylated hemoglobin
F
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