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Diabetic kidney disease (DKD), a significant complication associated with

diabetes mellitus, presents limited treatment options. The progression of DKD

is marked by substantial lipid disturbances, including alterations in triglycerides,

cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs).

Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD,

potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism

reprogramming, and immune modulation of gut microbiota (thus impacting

the liver-kidney axis). The elucidation of these mechanisms opens new potential

therapeutic pathways for DKD management. This research explores the link

between lipid metabolism disruptions and DKD onset.
KEYWORDS
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1 Introduction

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes

mellitus (1). DKD is characterized by glomerulopathy with diffuse and nodular tethered

dilatation and thickening of the glomerular basement membranes, accompanied by tubular

atrophy, interstitial inflammation, fibrosis, glomerular endothelial injury, podocyte loss,

and glomerular vascular hyalinopathy (2). DKD pathogenesis is complex and is associated

with glucose and lipid metabolism disorders and stress (3, 4). Treatments, such as glycemic

control and urinary albumin reduction, do not fundamentally alter the course of DKD (5).

The latest evidence-based guidelines recommend angiotensin-converting enzyme

inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) and novel hypoglycemic agents,

such as dipeptidyl peptidase-4 inhibitors, sodium-glucose transporter 2 inhibitors, and

sodium-glucose transporter 2 inhibitors. Sodium-glucose transporter 2 inhibitors and

glucagon-like peptide 1 agonists (6–8) have not been found to slow down the progression of

DKD to end-stage renal disease (1). Therefore, exploring the pathogenesis of DKD and

identifying targets for intervention are important clinical goals. Lipid metabolism disorders,

one of the pathogenic mechanisms of DKD, mainly involve abnormalities in lipid
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1336402/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1336402/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1336402&domain=pdf&date_stamp=2024-04-29
mailto:tcmzhenghuijuan@163.com
mailto:liuweijing-1977@hotmail.com
https://doi.org/10.3389/fendo.2024.1336402
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1336402
https://www.frontiersin.org/journals/endocrinology


Han et al. 10.3389/fendo.2024.1336402
metabolism, such as triglycerides (TGs), cholesterol (CHOL), and

lipid droplets (LDs) (9–11). Recently, there have been numerous

studies on the mechanisms of lipid metabolism disorder lipophagy

in DKD. Ferroptosis, the programmed death in DKD, is a direct

result of lipid peroxidation, which is closely related to lipid

metabolism disorders, especially disorders in the regulation of

fatty acids (FAs) (12, 13). Another mode of programmed death is

associated with defects in the autophagy-lysosomal system

and abnormal lipid accumulation in podocytes in DKD (14, 15).

The reprogramming of lipid metabolism also results in

dysfunctional lipid uptake and oxidation, especially of FAs, which

are exacerbated in DKD (16, 17). In addition, an imbalance of gut

microbiota and increased permeability of the intestinal barrier,

which is one of the pathological manifestations of DKD, and its

involvement in immune imbalance, especially involving the liver-

kidney axis, affect lipid metabolism, such as bile acid (BA)

metabolism, and the immune imbalance aggravates renal injury

(18–20). Recent studies related to lipid metabolism disorders in

human and animal models of DKD have revealed that the

deposition of toxic FAs metabolites leads to ectopic lipid

deposition in podocytes and tubular epithelial cells, interstitial

fibrosis, and DKD (17, 21–23). The causes and pathogenesis of

lipid metabolism disorders in DKD have not yet been fully

elucidated. Therefore, studying the mechanism of lipid

metabolism changes in DKD and how to slow down the

development of DKD through the regulation of different targets

has become a hot research topic.
2 Characterization of lipid metabolism
changes in DKD

Abnormalities in the metabolism of TG, CHOL, sphingolipids,

phospholipids (PLs), LDs, and BAs are key factors in DKD

progression. Both the quality and quantity of lipids are associated

with this process and produce reactive oxygen species (ROS), which

exacerbate oxidative stress, inflammation, and cell death (24).
2.1 Abnormal TG metabolism in DKD

Abnormal TG metabolism in DKD is mainly characterized by

abnormal uptake and oxidation of FAs. Fatty acid transport

proteins(FATPs),cluster of differentiation 36 (CD36), and fatty

acid-binding protein (FABP) are correlated with FA uptake in

DKD. FATPs control FAs uptake, and fatty acid transport protein

2 (FATP2) deficiency improves renal outcomes (25, 26). fatty acid

transport protein 4(FATP4) levels in diabetic mice are correlated

with lipid accumulation in DKD (27). CD36 is a transmembrane

glycoprotein that mediates oxidized low-density lipoprotein (LDL)

uptake. An increase in CD36 levels is strongly associated with

kidney injury in DKD (28–32). Increased CD36 expression in

mouse kidneys promotes TG accumulation in the kidney (33).

fatty acid-binding protein1(FABP1), another protein associated

with abnormal lipid uptake in DKD, is a reliable marker of the

onset and progression of DKD (34–37).
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Fatty acid oxidation (FAO) is the primary pathway that reduces

the renal lipid content. The expression of FAO genes, including

peroxisome proliferators-activated receptors a (PPARa), acyl

coenzyme A dehydrogenase, and acyl-CoA oxidase 1/2(ACOX1/

2), was significantly reduced (33, 38).

Non esterified fatty acids (NEFA) and essential fatty acid (EFA)

changes are also important in DKD. In the early stages of DKD,

NEFAs increase and EFAs decrease (39). Other NEFAs

(Monounsaturated 16:1/18:1 FAs, omega-6/7/9 in the serum, and

10-nitrooleic acid in the urine) are also consistently elevated in

DKD (40). In addition, long-chain free fatty acid levels were

reduced in rats with DKD (41).
2.2 Abnormal CHOL metabolism in DKD

CHOL synthesis, endocytosis, and exocytosis are all closely

associated with DKD. Studies have demonstrated that increased

expression of sterol regulatory element-binding proteins (SREBP)

and isoforms associated with CHOL synthesis that mediate

intracellular CHOL sensing leads to renal damage in DKD (42–46)

and plays a role in the accumulation of LDs (47). Increased expression

of SREBP and its isoforms in glomeruli of patients with DKD leads to

renal injury (48–50). Inhibition of CHOL efflux and increased CHOL

influx in DKD cells increases free CHOL levels, which activate sterol O-

acyltransferase 1 to form cholesteryl esters (ChEs) that are stored in

LDs, causing excessive accumulation of CHOL in podocytes (22, 44,

51). In contrast, induction of CHOL efflux ameliorates DKD

progression and DKD-like glomerulosclerosis (38, 52). ATP-binding

cassette transporter A1 (ABCA1), which promotes CHOL efflux, and

another CHOL efflux scavenger receptor, BI (SR-BI), were found to be

significantly inhibited in DKD (53).
2.3 Sphingolipids anomalies in DKD

Expression of the sphingolipids metabolites ceramide (Cer),

sphingosine-1-phosphate (S1P), Ceramide-1-phosphate (C1P) is

specific to DKD. Long-chain Cer and ultra-long-chain Cer levels

are elevated in DKD (54–56). Renal S1P levels are elevated in

diabetic mice (57, 58), and sphingosine kinase, which produces S1P,

exhibits increased expression and activity (59). Receptor signaling

for S1P is specifically expressed during glomerular injury (60, 61).

Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is

increased in DKD mice in association with a C1P-deficient state

in podocytes (62–64). In addition, increased ganglioside GM3

(GM3) in the renal cortex during the early stages of diabetes

alters pro-survival receptor-related Automatic Kernel Tunables

(Akt) and Protein kinase B signaling to exacerbate DKD (65–68).

This suggests a role for sphingolipids in the development of DKD.
2.4 Abnormal metabolism of PLs in DKD

PLs are key structural components of all cellular lipid bilayers

that contain multiple fatty acyl groups and are potential biomarkers
frontiersin.org
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o f DKD (69–72 ) . Pho spha t i dy l e t hano l amine (PE ) ,

phosphat idyl inos i to l (PI) , phosphochol ine (PC) and

sphingomyelin (SM) were significantly altered (73, 74). Levels of

two lysolecithins (PC and lysophosphatidic acid (LPA)) and

Sphingomyelin (SM) (d18:1/16:0) were found to be significantly

elevated in the glomeruli of diabetic mice (75–77), and the levels of

glucose-modified aminoketoses (Amadori-PEs) were even higher in

the renal cortex. PI (40:6) levels tended to decrease in the serum of

patients with type 2 DKD (78). In addition, it has been shown that

diabetic mice also show reduced relative abundance of Cardiolipin

(CL) and its subpopulations in the proximal tubules of the renal

cortex (79).
2.5 Accumulation of LDs in DKD

LDs are cellular reservoirs of CHOL and acylglycerols (80). LDs

alleviate DKD by preventing lipotoxicity and lipid apoptosis (81–

83) or enhancing autophagic pathways (84). Increased

accumulation of LDs in DKD was found (22, 52, 85),and an

increase in LDs in glomerular and/or tubular cells of the kidneys

of hyperglycemic mice was accompanied by an increase in markers

of oxidative stress (xanthine oxidoreductase (XOR) and

nitrotyrosine with tail-interacting protein of 47 kDa (TIP47))

(86). The expression of perilipin 2 (PLIN2), a family of

lipoproteins present in the coating of LDs, is significantly

upregulated in DKD pedunculated cells (27, 87).
2.6 Abnormal metabolism of BAs in DKD

BAs are oxidized hepatic enzymes derived from CHOL and are

found mainly in the enterohepatic circulatory system; they may be

directly involved in the regulation of blood glucose (88) or

indirectly involved through the gut-kidney axis, improving lipid

metabolism to protect the kidney (89). BAs and total CHOL were

negatively correlated with the severity of DKD, and BAs may

ameliorate DKD through the activation of receptors and

downstream signaling pathways in the glomerular cells. The

farnesoid X Receptor (FXR) pathway and takeda G protein-

coupled receptor 5 (TGR5), which are directly activated by BAs,

are highly expressed in the kidney after activation and can play a

role in slowing down renal injury (90–94). However, the association

between BAs and DKD remains unclear. (Figure 1)
3 Mechanisms of lipid metabolic
changes in DKD

3.1 Metabolic reprogramming (MR)

MR refers to the ability of cells to adapt their metabolic

processes in response to changing environmental conditions (95)

and MR in DKD mainly manifests as renal lipid accumulation (96).

Among these, abnormal metabolic pathways of TG, CHOL,

sphingolipids, LDs, and BAs are key aspects of MR in DKD.
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Renal TG accumulation in patients with DKD is associated with

the dysregulated expression of genes involved in lipid metabolism

(97). Renal biopsies from patients with DKD showed decreased

expression of genes encoding PPAR-a and PPARd and their

downstream acyl-coenzyme A oxidase and carnitine palmitoyl

transferase (CPT1) involved in the fatty acid b-oxidation
pathway, and SREBP, a transcription factor regulating FA

synthesis, induced fluorescent antibody serum neutralization

(FASN) and acetyl Coenzyme A(CoA) carboxylation. The

expression of genes involved in the fatty acid b-oxidation
pathway, such as (22),and SREBP, a transcription factor

regulating the synthesis of FAs, induced FASN and acetyl CoA

carboxylase to increase the cytosolic TG content (98, 99),and it was

found that Streptozotocin(STZ)-induced diabetic rat renal cortex

and DKD patients’ renal tubules increased their TG content and

increased sterol regulatory element-binding proteins 1(SREBP-1)

expression in the renal tubular epithelium of STZ-induced diabetic

rats (100–103). In addition, elevated renal TC was also associated

with decreased PPAR-a and PPAR-d expression, which also led

directly to decreased FAO (44), showing a direct pathway between

decreased FAO and net accumulation of lipids in the renal cortex of

patients with DKD.

In CHOL metabolism, low-density lipoprotein receptor (LDLr)

and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) were involved

in CHOL uptake and synthesis, respectively. The expression of

LDLr and HMG-CoA reductase was significantly elevated in

DKD, whereas the expression of genes involved in CHOL efflux,

including ABCA1, ATP-binding cassette transporter G1(ABCG1),

and apoipoprotein E (apoE), was significantly reduced (38, 104,

105). Moreover, sterol regulatory element-binding proteins 2

(SREBP-2) activates LDLr and HMG-CoA reductase, enhancing

CHOL uptake and synthesis (46, 106). ABCA1 mediates

CHOL transport to apolipoprotein A-I (Apo A-I) for further

efflux, and strong downregulation of ABCA1 mRNA was

observed in DKD, leading to the inhibition of CHOL efflux in

pedicle cells (52, 107).

In terms of sphingolipids metabolism, the rs267734 gene

variant of Ceramide synthases 2 (CerS2) in patients with DKD

resulted in increased proteinuria (108), and polymorphisms in the

Sphingosine-1-phosphate lyase 1(SGPL1) gene encoding S1P lyase

1 were associated with reduced enzymatic activity of S1P lyase 1 and

the development of nephropathy. In mice, knockdown of the Sgpl1

gene encoding S1P lyase 1 resulted in loss of peduncles and severe

proteinuria (109, 110). Studies on C1P have shown that increased

SMPDL3b expression in DKDmice is associated with podocyte C1P

deficiency (62). SMPDL3b expression is elevated in the glomeruli of

patients with DKD (63), whereas SMPDL3b overexpression in

podocytes leads to S1P accumulation (64).

Accumulation of LDs in DKD may be related to abnormal

protein expression in the coating of LDs. It was found that

variations in Perilipin 1(PLIN1) can lead to DKD-like renal

injury (111). Clinical studies have shown that the polymorphism

rs4578621 in the Perilipin(PLIN) gene is associated with type 2

diabetes mellitus, and the expression of Perilipin 2(PLIN2) is

upregulated in the kidneys of diabetic db/db mice (103, 112),

which may be the reason.
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In BA metabolism, the ATP-binding cassette transporter C 3

(Abcc3) encodes multidrug resistance-associated protein 3 (MRP3),

and Abcc4 encodes MRP4. Both of transport taurine and glycine

conjugates of bile acids and unconjugated bile acid cholate into the

bloodstream. Solute carrier organic anion transporter family

member 1A1 (Slco1a1) encodes organic anion transport peptide

1A1 (OATP1A1), which transports unconjugated and conjugated

bile acids into the cell (113),and type 2 diabetic db/db mice exhibit

decreased Slco1a1 and increased Abcc3 and Abcc4 expression in the

kidney, resulting in the loss of bound and unconjugated bile acids

and bile salts from the cells (114, 115). (Figure 2)
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3.2 Ferroptosis

Lipid metabolism disorders in DKD are primarily characterized

by disturbances in FA, BA, and CHOLmetabolism (116, 117). DKD

serum is markedly decreased in l-methionine, which can be

methylated in vivo to produce L-(+)-cysteine. The latter is one of

the three amino acids used for the synthesis of glutathione (GSH)

(118). Elevated Fatty Acid Binding Protein 4(FABP4) expression

may lead to altered lipid deposition in DKD and is associated with

ferroptosis (119). Elevated expression of FABP4 was found in HG-

HK2 cells from patients with DKD who showed iron deposition in
FIGURE 1

Characteristics of lipid metabolism changes in DKD. The metabolic abnormalities of TG, CHOL, sphingolipids, PLs, LDs, and BAs were mainly
reflected in the metabolic abnormalities of TG, which were reflected in the uptake and oxidation process of FAs. The abnormalities of CHOL were
related to its own synthesis, endocytosis, and exocytosis. The expression of the metabolites of sphingolipids, Cer, S1P, and C1P was specific to DKD.
The metabolic abnormalities of PLs (PC, LPA, SM, CL, PE, and PI) were significantly altered in kidney-associated cell membranes. Changes in LDs
were mainly associated with the accumulation of Lipid in DKD cells. BAs may delay renal injury through direct activation of the FXR pathway and
TGR5 membrane receptors. The upregulation of CD36 expression facilitated triglyceride accumulation in the kidney, while the increase in SMPDL3b
was linked to ceramide-1-phosphate deficiency in podocytes. The coordinated actions of SOAT1/ACAT1, ABCG1/SR-B1, and ABCG1/SR-B were
involved in lipid droplet accumulation. However, dysregulation of Akt and protein kinase B signaling by Cer/GM3 exacerbated lipid metabolism
abnormalities in renal podocytes, tubule cells, and mesangial cells. These processes are closely associated with the intestine, liver, and
blood vessels.
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renal tubules and loss of mitochondrial cristae, whereas Carnitine

Palmitoyl transferase 1A(CPT1A), glutathione peroxidase 4,

ferritin heavy chain (FTH), and ferritin light chain (FTL) were

found to be elevated in HG-HK2 cells from patients with DKD

who showed iron deposition in renal tubules and loss of

mitochondrial cristae. FTH and FTL decrease and promotes

ferroptosis, leading to renal tubular injury. Simultaneous

inhibition of FABP4 restores FAO, thereby reducing lipid

accumulation and peroxidation while increasing CPT1A

expression, which, in turn, inhibits ferroptosis and reduces renal

injury and fibrosis (120). Acyl-CoA synthetase long-chain family4

(ACSL4) is overexpressed in DKD (121), and FA regulation

modulates lipid metabolism to affect ferroptosis. The upregulation

of ACSL4 increased Arachidonoyl-Phosphatidylethanolamine (AA-

PE) and Adrenoyl-Phosphatidylethanolamine (AdA-PE) levels,

promoted ferroptosis, and exacerbated tubular fibrosis in DKD

(122). In addition, ACSL4 inhibition may ameliorate renal injury by

decreasing the levels of lipid peroxidation products and inhibiting

ferroptosis (123). CD36 expression is increased in patients with

DKD (124). CD36 transports polyunsaturated fatty acids (PUFAs),

which are essential for lipid peroxidation, intracellularly, and its

increased expression has been shown to correlate with ROS
Frontiers in Endocrinology 05
production (1). CD36 has been shown to promote proximal

tubular fibrosis under hyperglycemic conditions, which may be

mediated by its regulation of ferroptosis suppressor function in the

proximal tubular cells. CD36 has been shown to promote proximal

tubular fibrosis under hyperglycemic conditions. This may promote

ferroptosis by regulating the ubiquitination of ferroptosis

suppressor protein 1 in proximal tubular cells (125, 126). A

correlation has been found between BA metabolism and

glomerulosclerosis and tubulointerstitial fibrosis in DKD (127,

128), possibly through the inhibition of ligand-activated nuclear

receptor Farnesoid X Receptor(FXR)/retinoid X receptor activation,

which is strongly associated with ferroptosis (129). In addition,

compared to soybean oil (SO) and linoleic acid (LN), which are rich

in PUFAs, peanut oil (PO), lined oil (LO), and rapeseed oil (RO),

which are rich in saturated fatty acids and monosaturated fatty

acids, are highly likely to reduce the reabsorption of BAs in the

colon, which has a different impact on BA metabolism. This may be

related to changes in the gut microbiota structure of DKD (130).

Impairment of CHOL efflux and the accumulation of CHOL lead to

glomerulosclerosis and podocyte ferroptosis in early DKD, and is

related to the reduction of ABCA1, the main protein of CHOL

efflux (131, 132). The interaction between CHOL metabolism and
FIGURE 2

MR in DKD. The main manifestations were abnormal reprogramming of TG, CHOL, sphingolipids, LDs, and BAs metabolic pathways in renal
mesangial cells, renal tubular cells, and podocytes. TG abnormalities were associated with increased expression of FA synthesis transcription factors
and decreased expression of proteins of the fatty acid b-oxidation pathway (PPAR-a, PPAR-d, and SREBP). The abnormalities in CHOL metabolism
were related to the abnormal expression of genes encoding CHOL uptake and synthesis proteins (ABCA1, ABCG1, and apoE).Abnormalities in
sphingolipids metabolism were associated with deletion of the SGPL1 gene and increased expression of the SMPDL3b protein. Changes in LDs were
associated with increased expression of PLIN2. Changes in BAs metabolism were associated with increased expression of the genes encoding BAs
transporter proteins (Abcc3, Abcc4, and Slco1a1).
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ferroptosis (133, 134) may be a potential cause of DKD progression,

suggesting that ferroptosis is correlated with FAs, BAs, CHOL

metabolism disorders, and DKD development.
3.3 Lipophagy

Autophagy is an intracellular pathway that maintains cellular

homeostasis by degrading cytoplasmic components via

autolysosome formation of autolysosomes (135). Studies have

shown that the development of DKD is associated with defective

renal autophagy (119, 136–140). In DKD, the microtubule-

associated protein 1A/1b-light chain 3 (LC3-II) is dependent on

phagocytosis of endoplasmic reticulum membranes to form lipid

autophagosomes, which with their cargoes, mainly composed of

ChE and TG, fuse with lysosomes to form autophagic lysosomes, in

which the cargo is degraded to produce FAs, a process known as

lipophagy (141–147). The accumulation of ChE and FAs

metabolites in DKD podocytes has been implicated in the

pathogenesis of glomerular dysfunction and lipotoxicity in DKD

(148). LDs, as reservoirs of excess lipids, inhibit lipotoxicity,

and over-activation of lipophagy can promote renal fibrosis

(81, 149). Adipose triglyceride lipase (ATGL) is a critically

important signaling node for lipophagy, and sirtuin 1 (SIRT1)

acts as a key mediator downstream of ATGL whose role is to

promote lipophagy (150) and decreased expression of SIRT1 in the

kidney promotes DKD (151–153). In addition, LDs are subject to a

variety of cellular factors that can influence the development of

lipophagy. Lipophagy is regulated by the nutritional state of the cell

and proteins that detect changes in the nutritional stores (154).

Mechanistic target of rapamycin complex 1(mTORC1) inhibits

lipophagy, and activation of AMP-activated protein kinase

(AMPK) promotes lipophagy (155, 156). Specific activation of

mTORC1 in the podocytes in DKD leads to many changes in

DKD, including increased albuminuria, podocyte loss, and

thylakoid membrane expansion, while AMPK in DKD decreased

autophagic activity in podocytes and increased cytotoxicity and

apoptosis (157, 158).

Sphingolipids may be a regulator of lipophagy (159). The

sphingolipids metabolite C1P also regulates renal autophagy (160,

161). Cer itself induces autophagy, and treatment with exogenous

C1P can upregulate the expression of beclin1, leading to autophagy

through c-Jun N-terminal kinase (JNK) activation (162), whereas

AMPK can initiate autophagy either by phosphorylating beclin1 or

by blocking mTORC1 (163, 164). This indicates an important role for

the AMPK/mTOR pathway in autophagy. CHOL removal also plays

a crucial role in autophagosome initiation (165, 166). It was found

that STZ induced a decrease in autophagic activity in podocyte cells

after diabetes, which ultimately led to the development of DKD (167),

and the abnormalities of sphingolipids and CHOL exhibited by lipid

metabolism disorder in patients with DKDmay be responsible for the

inhibition of autophagy in DKD podocyte cells. The above suggests

that in DKD, lipophagy abnormalities and autophagy inhibition

caused by sphingolipids and CHOL metabolism disorders are

closely related to the development of DKD.
Frontiers in Endocrinology 06
3.4 Immunomodulation of gut microbiota

Gut microorganisms produce metabolites, such as short-chain

FAs (SCFAs), which are involved in the synthesis and metabolism

of the human body and in the immunomodulatory processes of the

body (168, 169). The gut microbiota influences both innate and

adaptive immune systems. During innate immunity, the gut

microbiota of Bacteroides, Bifidobacterium, Lactobacillus, and

Aspergillus are involved in the maturation of the immune system

(170). SCFAs, metabolites of gut microbiota, are involved in

immunomodulation by regulating nuclear factor kappa-B (NF-

кB) signaling in neutrophils, eosinophils, and macrophages in the

gut and by strengthening the physical barrier of the gut (171–174).

During adaptive immunity, Lactobacillus, Clostridium,

Bifidobacterium, and Enterococcus in the gut can reduce

inflammatory responses by producing lipid metabolites and

reducing tumor necrosis factor a (TNF-a), and inflammatory

mediators interleukin-1(IL-1), interleukin-6 (IL-6), and

interleukin-18(IL-18) (175–178).

In DKD, the gut microbiota are associated with immune

dysregulation, lipid metabolism disorders, and DKD development

(172–174, 179, 180). The gut microbiota of Lactobacillus, Clostridium,

Bifidobacterium, and Enterococcus (175) can control BAs as

lipid metabolism modulators to modulate the adaptive

immunosuppression of inflammatory responses by altering

CHOL secretion (177, 178). The gut-liver-kidney axis is the

pathway by which lipid metabolites are metabolized in the liver

through intestinal absorption and excreted from the kidney (181).

Organic anion transporter 3(OAT3) is mainly expressed in

the kidney, and the absence of OAT3 alters the normal

metabolite transport function in the gut-liver-kidney axis, resulting

in the accumulation of endogenous lipid metabolites, such as bile

acids and lipids, and G-protein-coupled receptor 35(GPR35), which

is a key receptor for lipid metabolism. The coupled GPR35 is

associated with inflammation (182–184). This suggests that the

disturbance of the gut microbiota and imbalance of immune

homeostasis in patients with DKD may affect lipid metabolism

through the gut-liver-kidney axis and ultimately contribute to the

development of DKD (Figure 3).
4 Targeting lipid metabolism for
DKD treatment

4.1 Conventional drugs

4.1.1 Atorvastatin
Atorvastatin effectively reduced the levels of low-density

lipoprotein CHOL (LDL-C), creatinine (CREA), and urinary

albumin and creatinine (UACR) and downregulated the

expression of the inflammatory factors TNF-a, monocyte

chemoattractant protein-1 (MCP-1), and IL-6 expression in renal

tissues, which ameliorates renal injury and delays the progression of

DKD by reducing morphological lesions and renal fibrosis and
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increases transforming growth factor beta (TGF-b) and collagen I

staining (185).

4.1.2 Fenofibrate
Fenofibrate decreased TG content and lipid accumulation in

DKD and increased activation of the AMPK/FOXA2/medium-

chain acyl-CoA dehydrogenase pathway, significantly reducing

renal function and tubular cell apoptosis and slowing DKD

progression (186).

4.1.3 Betulinic acid (BA)
BA inhibits phospho-inhibitor of kappa Balpha (IkBa)

degradation and NF-kB activity and reduces Fibronectin (FN)

expression. It inhibited the DNA-binding activity and

transcriptional activity of NF-kB in high glucose-induced

glomerular mesangial cells, enhanced the interaction between

IkBa and b-arrestin 2 in mesangial cells, and prevented diabetic

renal fibrosis by stabilizing the NF-kB inhibitory protein, IkBa, to
inhibit NF-kB activation (187).
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4.1.4 Liraglutide
Liraglutide is a novel hypoglycemic drug. Inhibition of SREBP-1

and Fatty Acid Synthase (FAS) increases ATGL and hormone-

sensitive lipase protein expression levels, promoting AMPK

phosphorylation to attenuate ectopic lipid deposition in renal

tubules, improving PA-induced lipid accumulation in renal

tubular epithelial cells, inhibiting lipid synthesis, and promoting

lipolysis (188). Liraglutide increased the expression of

phosphorylated (p)-eNOS and p-AMPK in the glomeruli,

downregulated the expression of p-mTOR, increased the renal

expression of LC3B-II, activated autophagy, ameliorated DKD

kidney injury, and decreased urinary albumin and Liver-type

Fatty Acid Binding Protein (L-FABP) levels (21).

4.1.5 a-lipoic acid (ALA)
ALA plays a role as an antioxidant in the mitochondrial

dehydrogenase reaction, which improves the antioxidant status

and lipid distribution, and reduces inflammation by regulating

lipid levels, enhancing the body’s antioxidant capacity,
FIGURE 3

Mechanism of lipid metabolism changes in DKD. The main manifestations are abnormalities of ferroptosis, lipophagy, and immunoregulation of gut
microbiota in renal mesangial cells, renal tubular cells, and podocytes. Ferroptosis abnormalities are reflected in the transport of PUFAs and changes
in the enzymatic response to the LPO process. Abnormalities in lipophagy are associated with abnormalities in cytosolic C1P and CHOL metabolism,
leading to the regulation of autophagy by the JNK/AMPK/mTOR channel activation to regulate autophagy in LDs. Abnormalities in gut microbiota
immunoregulation are reflected in disorders of gut-derived SCFAs, BAs, and immune factors (TNF-a,IL-1, IL-6, and IL-18) via the NF-кB, OAT3
pathway directly contributing to renal inflammation and lipid accumulation in DKD.
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protecting vascular endothelial function, and activating the renal

cystathionine gamma-lyase/hydrogen sulfide pathway to delay

DKD (189).

4.1.6 Adiponectin Receptor Agonist AdipoRon
AdipoRon is an active synthetic lipocalin receptor agonist.

AdipoRon ameliorates DKD by activating the intracellular Ca2

+/Liver Kinase B1(LKB1)-AMPK/PPARa pathway to ameliorate

glomerular endothelial cells(GECs) and podocyte injury

(190). AdipoRon reduces palmitate-induced lipotoxicity in the

kidney by improving lipid metabolism, especially in GECs and

podocytes, and reduces oxidative stress and apoptosis, and

preventing renal injury, thereby improving endothelial

dysfunction and delaying DKD progression in type 2 diabetic

nephropathy (191).

4.1.7 Apolipoprotein A-IV (apoD) and
apolipoprotein D (apoA-IV)

APOD is an essential component of plasma lipoproteins and

plays an important role in plasma lipoprotein metabolism.

Increased apoD and apoA-IV help counteract the chemical

modification of high-density lipoprotein (HDL) by advanced

glycation end products (AGEs) and carbamylation, which

contributes to the loss of function of HDL in maturing DKD,

thereby delaying DKD (192).

4.1.8 Metrnl
Metrnl is a recently discovered hormone produced by

skeletal muscles and adipose tissue in response to exercise and

cold exposure. Metrnl-specific overexpression or recombinant

Metrnl administration in the kidney regulates renal tubular

lipid metabolism through mitochondrial homeostasis mediated

by the Sirtuin 3(Sirt3)-AMPK/uncoupling protein 1(UCP1)

signaling axis, alleviates renal injury, and delays DKD in diabetic

mice (193).

4.1.9 Lipin-1
Lipin-1 inhibits adipose synthesis, upregulates FAO, attenuates

proximal tubular epithelial cell injury in tubulointerstitial fibrosis,

and delays DKD by promoting proliferator-activated receptor-

gamma co-activator-1alpha(PGC-1a)/PPARa-mediated Carnitine

Palmitoyltransferase 1 Alpha(Cpt1a)/hepatocyte nuclear factor

4alpha signaling and upregulating SREBPs (194).

4.1.10 Leptin
Leptin is a 167-amino acid lipoprotein that plays a role in the

regulation of energy metabolism. It attenuates lipid deposition

present in the kidney by activating AMPK phosphorylation,

which upregulates insulin-induced gene 1 (Insig-1) expression in

PA-induced renal tubular epithelial cell lines(NRK-52E) and delays

DKD (195).

4.1.11 ABCA1
ABCA1 is one of the most important proteins involved in the

maintenance of CHOL homeostasis. In the human renal glomerular
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endothelial cell line cultured under high-glucose and high-CHOL

conditions, ABCA1 deficiency increases cellular CHOL deposition,

leads to inflammation and apoptosis, disrupts the endothelial

glycoconjugate barrier, and induces endoplasmic reticulum stress

(ERS). In contrast, ABCA1 overexpression enhances CHOL efflux

or inhibits ERS in vitro, significantly prevents high glucose- and

high-CHOL-stimulated glomerular endothelial injury, and delays

DKD (196).
4.1.12 Maresin 1 (MaR1)
MaR1 is a widespread anti-inflammatory lipid mediator,

and serum MaR1 concentrations are negatively correlated

with hemoglobin A1c, diabetes duration, UACR, neutrophils,

and the neutrophil-lymphocyte ratio and positively correlated with

HDL CHOL (HDL-C) and estimated glomerular filtration rate.

MaR1 alleviated the pathological progression of hyperglycemia,

UACR, and DKD through the leucine-rich repeat domain-

containing G protein-coupled receptor 6(LGR6)-mediated cyclic

adenosine monophosphate-superoxide dismutase-2 antioxidant

pathway (197).
4.1.13 Exogenous Adropin (Ad) in nanocapsules
Ad reverses the effects of nanocapsules on ameliorating

mitochondrial damage by knocking down the overexpression of

Neuronatin (Nnat) or translocator protein(TSPO) to improve

lipid metabolism and inhibit TSPO activity, thereby enhancing

mitochondrial function. It protects hexokinase 2(HK2) from

high glucose (HG) stimulation. It also effectively controls

blood glucose and lipid levels, improves renal function,

inhibits ROS overproduction, protects mitochondria from

damage, improves lipid deposition in renal tissues, and

downregulates the expression of lipogenic proteins SEBP-1 and

Adipose Differentiation-Related Protein (ADRP) in DKD

mice (198).

4.1.14 Novel phosphate and bile acid storage
agent polymer SAR442357

SAR442357 is a newly developed non-absorbable polymeric

sequestering agent with optimal phosphate and bile salt

sequestration properties. Long-term treatment of diabetes mellitus

type 2(T2DM) obese Zucker fatty/spontaneously hypertensive heart

failure F1 hybrid (ZSF1) leads to enhanced segregation of BAs and

phosphates in the gut, improved glycemic control, reduced serum

CHOL, and delayed DKD progression (199).

4.1.15 Complement factor B knockout
(Cfb-knockout)

Effects of Complement Factor B(CFB) on lipid metabolism in

developing DKD, Cfb-knockout diabetic mice had significantly less

vas deferens interstitial injury and less Cer biosynthesis. Cfb

knockout further blocked the transcription of Ceramides (CERs)

by inhibiting the NF-kB signaling pathway, which inhibited the

activation of the complement alternative pathway and attenuated

renal injury in DKD, especially vas deferens mesenchymal injury.

CERs regulated the biosynthesis of Cer (200). (Table 1)
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TABLE 1 Therapeutic advances related to conventional drug-targeted lipid metabolism in diabetic kidney disease.

Categorization
Veterinary

drug
Experimental

model
Signaling pathway Mechanism of action

Related
Literature

Antihyperlipidemic drug

Atorvastatin STZ rats
TNF-a, MCP-1 and IL-

6 downregulated
(185)

Fenoprofibrate
db/db mice; PA/
HG-induced
HK2 cells

AMPK/FOXA2/
MCAD pathway

(186)

BA
STZ-induced

diabetic rats; HG-
induced GMCs

Inhibition of NF-
kB activation

Stabilization of the NF-kB
inhibitory protein IkBa

(187)

Antihyperglycemic drug Liraglutide

SDT rats

(p)-eNOS and p-AMPK
upregulated; p-mTOR
downregulated; LC3B-II
expression increased

(188)

Male SD rats were
treated with a
combination of
high-fat diet +

unilateral
nephrectomy +
low-dose STZ in

order to establish a
rat model of DN

AMPK phosphorylation
SREBP-1 and FAS inhibition;
ATGL and HSL upregulation

(21)

Improve blood vessels ALA
Nicotinamide/STZ

SD rats
Renal CSE/H2S pathway (189)

New drug

The Adiponectin
Receptor

Agonist AdipoRon
db/db mice

Ca2+/LKB1-AMPK/
PPARa pathway

Upregulation of CaMKKb,
phosphorylated Ser431LKB1,
phosphorylated Thr172AMPK

and PPARa expression

(191)

apoD and apoA-IV DKD patients HDLand AGEs downregulated (192)

Metrnl
HFDs/STZ-induced
mice; db/db mice

Sirt3-AMPK/UCP1
signaling axis

(193)

Lipin-1

Lipin-1-deficient
db/db mouse model
and STZ/HFD-

induced
T2DM mice

PGC-1a/PPARa-
mediated Cpt1a/
HNF4a signaling

SREBPs upregulated (194)

Leptin STZ rats AMPK phosphorylation
Insig-1 expression is

upregulated in NRK-52E cells
(195)

ABCA1 T2DM mice
Enhanced CHOL efflux;

ERS inhibition
(196)

MaR1

Patients with
glucose tolerance/
T2DM/DKD; STZ
vs. HFD mice

LGR6-mediated cAMP-
SOD2

antioxidant pathway
(197)

Ad
knocking down the

overexpression of Nnat
or TSPO

inhibits ROS overproduction;,
SEBP-1 and

ADRP downregulated
(198)

SAR442357 ZSF1 rats

enhanced segregation of BAs
and phosphates,;improved
glycemic control, reduced

serum CHOL

(199)

Gene therapy Cfb-knockout DN patients NF-kB signaling pathway
CERS transcriptional
down-regulation

(200)
F
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4.2 Traditional Chinese medicine (TCM)
monomers and compound formulas

4.2.1 Lipid metabolism reprogramming
4.2.1.1 Berberine (BBR)

BBR is a potent compound from TCM (201) that can reverse

lipid metabolism disorders and ameliorate kidney injury in patients

with DKD. BBR stabilizes mitochondrial morphology in podocytes

by eliminating PA-induced activation with dynamin related protein

1 (202).BBR peroxisome Peroxisome Proliferator-Activated

Receptor Gamma Coactivator 1-Alpha(PGC-1a) signaling

pathway activation promotes mitochondrial energetic homeostasis

and FAO in podocytes, and PGC-1a-mediated mitochondrial

bioenergetics can play a key role in lipid disorder-induced

podocyte injury and development of DKD in mice (203).

4.2.1.2 Breviscapine

Breviscapine is a purified flavonoid extract of Erigeron

breviscapus (204), which attenuates dyslipidemia by decreasing

24-h urine protein, serum creatinine (Scr),and blood urea

nitrogen levels; modulates lipid profiles by increasing levels of

TC, TG, and HDL; and protects against kidney injury (205).

4.2.1.3 Microvascular endothelial differentiation gene-1
(MDG-1)

MDG-1 is a polysaccharide derived from TCM japonicas (206).

MDG-1 reduced blood glucose, TG, Blood Urea Nitrogen (BUN),

and albumin levels by activating the phosphatidylinositol-3 kinase/

Akt signaling pathway and significantly suppressed the expression

of TGF-b1 and connective tissue growth factor. MDG-1 attenuated

glomerular mesangial dilatation and tubulointerstitial fibrosis in

diabetic mice. MDG-1 ameliorated DKD by reducing

hyperglycemia, hyperinsulinemia, and hyperlipidemia and by

inhibiting intracellular signaling pathways (207).

4.2.2 Ferroptosis
4.2.2.1 Proteoglycan FYGL

FYGL is a water-soluble substance extracted from Ganoderma

lucidum, highly branched proteoglycan that protects tissues from

oxidative stress damage (208). FYGL significantly inhibited HG/

PA-induced proliferation of HBZY-1 cells, ROS generation, and

malondialdehyde (MDA) production; promoted Superoxide

Dismutase(SOD) activity; and suppressed the expression of

NADPH oxidase 1(NOX1), NADPH oxidase 4(NOX4), mitogen-

activated protein kinase, NF-kB, and pro-fibronectin expression. It

significantly alleviates lipid metabolism disorders and protects the

kidneys from oxidative stress-induced dysfunction, delaying

DKD (209).

4.2.2.2 Notoginsenoside R1 (NGR1)

NGR1 is a novel saponin from Panax notoginseng, a TCM for

the adjuvant treatment of DKD (210),which demonstrated that

NGR1 treatment increased serum lipids in db/db mice, reduced

AGE-induced mitochondrial damage, limited the increase in ROS,

reduced apoptosis in HK-2 cells, promoted the expression of
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nuclear factor erythroid 2-related factor 2(Nrf2) and heme

oxygenase-1(HO-1) to abrogate apoptosis-inducing and TGF-b
signaling by ROS, attenuated histological abnormalities in the

kidney, reduced glomerular volume in DKD, inhibited oxidative

stress-induced apoptosis and renal fibrosis, and delayed DKD (211).

4.2.2.3 Triptolide

The TCM Tripterygium wilfordii (TWH) has been used

clinically to treat renal diseases (212). Triptolide, the main active

ingredient of TWH, can reduce the 24-h urine total protein quantity

(24-h UTP), resulting in decreased renal MDA and nitrotyrosine

expression, downregulation of renal oxidative carbonyl protein

(OCP) expression, and elevated renal SOD to delay DKD (213).

In addition, triptolide is an active diterpene purified from the TCM

TWH, which can ameliorate hyperlipidemia and albuminuria in db/

db diabetic mice, alleviate glomerular hypertrophy and

pedunculated cell injury, and attenuate inflammation and

oxidative stress in the kidneys (214).

4.2.2.4 Mulberry extract

Mulberry extract is considered a potential therapeutic drug for

diabetes (215). Mulberry extract can lead to a significant reduction

in serum TG and very low-density lipoprotein CHOL and HDL-C

concentrations, improve plasma GSH and Malondialdehyde

(MDA), and delay the development of DKD (216).

4.2.3 Lipophagy
4.2.3.1 Panax japonicus C.A. Meyer (PJ)

PJ has been shown to exert a therapeutic effect on DKD (217). PJ

can reduce hyperlipidemia, serum BUN, and 24-h UTP in diabetic

mice by modulating unsaturated FAs, glycerophospholipid

metabolism, and purine metabolism; protect against pathological

changes in renal tissues; and prevent apoptosis of renal cells by

modulating the beclin-2/caspase 3 apoptosis signaling pathway to

delay DKD (218).

4.2.3.2 Resveratrol (RSV)

RSV, an extract of the Chinese herb Tiger Balm, is a naturally

occurring polyphenolic compound that reduces blood glucose and

lipid concentrations and is a Sirt1 agonist (219). Resveratrol

improves circulating lipids and renal dysfunction, reduces lipid

deposition in the kidney by modulating the junctional adhesion

molecule-like protein/Sirt1 lipid synthesis pathway, and ameliorates

DKD (220).

4.2.4 Immunomodulation of gut microbiota
4.2.4.1 Cordyceps cicadae polysaccharides (CCP)

CCP is a fungus that parasitizes ghost moth larvae, modulates

lipids, and improves DKD (221). CCP increases Lactobacillus and

Anaplasma community abundance while decreasing the abundance

of LPS-producing bacteria and reducing the levels of serum TNF-a,
IL-1b, and IL-6 in mice. Significant improvements in 24-h urine

output levels and urinary protein, albumin to creatinine ratio, and Scr

levels and a decrease in glomerular mesangial zone collagen fibers and

lipid accumulation were observed in renal tissue samples (222).
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aling pathway Mechanism of action
Related
Literature

a signaling pathway (202)

n of GRKs in the G protein-AC-
P signaling pathway

GRK2, GRK3 downward; GRK6 upward (203)

decreasing 24-h urine protein, Scr and blood urea
nitrogen levels; increasing levels of TC, TG, and HDL

(205)

kt signaling pathway
Decreased levels of blood glucose, TG, BUN, and
albumin;suppressed expression of TGF-b1 and

connective tissue growth factor
(207)

HBZY-1 cell proliferation,;ROS, MDA inhibition; SOD
upregulation;Inhibition of NOX1, NOX4, MAPK, NF-

kB, and Fibronectin Expression
(209)

Nrf2 and HO-1 expression promotes (211)

24-h UTP,MDA, nitrotyrosine, OCP downregulated;
SOD upregulated

(213, 214)

GSH and MDA downregulated (216)

apoptosis signaling pathway (218)

1 lipid synthesis pathway reduces lipid deposition (220)

TNF-a, IL-1b, IL-6 downregulated; ACR and
Scr upregulated

(222)

BAs downregulated (224)
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Categorization Veterinary drug Base
Experimental

model
Sign

Lipid
metabolism

reprogramming

BBR Coptis chinensis

db/db mice PGC-1

HFD/STZ-induced
DKD rats

Protein expressio
cAM

Breviscapine.
Erigeron breviscapus
(Vant.) Hand.-Mazz

A meta-analysis of
patients with RCT and

DN is shown

MDG-1
Ophiopogon
japonicus

KKAy mice PI3K/A

Ferroptosis

FYGL G. lucidum

db/db mice;
HG/PA-induced rat
glomerular body
mesangial cells
(HBZY-1)

NGR1 Panax notoginseng
AGEs-induced db/db
mice; HK-2 cells

Triptolide
Tripterygium

wilfordiiHook.f.,
TWH

STZ rats

Mulberry extract Mulberry DKD patients

Lipid autophagy

PJ
Panax japonicus
C.A. Meyer

HFD/STZ-induced
diabetic mice

Bcl-2/caspase 3

RSV Tiger Balm
Patients with type 2

diabetes
and albuminuria

JAML/Sirt

Immunomodulation
of intestinal flora

CCP ghost moth larvae mice

MLB Salvia miltiorrhiza rats
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4.2.4.2 Magnesium lithospermate B (MLB)

MLB, an aqueous extract of Salvia miltiorrhiza, an erect

perennial herb of the genus Salvia and family Labiatae, is a

potential therapeutic agent for kidney disease (223). The

abundance of Shigella and Aspergillus species and fecal BAs levels

in the rat intestine were significantly reduced by MLB intervention,

suggesting that MLB may restore the integrity of the intestinal

barrier and inhibit the release of BA-induced inflammatory cells

through localized modulation of the gut microbiota and BA

metabolism, slowing renal injury (224). (Table 2)
5 Summary

The altered manifestations of lipid metabolism disorder

present in DKD have been gradually clarified, and the

mechanisms affecting this process mainly include cellular

ferroptosis, lipophagy, reprogramming of lipid metabolism, and

immune modulation of the gut microbiota (involving the liver-

kidney axis) in the body, which, in turn, accelerates the

progression of DKD, a process that suggests one of the

relationships between lipid metabolism disorder and DKD.

Recent research has suggested that interventions targeting

altered lipid metabolism disorder may help improve DKD

prognosis. However, this requires further clarification of the

specific targets of the interventions; otherwise, the interventions

may not be effective. In addition, compared with known lipid-

lowering drugs, natural drugs have the advantage of multiple

targets and multiple pathways in the treatment of DKD, but their

mechanism of action and scope of application have not yet been

clarified. Most of the existing studies have focused on the

monomers of TCM, whereas the complexity of the components

of TCM prescriptions commonly used in the clinic makes it

difficult to elucidate the mechanism of action. The role of lipid-

lowering as a target of natural drug action warrants further study

of the relevant mechanisms between DKD and these two diseases

and provides a potential research direction for the effective

treatment of DKD.

Computer modeling and simulation technologies are now

pivotal in identifying therapeutic targets for diseases like cancer,

liver fibrosis, and Takotsubo syndrome (TTS) (225–230). Future

studies can leverage cost-effective methods like quantitative lipid

analysis with ES-MSI and incorporate molecular dynamics (MD)

simulations alongside computational bioinformatics to investigate

lipid metabolism’s role in diabetic kidney disease (DKD) and

natural drug effects on lipid disorders. Starting with MD

simulations for atomic-level molecular interaction insights, crucial

for DKD’s molecular understanding, followed by computational

tools to analyze complex data for genetic and protein stability

patterns, this approach aims to elucidate lipid metabolism’s link

to DKD and refine therapeutic targets by analyzing lipid profile

shifts and SNPs.
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This streamlined, multidisciplinary approach promises a deeper

understanding of DKD’s pathophysiology and treatment,

underscoring the importance of merging computational and

experimental methods in biomedical research to enhance

knowledge and therapeutic developments.
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