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Whole-body water mass and
kidney function: a Mendelian
randomization study
Xuejiao Wei, Mengtuan Long, Zhongyu Fan, Yue Hou,
Liming Yang, Zhihui Qu and Yujun Du*

Department of Nephrology, The First Hospital of Jilin University, Changchun, China
Background: The morbidity and mortality of chronic kidney disease (CKD) are

increasing worldwide, making it a serious public health problem. Although a

potential correlation between body water content and CKD progression has

been suggested, the presence of a causal association remains uncertain. This

study aimed to determine the causal effect of body water content on

kidney function.

Methods: Genome-wide association study summary data sourced from UK

Biobank were used to evaluate single-nucleotide polymorphisms (SNPs)

associated with whole-body water mass (BWM). The summary statistics

pertaining to kidney function were extracted from the CKDGen consortium.

The primary kidney function outcome measures included estimated glomerular

filtration rate (eGFR), albuminuria, CKD stages 3–5, and rapid progression to CKD

(CKDi25). Two-sample Mendelian randomization (MR) analysis estimated a

potential causal relationship between the BWM and kidney function. The

inverse variance weighted MR method was used as the primary analysis,

accompanied by several sensitive MR analyses.

Results: The increase of BWM exhibited a correlation with a reduction in eGFR

(b = −0.02; P = 6.95 × 10−16). Excluding 13 SNPs responsible for pleiotropy

(P = 0.05), the increase of BWM was also associated with the decrease of the

ratio of urinary albumin to creatinine (b = −0.16; P = 5.91 × 10−36). For each

standard deviation increase in BWM, the risk of CKD stages 3–5 increases by 32%

(OR, 1.32; 95% CI, 1.19–1.47; P = 1.43 × 10−7), and the risk of CKDi25 increases by

22% (OR, 1.22; 95% CI, 1.07–1.38; P = 0.002).

Conclusion: The increase of BWM is associated with impaired kidney function.

Proactively managing body water content is of great significance in preventing

the progression of CKD.
KEYWORDS

chronic kidney disease, kidney function, body water content, Mendelian randomization,
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1 Introduction

Chronic kidney disease (CKD) is a long-term, progressive renal

disorder characterized by a gradual decline in kidney function,

leading to the ineffective filtration of waste products and excess

fluids (1). Edematous status is a common clinical problem among

CKD patients. Expanded volume, even in the absence of obvious

edema, can cause hypertension, pulmonary congestion, and heart

failure (2, 3). Managing body water content is a part of CKD

treatment, which includes limiting salt and fluid intake, and getting

diuretics and dialysis to remove excess waste products and fluid.

Meanwhile, monitoring body water content can be used to track the

progression of CKD. Excessive water retention may be linked to

lower glomerular filtration rate, tubular dysfunction, and renal

fibrosis, all of which can affect the progression of CKD (4).

However, the causal relationship between body water content and

CKD progression is still unclear.

The clinical evaluation of edematous status is relatively difficult,

and bioelectrical impedance analysis (BIA) techniques are often

introduced to assessment the liquid status. The ratio of extracellular

water (ECW) to total body water (TBW) may indicate volume

overload (5). However, the ECW/TBW might not be the most

optimal indicator of volume overload due to the change of the

composition of intracellular water (6). Compared with clinical

evaluation, BIA greatly improved the identification of fluid

overload in CKD patients (7, 8). The application of BIA has been

proposed to detect subclinical edema and changes in body

composition during hemodialysis in CKD patients (9, 10). The

research conducted by Ohashi et al. indicated that volume overload

occurring in malnourished and elderly patients with CKD is

associated with adverse renal outcomes and all-cause mortality

(11). Previous studies have demonstrated that the progressive

expansion of water in CKD patients is independently related to

the poor renal outcomes (12). Han et al. found that fluid overload is

the decisive factor of cardiac structure and functional impairment

in patients with type 2 diabetes mellitus and advanced CKD without

dialysis (13, 14).

Mendelian randomization (MR) analysis employs genetic

variations strongly correlated with exposure factors as

instrumental variables to deduce causal relationships with the

outcome (15). It has the benefit of avoiding confounding biases in

observational studies (16). Two-sample MR analysis uses genome-

wide association study (GWAS) summary data to estimate the

causal effect of exposure on outcomes without having to analyze
Abbreviations: CKD, chronic kidney disease; BIA, bioelectrical impedance

analysis; ECW, extracellular water; TBW, total body water; MR, Mendelian

randomization; GWAS, genome-wide association study; BWM, whole-body

water mass; eGFR, estimated glomerular filtration rate; CKDGen, Chronic

Kidney Disease Genetics; UACR, albumin-to-creatinine ratio; CKDi25, rapid

progression to CKD; SNP, single-nucleotide polymorphism; LD, linkage

disequilibrium; IVW, inverse variance weighted; MR-PRESSO, MR Pleiotropy

RESidual Sum and Outlier.
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individual data. Given the current lack of evidence on the causal

relationship between body water content and the development of

CKD, this study used two-sample MR analysis to explore the impact

of edematous status on kidney function in patients with CKD.
2 Methods

2.1 Data source of whole-body water mass

We utilized whole-body water mass (BWM) as an instrumental

variable to identify genetic variations related to body water content.

The BWM-related GWAS data were obtained from the UK Biobank,

including a comprehensive cohort of 454,888 participants of

European ancestry. The participants used the BIA device for body

water measurement. BWM data were obtained using the Tanita

BC418MA body composition analyzer, with measurements of

whole-body bioimpedance, accurate to 0.1 kg. The population in

the UK Biobank cohort were recruited through 22 assessment centers

in the United Kingdom, primarily collecting the disease and lifestyle

information and genotype data. All volunteers signed an informed

consent, and the study was approved by the north west multicenter

research ethics committee. The details of the population

characteristics and protocol are available from the UK Biobank

(http://www.ukbiobank.ac.uk/about-biobank-uk/).
2.2 Data source of kidney function

The GWAS data related to estimated glomerular filtration rate

(eGFR), albuminuria, and CKD from the meta-analysis were obtained

from the Chronic Kidney Disease Genetics (CKDGen) Consortium as

measures of kidney function. The GFR was estimated using the

Chronic Kidney Disease Epidemiology Collaboration formula (for

individuals >18 years of age) (17), or the Schwartz formula (for

individuals ≤18 years of age) (18). The GFR was estimated in the

GWAS (n = 765,348) using serum creatinine, the main biomarker to

quantify kidney function and define CKD, including mostly Europeans

(n = 567,460) and a few Asians and multiple ancestries (19).

Albuminuria was measured by the albumin-to-creatinine ratio

(UACR), measured in overnight or 24-h urine collections. The

GWAS data for UACR were analyzed specifically within participants

of European ancestry (20). CKD stages 3–5 were defined as eGFR <60

mL/min/1.73 m2. The GWAS data for CKD stages 3–5 include 23

cohorts of European ancestry (n = 480,698; 41,395 cases and 439,303

controls) (19). Furthermore, to better reflect the dynamic effects of

body water content on CKD and kidney function, we selected one

additional endpoint: rapid progression to CKD (CKDi25), defined as a

decline in eGFR by ≥25% from baseline while progression from non-

CKD to CKD. The GWAS data for CKDi25 include 42 cohorts of

European ancestry (21). Table 1 displays the summary of sources for

kidney function data.

CKDGen consortium publishes summary-level data in the form

of meta-analyses, with age and gender as covariates (CKDGEN

Meta-Analysis datasets (uni-freiburg.de)). All participants provided
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informed consent, and the local ethics committee approved the

study (22).
2.3 Selection of instrumental variables

First, single-nucleotide polymorphism (SNP) strongly associated

with exposure factors which were selected as the instrumental

variables, and the filtering condition was P < 5 × 10−8. Secondly,

the selected genetic instruments should meet the independence and

linkage disequilibrium (LD) effect, with an LD parameter (r2) of

<0.001 and of <1MB from the genetic distance. Additionally, in order

to ensure the strength of correlation between instrumental variables

and exposure factors, we screened instrumental variables with F

statistic >10. The F value was estimated using the formula F = R2(N

−2)/(1−R2), where N represents the sample size in GWAS data and R2

represents the degree to which instrumental variables explain the

exposure factors (23). The specific formula of R2 is as follows: R2 = 2 ×

(1−EAF) × EAF × b2, where EAF is the effect allele frequency and b is
the effect size of SNP on exposure factors (23). Thirdly, we examined

whether exposure-related SNPs were associated with potential risk

factors for kidney function using PhenoScanner, an extended tool

that associates human genotypes with phenotypes (www.

phenoscanner.medschl.cam.ac.uk) (24).

In the UK Biobank dataset, 565 SNPs were associated with BWM

at a threshold of P < 5 × 10−8 and r2 < 0.001. Following checking of

the potential confounding factors, such as obesity, body mass index,

hyperlipidemia, hypertension, diabetes, drinking, and smoking, 416

SNPs remained for subsequent analysis (Supplementary Table S1).

Next, these SNPs were aligned for effect alleles, unreconciled

palindromic SNPs were removed, and the remaining SNPs were

subjected to MR analyses. These SNPs’ F statistics surpassed the

normal threshold of 10, indicating strong instrument variables. The

data files used are provided as Supplementary Tables S2–S5. The

study flowchart is presented in Figure 1.
2.4 Mendelian randomization analyses

Two-sample inverse variance weighted (IVW) is used as the

primary method for estimating causality. The IVW method assumes

that all genetic variations are effective instrumental variables and have a

strong ability to detect causality. Particularly, it requires that genetic

variations only affect the outcome through the exposure in the study
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(the intercept is limited to zero) (25). Moreover, we also useMR–Egger,

weighted median, and weighted mode to improve the estimated

value of IVW and test the reliability and stability of the MR results.

In contrast to IVW, MR–Egger regression only needs to satisfy the

assumption that instrumental variable pleiotropy remains independent

of the association between the instrumental variable and the exposure

(26). The weighted median method can still provide effective causal

inference even when more than 50% of genetic instruments are invalid

(27). Weighted mode analysis relaxes the pleiotropic hypothesis and

can still calculate the estimated value when the genetic variation is more

than 50% (28). MR analyses were performed for each SNP provided by

the GWAS data in turn. The stability and reliability of the causal

relation between BWM and kidney function were established when the

four different MRmethods described above produced similar estimates

of the causal effect.

To ensure the accuracy and reliability of the MR results, we

subsequently evaluated the directional pleiotropy using the MR–

Egger intercept test and leave-one-out analysis. The MR Pleiotropy

RESidual Sum and Outlier (MR-PRESSO) method detects and

corrects for pleiotropy by removing “outliers”, thereby narrowing

the confidence intervals. Cochran’s Q test for identifying

heterogeneity. All analyses were performed in R version 4.2.3

using the TwoSampleMR and MRPRESSO packages.
3 Result

3.1 Total causal effects of BWM on
kidney function

Table 2 presents the estimated causal effects of BWM on eGFR,

UACR, CKD stages 3–5, and CKDi25 inMR analyses. Figure 2 shows

the forest plots of the estimated values for each outcome using

different MR methods. Figure 3 provides scatter plots of SNP–

outcome association and SNP–BWM association and visualizes the

causal effect estimation of each SNP on kidney function. Leave-one-

out plots and funnel plots are provided in Supplementary Figures S1

and S2.
3.2 BWM and eGFR

The IVW analysis examining the association between BWM

and eGFR provides strong evidence (b = −0.02, P = 6.95 × 10−16).
TABLE 1 The summary of sources for kidney function data.

Trait Ethnicity Participants included in analysis
Outcome

data sources
References

eGFR Mixed
567,460 Europeans, 165,726 East Asians, 13,842 African-Americans, 13,359 South Asians and

4,961 Hispanics
CKDGen consortium (19)

UACR European 5,825 cases and 46,061 controls CKDGen consortium (20)

CKD
stages
3–5

European 41,395 cases and 439,303 controls CKDGen consortium (19)

CKDi25 European 19,901 cases and 175,244 controls CKDGen consortium (21)
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The MR–Egger intercept test has not observed directional

pleiotropy (P = 0.52). However, significant heterogeneity was

observed (P of Cochran’s Q < 0.05), prompting the preference for

the random effect model of IVW to enhance the robustness of the

results. In the leave-one-out analysis, b ranged from −0.025 to

−0.023, indicating that the overall estimate was unaffected by a

single SNP. Furthermore, both MR–Egger (b = −0.03; P = 2.28 ×
Frontiers in Endocrinology 04
10−4) and weight median (b = −0.02; P = 1.27 × 10−11) consistently

support the increase of BWM which is related to the reduction of

eGFR. However, due to the limited efficacy, the weighted mode

(b = −0.02; P = 0.12) method has no statistical significance.
3.3 BWM and UACR

MR analyses provide favorable evidence supporting a robust

correlation between the increase in BWM and a decrease in UACR.

Heterogeneity analysis revealed a significance level of P < 0.05,

leading to the preference for the random effect model of IVW for

enhanced reliability. The MR–Egger intercept test detected

directional pleiotropy (P = 0.045). MR-PRESSO was used to

identify and remove 13 outlier SNPs primarily responsible for

pleiotropy (rs113978196, rs114949263, rs1374370, rs143384,

rs2101975, rs281385, rs2885697, rs34055910, rs34879158,

rs4899012, rs6693481, rs67551338, rs77165542), subsequently

calculating the causal estimate. The correlation of IVW analysis

is highly significant (b = −0.16, P = 5.91 × 10−36). MR–Egger

(b = −0.14; P = 4.25 × 10−5), weighted median (b = −0.15; P = 2.78 ×

10−20), and weighted mode (b = −0.14; P = 2.33 × 10−3) analyses also

support the assertion that an increase in BWM is associated with a

decrease in UACR. In the leave-one-out analysis following

removing outliers, b ranged from −0.161 to −0.155, indicating

that the overall estimated value is not affected by a single SNP.
3.4 BWM and CKD stages 3–5

In the IVW MR analysis, each standard deviation increase in

BWMwas associated with a 32% elevation in the risk of CKD stages

3–5 (OR, 1.32; 95%CI, 1.19–1.47; P = 1.43 × 10-7). The directional

pleiotropy was not detected by the MR–Egger intercept test (P =

0.73). Heterogeneity analysis found that P < 0.05 is preferred for the

random effect model of IVW. In the leave-one-out analysis, the

estimated values ranged from 1.30 (95% CI, 1.17–1.43) to 1.34 (95%

CI, 1.20–1.48). Consistent with IVW analysis, both MR–Egger (OR,

1.38; 95% CI, 1.06–1.79) and weighted median (OR, 1.26; 95% CI,

1.09–1.46) analyses supported that BWM is a potential risk factor
TABLE 2 MR analyses of causal associations of BWM with kidney function.

Trait nSNP Ethnicity

IVW MR–Egger Weighted median Weighted mode

b or OR P
(95% CI)

b or OR P
(95% CI)

b or OR P
(95% CI)

b or OR P
(95% CI)

eGFR 392 Mixed b = −0.02
(−0.03 to −0.02)

6.95
× 10−16

b = −0.03
(−0.04 to −0.01)

2.88 ×
10-4

b = −0.02
(−0.02 to −0.01)

1.27
× 10−11

b = −0.02
(−0.04 to −0.00)

0.12

UACR 385 European b = −0.16
(−0.18 to −0.13)

5.91
× 10−36

b = −0.14
(−0.20 to −0.07)

4.25 ×
10-5

b = −0.15
(−0.19 to −0.12)

2.78
× 10−20

b = −0.14
(−0.23 to −0.05)

2.33×10−3

CKD
Stages
3–5

397 European OR = 1.32
(1.19 to 1.47)

1.43
× 10−7

OR = 1.38
(1.06 to 1.79)

0.02 OR = 1.26
(1.09 to 1.46)

2.10
× 10−3

OR = 1.17
(0.77 to 1.77)

0.45

CKDi25 397 European OR = 1.22
(1.07 to 1.38)

2.00
× 10−3

OR = 1.19
(0.87 to 1.64)

0.28 OR = 1.27
(1.02 to 1.58)

0.03 OR = 1.28
(0.84 to 1.94)

0.25
fro
FIGURE 1

Study flow chart of the MR analyses revealing the causal relationship
between BWM and kidney function.
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for CKD stages 3–5. However, weighted mode (OR, 1.17; 95% CI,

0.77–1.77) analysis is not statistically significant.
3.5 BWM and CKDi25

The estimated causal effect of BWM on CKDi25 closely aligns

with that observed for CKD stages 3–5 in both direction and

magnitude. For every standard deviation increase in BWM, the risk

of CKDi25 increases by 22% (OR, 1.22; 95% CI, 1.07–1.38; P = 2.00 ×

10−3). No directional pleiotropy (P = 0.89) and heterogeneity were

detected (P = 0.59). In the leave-one-out analysis, the OR ranges from

1.20 (95% CI, 1.06–1.36) to 1.23 (95% CI, 1.09–1.40). In line with the

IVWmethod, the weighted median (OR, 1.27; 95% CI, 1.02–1.58; P =

0.03) has statistical differences. Although MR–Egger (OR, 1.19; 95%

CI, 0.87–1.64) and weighted mode (OR, 1.28; 95% CI, 0.84–1.94) are

similar to the estimated values of IVW in magnitude, they do not

achieve statistical significance. This may be attributed to the limited

efficacy, warranting further more favorable analyses to establish the

potential causal relationship.
4 Discussion

To our knowledge, our study represents the first MR analyses

aimed at investigating the causal relationship between body water
Frontiers in Endocrinology 05
content and kidney function at the genomic level. Previous studies

on the relationship between body water content and kidney

function in CKD patients mainly relied on BIA technology,

offering insights into fluid status. These cross-sectional studies

could not explain the causal relationship between excessive body

water content and kidney function decline (3, 4). However, our

study is based on the novel and large amount of GWAS summary

data to predict the casual relationship between body water content

and the development of CKD. Our results obtained by MR analyses

are resilient against causal inversion and avoid the effect of

confounding factors to a great extent. Moreover, this study lies in

the utilization of the two-sample MR analyses method, involving a

large number of summarized genetic data from UK Biobank and

CKDGen consortium, which effectively avoided the overlap of

samples. Therefore, our results are more reliable and may provide

some guidance for the prevention, treatment, and management of

CKD in the future.

The edematous status significantly influences the kidney outcomes

in CKD patients. Previous studies have employed various markers of

fluid status, withmany relying on the ECW/TBW and the level of over-

hydration measured by BIA (29, 30). The mechanisms underlying

CKD progression caused by excessive body water content have been

described, including factors such as the decrease of renal blood flow

caused by the increase of renal efferent pressure, glomerular sclerosis,

endothelial cell activation, and renal inflammation (31, 32). Compared

with patients or animals without excessive body water content, those
B

C

A

FIGURE 2

Forest plots of significant and nominal significant estimates from genetically predicted BWM on (A) eGFR; (B) UACR; (C) CKD stage 3-5 and CKDi25.
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with excessive body water content exhibit more macrophage

infiltration and increased expression of pro-inflammatory cytokines

(such as tumor necrosis factor-a and interleukin-6) (31). Additional

studies have shown that excessive body water content is related to the

severity of anemia and an augmented risk of cardiovascular morbidity

in CKD patients (3, 33).

Some observational studies have shown that excessive body

water content will lead to the decline of kidney function among

CKD patients. Low et al. demonstrated that excessive body water

content in CKD patients with type 2 diabetes mellitus was

independently related to the progression of CKD, suggesting that

body water content played a pivotal role in the deterioration of

kidney function (4). Moreover, excessive body water content has

been identified as an independent risk factor for both renal

replacement therapy and rapid decline of eGFR in patients with

advanced CKD (14).

In our MR analysis, most of the participants in UK Biobank and

CKDGen are Europeans, which effectively reduces the bias of

population stratification. We systematically analyzed the causal

relationship between genetically predicted BWM and kidney

function. Our results reveal that the increase of BWM is

correlated with the decrease of eGFR and UACR. Furthermore,

an increase in BWM emerges as a risk factor for CKD stages 3–5
Frontiers in Endocrinology 06
and rapid progress to CKD (CKDi25). Given the observed

heterogeneity across the data, we advocate for the adoption of the

random-effect model in the IVW analysis to enhance the robustness

of our results. In the analysis of pleiotropy, directional pleiotropy

was discerned solely in the data concerning BWM and UACR.

Utilizing MR-PRESSO to detect and remove 13 outlier SNPs, the

subsequent MR analyses revealed a robust causal effect between

BWM and UACR. In various sensitivity analyses, the impact of

BWM on kidney function exhibits consistent magnitudes.

Therefore, our MR analyses affirm that excessive body water

content is intricately linked to impaired kidney function.

In this study, we identified that the BWM gene SNP rs2005172

appears to have an impact on the pathological progression of renal

fibrosis. The specific mechanism involves impairing glomerular

permeability, stimulating epithelial–mesenchymal transition of

podocytes, and promoting the expression of the fibrosis-

associated classic molecule - transforming growth factor b (34,

35). Meanwhile, rs35874463 has also been confirmed to enhance

inflammatory responses and increase the transcription levels of the

fibrosis signaling pathway transforming growth factor b/smads,

thereby exacerbating renal fibrosis (36, 37). Furthermore, we have

found that rs165656 may exert its influence on kidney function by

modulating dopamine metabolism, mediating Na+, K+-ATPase
A B

DC

FIGURE 3

Scatter plots of significant and nominal significant estimates from genetically predicted BWM on (A) eGFR; (B) UACR; (C) CKD stage 3-5; (D) CKDi25.
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activity, disrupting the processes of diuresis and natriuresis, and

consequently impacting overall renal function (38, 39). The findings

of these studies confirm that SNPs associated with BWM may

potentially influence the renal function of patients with kidney

diseases through other pathophysiological mechanisms.

BIA, as a non-invasive, label-free, and quantitative detection

technology, has great advantages for physiological and pathological

analysis of tissues. It proves beneficial for the early identification of

changes in fluid, allowing for a systematic clinical assessment of

edema status and facilitating the management of target weight. An

increasing number of studies have recognized the monitored whole-

body water mass through BIA technology as a marker for evaluating

the volume status of patients with CKD. However, whether BIA

technology provides an appropriate volume status marker remains

controversial. This value may be affected by age, sex, nutritional

status, obesity, inflammation and muscle mass. Especially for

patients with nephropathy, in patients with obvious fluid overload

and muscle mass loss, bioelectrical impedance technique cannot

distinguish extravascular ECW from plasma ECW. Future

investigations should aim to identify a more accurate tool for

evaluating the volume status or combining other biological

indicators, so as to carry out more reliable analyses.

Several limitations should be acknowledged. First, this study

mainly focuses on the European population, and the causal effects in

other demographic groups need to be re-verified. Secondly, due to

summary-level data, non-linear relationships or stratification

effects are not captured. Finally, the evaluation of edematous

status is very important for elucidating the causal relationship

with exposed genes.
5 Conclusion

Genetic predictions indicate a causal effect between excessive

body water content and increased eGFR and albuminuria levels, as

well as an increased risk of CKD. This MR study undertook a

thorough and detailed analysis of body water content and kidney

function, providing novel insights for the prevention, treatment,

and management of CKD.
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