
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Iveta Yotova,
Medical University of Vienna, Austria

REVIEWED BY

Valentina Caputi,
University College Cork, Ireland
Stacy McAllister,
Emory University, United States
Zhexin Ni,
Second Military Medical University, China

*CORRESPONDENCE

Kanako Hayashi

k.hayashi@wsu.edu

†These authors contributed equally to this
work

RECEIVED 10 November 2023
ACCEPTED 28 February 2024

PUBLISHED 15 March 2024

CITATION

Herup-Wheeler T, Shi M, Harvey ME,
Talwar C, Kommagani R, MacLean JA II and
Hayashi K (2024) High-fat diets promote
peritoneal inflammation and augment
endometriosis-associated
abdominal hyperalgesia.
Front. Endocrinol. 15:1336496.
doi: 10.3389/fendo.2024.1336496

COPYRIGHT

© 2024 Herup-Wheeler, Shi, Harvey, Talwar,
Kommagani, MacLean and Hayashi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Study Protocol

PUBLISHED 15 March 2024

DOI 10.3389/fendo.2024.1336496
High-fat diets promote
peritoneal inflammation
and augment
endometriosis-associated
abdominal hyperalgesia
Tristin Herup-Wheeler1†, Mingxin Shi1†, Madeleine E. Harvey1,
Chandni Talwar2,3, Ramakrishna Kommagani2,3,
James A. MacLean II1 and Kanako Hayashi1*

1School of Molecular Bioscience, Center for Reproductive Biology, Washington State University,
Pullman, WA, United States, 2Department of Pathology & Immunology, Baylor College of Medicine,
Houston, TX, United States, 3Department of Molecular Virology and Microbiology, Baylor College of
Medicine, Houston, TX, United States
Immune dysfunction is one of the central components in the development and

progression of endometriosis by establishing a chronic inflammatory environment.

Western-style high-fat diets (HFD) have been linked to greater systemic

inflammation to cause metabolic and chronic inflammatory diseases, and are

also considered an environmental risk factor for gynecologic diseases. Here, we

aimed to examine how HFD cause an inflammatory environment in endometriosis

and discern their contribution to endometriotic-associated hyperalgesia. Our

results showed that HFD-induced obesity enhanced abdominal hyperalgesia that

was induced by endometriotic lesions. Peritoneal inflammatory macrophages and

cytokine levels increased by lesion inductionwere elevated by chronic exposure to

HFD. Increased expression of pain-related mediators in the dorsal root ganglia was

observed after lesion induction under the HFD condition. Although HFD did not

affect inflammatory macrophages in the peritoneal cavity without lesion induction,

the diversity and composition of the gut microbiota were clearly altered by HFD as

a sign of low-grade systemic inflammation. Thus, HFD alone might not establish a

local inflammatory environment in the pelvic cavity, but it can contribute to further

enhancing chronic inflammation, leading to the exacerbation of endometriosis-

associated abdominal hyperalgesia following the establishment and progression of

the disease.
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1 Introduction

Endometriosis is a chronic and incurable inflammatory disorder

and affects approximately 10% of reproductive-aged women (1, 2). It is

associated with debilitating chronic pelvic pain and infertility, which

substantially reduce the quality of life of women and their families (3,

4). Because endometriosis is estrogen-dependent, current treatments

focus on inhibiting estrogen production and function. However,

hormonal treatments and surgical excision of lesions are often of

limited efficacy with high recurrence rates, frequent side effects,

additional costs, and potential morbidity (5). As nearly 70% of

patients suffer unsolved chronic pain and other related conditions

(6), the direct costs of endometriosis were estimated at $12,118 per

patient per year in the US, and indirect costs were $15,737 (7). The

pathogenesis of endometriosis is a complex process and remains to be

fully understood. Retrograde menstruation has been widely accepted as

the origin of endometriotic tissues (8). However, as retrograde

menstruation occurs in more than 90% of menstruating women (9),

the pathogenesis of the disease is not well understood, and other factors

must contribute to establishing endometriotic lesions and disease

progression (1, 4, 10).

Obesity is an epidemic health burden affecting nearly 40% of

adults and 18% of children in the United States (11). Being

overweight and obese are considered critical risk factors for

chronic diseases, as fat accumulation causes low-grade chronic

inflammation (12) characterized by immune cell infiltration into

adipose tissues and elevated proinflammatory factors (13).

Moreover, excessive fat consumption and accumulation in the

body alter gut microbiota, resulting in dysbiosis to induce low-

grade systemic inflammation (14). Obesity-induced inflammation is

associated with metabolic and autoimmune disorders in women,

causing reproductive dysfunctions such as polycystic ovary

syndrome (PCOS), implantation and pregnancy failure, and

pregnancy complications, including miscarriages (15–18). While

endometriosis is a chronic inflammatory disease, several

epidemiological studies have reported an inverse correlation

between endometriosis and body mass index (BMI) (19).

However, obesity does not protect against endometriosis (19), and

BMI is correlated with the severity but not the frequency of disease

diagnoses (20). Thus, BMI does not provide a simple risk factor for

a heterogeneous endometriotic disease as it does not consider

different components of excess weight, such as adipose deposit

location and interaction with neighboring tissues (20, 21).

Additionally, the correlation between diet-induced obesity and

endometriosis-associated pain or hypersensitivity, one of the

significant endometriosis symptoms, has not been addressed.

Rigorous prior research suggests that aberrant inflammation

contributes to the onset and progression of endometriosis (22–27).

Macrophages (MF) are considered to be key players in promoting

disease progression (25, 28, 29), as abundant MF are present in ectopic

lesions (30) and elevated in the pelvic cavity (31). These MF
populations establish an inflammatory environment in the pelvic

cavity by secreting cytokines and chemokines, which encourage

lesion growth and progression (24, 28, 29, 32, 33) and contribute to

endometriosis-associated pelvic pain (32, 34, 35). Diet-induced obesity

dysregulates immune cells to induce cytokine secretion (13, 36, 37),
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increasing the risks of chronic pain. Therefore, the present study seeks

to understand whether high-fat diets (HFD) affect the progression of

endometriosis disease and immune dysfunctions and how HFD

influence endometriosis-associated hyperalgesia.

The present results highlight that endometriosis-associated

abdominal hyperalgesia was escalated in lesion-induced HFD

mice according to the results of the behavior study and elevated

pain-related mediators in the dorsal root ganglion (DRG). Increased

proinflammatory MF (Ly6C+ MF) and cytokines by lesion

induction were further enhanced by exposure to HFD. The results

also indicate that gut microbiota dysbiosis under the HFD condition

contributed to an aberrant inflammatory environment and

sensitized endometriosis-associated hypersensitivity.
2 Results

2.1 Diet-induced obesity on endometriosis
in mice

To examine the effect of diet-induced obesity on endometriosis,

female mice were fed HFD containing 45% fat by calories or

standard diets (SD) from the age of 5 weeks (defined as Week 0

of the 12-week as a baseline study or 18-week as an endometriosis

study, Figure 1A). We chose to start the study at the age of 5 weeks,

as this is the adolescent age of mice, corresponding to the teenage

period for humans (38). Moreover, approximately 20% of this

population is obese in humans (39). Mice on the 45% fat diets

become obese and are considered physiologically similar to the

typical Western diets that contain 36-40% fat by energy (40, 41). A

standard rodent diet contains approximately 10% fat (40, 42). We

assessed body weight (BW) increase, glucose, and insulin levels at

12 weeks after SD or HFD feeding as a baseline study and 18 weeks

(6 weeks after endometriosis-like lesions (ELL) induction) as an

endometriosis study (Figures 1A–D). BW, blood glucose, and

plasma insulin levels were significantly increased in the group of

HFD at 12 or 18 weeks, whereas they were not affected by lesion

induction. BW, glucose, and insulin levels in the HFD group were

similar to the previously reported levels (43, 44).

We next assessed lesion numbers in the endometriosis study at

18 weeks. Lesion numbers were not altered by HFD compared with

SD (Figure 2A). We have previously reported that peritoneal MF or

monocytes are infiltrated into the ELL (28). We thus addressed MF
infiltration in the lesion staining with CD68, a macrophage marker.

CD68+MF were significantly increased within lesions frommice in

the HFD group (Figures 2B, C), indicating MF infiltration was

accelerated in the ELL-HFD mice, although this did not appear to

affect lesion development.
2.2 HFD accelerated endometriosis-
associated abdominal hyperalgesia

Since HFD can induce chronic pain (12, 13, 45), we performed

the von Frey test to examine the abdominal and hind paw retraction

threshold to determine whether HFD affects endometriosis-
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associated hyperalgesia. We first assessed the abdominal and hind

paw retraction threshold at 12 weeks after SD or HFD feeding. The

abdominal and hind paw retraction threshold showed no

differences under the SD or HFD diets for 12 weeks (Figures 3A, C).

Before examining the effect of HFD on endometriosis-

associated hyperalgesia, we examined how lesion induction time-

dependently alters endometriosis-associated hyperalgesia in the

mouse model. Three days after ELL induction, mice withdrew

both abdominal and hind paw retraction thresholds with

significantly lighter stimuli compared with those before ELL

induction on Day -1 (Supplementary Figures S1A, B). The

abdomen and hind paw retraction sensitivity continued until 3

weeks after ELL induction. By Day 42, 6 weeks after ELL induction,
Frontiers in Endocrinology 03
the hind paw retraction threshold was no longer significantly

different from Day -1, indicating that systemic peripheral

hyperalgesia gradually recovered, whereas the local abdomen was

still sensitive. Since we examined the effect of chronic HFD

exposure on endometriosis-associated hyperalgesia, we chose a

chronic stage, 6 weeks after ELL induction, for further analysis, as

endometriosis is a chronic disease, and most patients suffer chronic

pelvic pain. Furthermore, the timing of disease onset in

endometriosis is currently impossible to determine in patients,

and the disease diagnosis typically relies on the woman noticing

chronic symptoms.

The abdominal and hind paw sensitivity with SD or HFD were

evaluated 6 weeks after lesion induction (18 weeks of SD or HFD
A

B

DC

FIGURE 1

Diet-induced obesity in the mouse model of endometriosis. (A) Experimental study design as described in Material and Methods. (B) Body weight
(BW) changes in mice during the feeding of standard diets (SD) or 45% high-fat diets (HFD) for the baseline study or the endometriosis study. Female
mice were fed either SD or HFD starting at the age of 5 weeks (defined as Week 0 of the 12-week as a baseline study or 18-week as an
endometriosis study). Two-way ANOVA was used to determine the significance between times and groups. (C) Blood glucose levels by cardiac
puncture were measured by Contour Next (n=5 in each group). (D) Plasma insulin levels were quantified by ELISA (n=5 in each group). Data at 12
weeks were analyzed by two-tailed Student’s t-test comparing SD and HFD. Data at 18 weeks were analyzed through one-way ANOVA and Tukey’s
post hoc test. Values in graphs are expressed as the mean ± SEM. Different letters indicated significant differences among the groups (P<0.05). ELL:
endometrial-like lesion.
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feeding). As expected, a significant difference was observed in the

abdominal retraction threshold between Sham (vehicle, PBS,

control) and ELL, with ELL mice withdrawing from lighter

stimuli than Sham mice (Figure 3B). Importantly, ELL-HFD mice

were more sensitive than ELL-SD mice (Figure 3B). On the other

hand, we did not observe any differences in hind paw retraction

threshold among the post-induction groups (Figure 3D). Thus,

HFD-induced obesity enhanced abdominal hyperalgesia that was

induced by endometriotic lesions.
2.3 HFD increased Ly6C+ MF in the
peritoneal fluid of ELL mice

As we observed increased MF infiltration in the lesions of the

HFD group (Figures 2B, C) and ELL-HFD mice have increased

hypersensitivity in the abdomen (Figure 3B) in the endometriosis

study, we expected to observe differences in the inflammatory

environment that is established in the peritoneal cavity.

Therefore, we assessed immune cell profiles, MF, B- and T-cells,

in the peritoneal cavity (Figure 4, Supplementary Figure S2). CD11b

+ MF, CD3+ T-cells, and CD19+ B-cells were not altered by either

HFD feeding or lesion induction (Figures 4A, B). We have

previously reported that the presence of ELL enhanced the

differentiation of recruited (=proinflammatory Ly6C+) MF and

increased the ablation of embryo-derived resident MF (TIM4+

MF) (29). We thus examined Ly6C+ cells (monocytes and MF),

Ly6C+ MF, and TIM4+ MF. High levels of Ly6C+ cells and Ly6C+

MF were observed in the ELL-HFD mice (Figures 4A–C). In

particular, Ly6C+ MF were further increased in the ELL-HFD
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mice than those in ELL-SDmice (Figure 4C). In agreement with our

previous study (29), TIM4+ MF were reduced in ELL-SD and ELL-

HFDmice (Figure 4C). Ly6C+ cells, Ly6C+MF and TIM4+MF, as

well as CD11b+ MF, CD19+ B-cells, and CD3+ T-cells were not

affected by HFD feeding at 12 weeks in the baseline study

(Supplementary Figure S2). These results suggest that ELL

induction under the HFD condition further increases

proinflammatory Ly6C+ MF in the peritoneal cavity.
2.4 HFD altered peritoneal cytokines in the
ELL mice

Proinflammatory MF secrete cytokines, chemokines, and

growth factors that establish the inflammatory environment (27,

46). Abundant cytokines and chemokines have been observed in the

pelvic cavity of endometriosis patients (24, 27). Specifically, the

levels of TNFa, IL1b, and IL6 are increased in pelvic MF isolated

from endometriosis patients (47). Thus, we next examined the

secretion of proinflammatory factors, TNFa, IL1b, and IL6, as well

as IL10, which is known to possess immunoregulatory function and

anti-inflammatory properties (Figures 5A–D). In support of

previous reports, TNFa and IL1b levels were elevated in the ELL

groups compared with those in the Sham group, while TNFa was

further increased in ELL-HFD mice. IL6 tended to be increased by

lesion induction in both SD and HFD groups, though we did not see

significant differences. IL10 levels were not significantly altered

among the groups of Sham-SD, Sham-HFD, and ELL-SD mice,

whereas it was significantly lower in the ELL-HFD mice compared

with that of ELL-SD mice.
A B C

FIGURE 2

Diet-induced obesity increases macrophage infiltration in the lesion. (A) Lesion number (n=18 per group). (B) CD68 was stained to determine
macrophage infiltration in the lesion. (C) The quantification of the percentage of CD68+ cells per total cells (n=5). Data were analyzed with the
student t-test and are shown as mean ± SEM. Different letters indicated significant differences among the groups (P<0.05). SD: standard diets, and
HFD: high-fat diets.
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2.5 HFD stimulated pain-related mediators
in the DRG of ELL mice

Aberrant accumulation of inflammatory factors can stimulate

peripheral nerve terminals of nociceptor neurons innervating

different tissues in peripheral organs (48), resulting in an increase in

the expression of transient receptor potential channels e.g., TRPV1.

Activation of peripheral nerves is also associated with the increased

release of neurotransmitters and neuromodulators such as SP, CGRP,

and BDNF. BDNF is known to regulate both initiation and

maintenance of chronic endometriosis-associated pain (49, 50)

involving neuroangiogenesis (51) and innervation in the pelvic

organs (48). We thus examined the inflammatory mediators,

neurotransmitters, and neuromodulators in the L4-6 DRG, which are

the primary spinal ganglia receiving sensory input from pelvic organs

(Figures 6A, B, Supplementary Figure S3). Significantly more BDNF+
Frontiers in Endocrinology 05
neurons were observed in mice fed HFD. BDNF+ neurons were higher

in mice when ELL were present and most abundant in the HFD-ELL

group. In contrast, CGRP+ neurons were only significantly elevated in

the ELL-HFD mice. SP+ neurons were elevated by lesion induction,

while HFD further increased SP+ neurons after ELL induction.

Although the numbers of TRPV1+ neurons were relatively

consistent between Sham- and ELL-mice, there was a significant

difference between ELL-HFD mice and ELL-SD mice. These results

suggest that lesion induction and/or HFD feeding stimulate

endometriosis-associated peripheral pain mediators.

2.6 HFD altered the composition of the
gut microbiota

As increased fat accumulation alters gut microbiota and causes

low-grade systemic inflammation (14), we next examined 16S
A B

DC

FIGURE 3

HFD accelerates endometriosis-associated abdominal hyperalgesia. Von Frey tests were performed on mice to the lower abdomen and hind paw in
the bseline study after 12 weeks of SD or HFD feeding (A and C, n=10), or 6 weeks post-lesion induction in the endometriosis study (B, D, a total of
18 weeks of SD or HFD feeding, n=8 for Sham and n=18 for ELL groups). Data are shown as mean ± SEM. Statistical significance was determined by
student t-test (A, C), or one-way ANOVA followed by Tukey’s post hoc test (B, D). Different letters indicated significant differences among the
groups (P<0.05). ELL: endometrial-like lesion, SD: standard diets, and HFD: high-fat diets.
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rRNA gene sequencing of DNA isolated from fecal samples in SD or

HFD with/without ELL-induced mice (Figure 7). Microbial alpha

diversity was lower in the feces of HFD-fed mice than in SD-fed

mice (Figure 7A). Principal coordinates analysis (PCoA) showed

uniquely clustered microbial variance induced by HFD (Figure 7B).

However, ELL induction did not alter microbial diversity or

variance, indicating that long-term systemic alterations induced

by HFD affect the composition of the gut microbiota more than

lesion induction in mice.
Frontiers in Endocrinology 06
To assess whether the unique enteric bacterial profiles were

attributed to specific taxa, the phyla among samples in the group

were profiled (Figure 7C). The proportions of Proteobacteria and

Cyanobacteria were reduced under the HFD condition, while feces in

ELL-SD mice contained a higher abundance of Proteobacteria than

those in Sham-SD mice. However, increased Proteobacteria were not

observed in ELL-HFD mice compared to Sham-HFD mice, suggesting

that the effect of HFD on Proteobacteria was stronger than lesion

induction. Firmicutes and Bacteroidetes, which constitute the majority
A

B

C

FIGURE 4

HFD increases Ly6C+ macrophages (MF) in the peritoneal fluid (PF) of ELL mice. (A) Flow cytometer analysis for CD11b+ (MF), CD3+ (T-cells), CD19
+ (B-cells), and Ly6C+ (monocytes and MF) cells in the PF. FSC-H: Forward Scatter-Height; FSC-A: Forward Scatter-Area; SSC-A: Side Scatter-Area.
(B) Quantification of CD11b+, CD3+, CD19+, and Ly6C+ cells in the groups of Sham-SD (n=5), Sham-HFD (n=5), ELL-SD (n=10) and ELL-HFD
(n=10). (C) TIM4+ and Ly6C+ MF were quantified in the PF. Data were analyzed through One-way ANOVA followed by Tukey’s post hoc test and
expressed as the mean ± SEM. Different letters indicated significant differences among the groups (P<0.05). ELL: endometrial-like lesion, SD:
standard diets, and HFD: high-fat diets.
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of the gut microbiota, are known to be affected by obesity, as obesity

induces a reduction in the abundance of Bacteroidetes and an increase

of Firmicutes proportion (52). Although the increase of Firmicutes was

minor under the HFD condition, the Bacteroidetes proportion was

clearly reduced in Sham-HFD mice. The Bacteroidetes population

was retained in ELL-HFD mice, similar to its abundance in Sham-SD

and ELL-SD mice, indicating that lesion induction increased

Bacteroidetes even though mice were under the HFD condition. This

result supports the study from Chadchan et al. that lesion induction

increases the abundance of Bacteroidetes (53), while lesion induction

with SD did not show a noticeable increase of Bacteroidetes in our

study (Sham-SD vs ELL-SD). When we examined bacteria at the genus

level, HFD clearly altered several genera among the groups (Figure 7D).

In agreement with previous studies (54, 55), HFD strongly elevated

Lactococcus and Blautia genera (red lines). HFD slightly increased

Ligilactobacillus and Intestinimonas genera (red lines), whereas HFD

mice contained negligible abundances of Allobaculum, Lactobacillus,

Dubosiella, and Ruminococcus genera (blue lines). Odoribacter,

Turicibacter, and Rikenella genera (green lines) were increased in
Frontiers in Endocrinology 07
ELL mice, and the Bilophila genus (orange line) was only higher in

ELL-HFD mice. These data suggest that HFD or ELL alter the bacteria

diversity and composition associated with endometriosis.
3 Discussion

Endometriosis is generally classified into four stages according

to the revised criteria from the American Society of Reproductive

Medicine (rASRM) and the American Fertility Society (AFS) based

on lesion size, location, and the extent of adhesions (4, 56).

However, disease symptoms, such as endometriosis-associated

pain, are not correlated with the staging system (4, 57). Patients

with stage I disease can have severe pain, while stage IV patients can

be asymptomatic (1, 58), indicating that several other factors

contribute to disease symptoms. Due to the chronic inflammatory

nature of endometriosis, the disease progression and symptoms can

be affected by environmental factors. In the present study, our

results highlight that Western-style HFD-induced obesity did not
A B

DC

FIGURE 5

Quantification of TNFa, IL1b, IL6, and IL10 in the peritoneal fluid (PF). Peritoneal (A) TNFa, (B) IL1b, (C) IL6, and (D) IL10 were measured with IQELISA
and analyzed with ANOVA followed by Tukey’s post hoc test. Values in graphs are expressed as the mean ± SEM (n=5). Different letters indicated
significant differences among the groups (P<0.05). ELL: endometrial-like lesion, SD: standard diets, and HFD: high-fat diets.
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alter endometriotic lesion numbers (=disease progression) but

enhanced disease-related hyperalgesia (=endometriosis-associated

pain). The important findings are: 1) Peritoneal inflammatory

(Ly6C+) MF and cytokine levels, especially TNFa, increased by

lesion induction were elevated by chronic exposure to HFD. 2)

Pain-related mediators, such as neurotransmitters CGRP and SP, in

the DRG were further stimulated after lesion induction under the

HFD condition. 3) Although HFD alone did not affect peritoneal

Ly6C+ MF without lesion induction, the diversity and composition

of the gut microbiota were clearly altered by HFD as a sign of low-

grade systemic inflammation (14). Thus, HFD might not be able to

establish solely a local inflammatory environment in the pelvic

cavity but can contribute to further enhancing chronic

inflammation associated with disease symptoms after the disease

is established.

In non-human primates, rhesus macaque females exposed to

testosterone (T) and/or consumedWestern-style diets (WSD) at the

time of menarche for 7 years developed endometriosis, especially T
Frontiers in Endocrinology 08
+WSD resulted in earlier onset of disease with high stages and large

chocolate cysts (59). In a mouse model of endometriosis, HFD-

induced obese mice increased lesion number and weight, which

depended on leptin or leptin receptor (60). Another mouse study of

endometriosis showed that HFD increased lesion number and MF
infiltration and proinflammatory and prooxidative stress-related

genes in the lesion when Klf9 null donor endometrial fragments

were inoculated as a donor tissue (61). This group further reported

reduced lesion number and weight when wild-type donor tissues

were used, whereas enhanced signs of inflammation were not

observed in this study, indicating variability of distinct genetic

dysfunctions and lesion environment for endometriosis

progression (62).

One of the hallmarks of diet-induced obesity is low-grade

chronic inflammation (12). Chronic consumption of HFD leads

to the accumulation of MF and T-cells in adipose tissues to secrete

proinflammatory cytokines (13). We have previously reported that

lesion induction enhances the process of differentiation and
A

B

FIGURE 6

HFD stimulates pain-related mediators in the DRG of ELL mice. (A) Immunofluorescence results of BDNF, CGRP, SP, TRPV1, and neurofilament (NF,
green) in DRG. NF was used as a marker of DRG cell body and was co-stained with BDNF, CGRP, SP, or TRPV1. (B) BDNF, CGRP, SP, or TRPV1
positive DRG per NF positive DRG was counted and quantified (n=5 per group). One-way ANOVA followed by Tukey’s post hoc test was used for
statistical analysis. Data were shown as mean ± SEM. Different letters indicated significant differences among the groups (P<0.05). ELL: endometrial-
like lesion, SD: standard diets, and HFD: high-fat diets. DRG: dorsal root ganglia.
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maturation of monocyte-derived MF and increases Ly6C+

proinflammatory MF in the peritoneal cavity while reducing the

maintenance of embryo-derived resident TIM4+ MF (29). The

present study showed that Ly6C+ MF were higher in ELL mice and

further increased in mice exposed to HFD, indicating the impact of

HFD contribution to peritoneal inflammation after disease onset. In

support of our findings, an HFD-induced proinflammatory

environment promotes the differentiation of Ly6C+ monocyte

into inflammatory MF, which migrate to the lung and worsen its

pathophysiology (63). TIM4+ residential MF were reduced in both

ELL-SD and ELL-HFD mice, whereas HFD did not further alter

TIM4+ MF. Peritoneal inflammation can induce the macrophage

disappearance reaction (MDR), by which the reduction of

residential MF occurs. We have previously shown that extreme

MDR of TIM4+ MF was induced 3 days after lesion induction, and

it gradually recovered. However, it remains slightly diminished 6
Frontiers in Endocrinology 09
weeks after disease onset (29). Thus, the recovery of residential

TIM4+ MF from MDR, which includes replenishment and

proliferation, is less likely affected by exposure to HFD. On the

other hand, an alteration in the distribution of peritoneal T-cells by

lesion induction and HFD was not observed in the study, suggesting

aberrant MF functions might be a crucial event for establishing the

chronic inflammatory state of endometriosis, as increased MF
infiltration was also observed in the lesions under the HFD

condition. However, heterogeneous T-cell functions and

interaction between T-cells and MF remain to be studied.

In the present study, abdominal endometriosis-associated

hyperalgesia was induced by lesion induction and further

sensitized in ELL-HFD mice. This result was supported by the

signs of sensitization of peripheral DRG, which was mediated by

increased proinflammatory cytokines, TNFa, IL1b, and IL6, that

are known to be increased pelvic MF in endometriosis patients (47)
A B

D

C

FIGURE 7

HFD altered the composition of the gut microbiota. (A) Box plots corresponding to the Chao1 diversity index (alpha diversity). (B) Principal
Coordinates Analysis (PCoA) of beta-diversity based on weighted Unifrac dissimilarities in fecal samples. P = 0.001, R=0.422. (n=5 per group).
(C) Heatmap representation of relative abundances of the phyla in feces. (D) Heatmap depiction of the relative abundances of the genera in feces
(n=5 per group). ELL: endometrial-like lesion, SD: standard diets, and HFD: high-fat diets.
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and have been targeted for pathological pain (64). Our previous

studies show that PF from ELL mice stimulated DRG outgrowth,

which was reduced by inhibiting cytokine and chemokine secretion

in the peritoneal cavity (28). Thus, the inflammatory environment

established in the pelvic cavity is critical for chronic endometriosis-

associated hypersensitivity. The elevated sensitivity is not systemic,

as our results showed only signs of abdominal hyperalgesia but not

hind paw sensitivity by either lesion induction or HFD. Thus, it

remains to study how chronic abdominal pain stimulus is delivered

and maintained to the central nervous system. As endometriosis-

associated pain is one of the significant problems in this disease, its

mechanisms with the pathophysiology of endometriosis need to be

further studied to enhance the quality of life in patients.

Our study showed that gut microbiota dysbiosis was induced by

chronic exposure to HFD. HFD have been known to reduce the

diversity of gut microbiota (65). The phyla Firmicutes increase

while Bacteroidetes decrease, though there are variations depending

on the differences in diet compositions and exposure duration (66,

67). Interestingly, our results showed a lower abundance of

Proteobacteria in HFD mice, whereas increased Proteobacteria

abundance with HFD consumption has been reported (68).

Increased Allobaculum abundance has been shown under the

HFD condition (69), though the abundance of Allobaculum was

reduced in our HFD mice. However, this inconsistency is likely due

to different types of diet, fat, and other environmental factors in the

various studies (14). Despite having variable alterations of gut

microbiota, HFD-induced dysbiosis increases gut permeability

and creates chronic inflammation, affecting inflammatory diseases

directly or indirectly (70).

The present study showed that endometriosis-associated

abdominal hyperalgesia was escalated under exposure to HFD.

These results include increased proinflammatory MF and

cytokine levels in the peritoneal cavity, neuromodulators in the

DRG, and dysbiosis of gut microbiota. There was no significant

difference in mean lesion numbers between control and HFD mice,

suggesting that the low-grade pre-induction inflammatory state of

HFD mice may not significantly alter the mechanism that allows

tissue adherence and survival. However, it is clear that once the ELL

is established, the HFD lesions exhibit more MF infiltration with a

more severe pain phenotype. Retrograde menstruation causes

massive inflammatory responses in the pelvic cavity, which

involves the recruitment of monocytes that differentiate into

proinflammatory MF and secrete cytokines and chemokines (27).

However, the acute inflammation associated with retrograde

menstruation typically resolves by the next menstrual cycle. If

women are under systemic low-grade inflammation induced by

environmental factors like HFD, it is expected to be hard to solve

this acute incidence. As menstrual cycles repeatedly occur in

women, each retrograde menstruation induces composite

inflammation in the pelvic cavity, and unsolved inflammation can

worsen to develop chronic conditions further. Thus, the present

results suggest that diet-induced obesity could be a risk factor for

establishing a chronic inflammatory environment and severe

endometriosis-associated pain, which can be independent of

disease progression.
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4 Materials and methods

4.1 Animals

All animal experiments were performed at Washington State

University according to the NIH guidelines for the care and use of

laboratory animals (protocol #6751). C57BL/6 (JAX: 000664)

breeder pairs were obtained from the Jackson Laboratory, bred

in-house, and maintained in the vivarium with a 12:12 light-dark

(LD) cycle under ad libitum conditions of food and water. Female

C57BL/6 mice at the age of 5 weeks were used for the studies.
4.2 Mouse model of endometriosis

An experimental mouse model of endometriosis was

established by adopting procedures described previously (28, 29,

51, 71–73) and Supplementary Method. Briefly, a ‘menses-like’

event was induced in ovariectomized estradiol-17b (E2)- and

progesterone-primed donor mice following an established

protocol (74). Then, mouse menses-like endometrium scraped

from myometrium and cut into fragments (1-2 mm per side) were

introduced as the source of syngeneic mouse endometrium

(donor) via injection (in 0.2 mL PBS) into the peritoneal cavity

of untreated naive mice (recipient) under anesthesia via

inhaled isoflurane.
4.3 Study design

To induce diet-dependent obese mice, female mice were fed

Teklad Rodent Diet (#2019, Envigo) as SD (Washington State

University regular diet) that contain 9-10% of total calories from

fat or HFD (D12451, Research Diets) that contain 45% of total

calories from fat starting at the age of 5 weeks (defined as Week 0 of

the 12-week as a baseline study or 18-week as an endometriosis

study, Figure 1A). BW was recorded once a week. In the baseline

study, mice were fed with SD (n=10) or HFD (n=10) for 12 weeks.

After 12 weeks of feeding, a von Frey behavior test was performed,

and peripheral blood and peritoneal lavage were collected. In the

endometriosis study, mice were further assigned to sham control

without lesion induction or ELL-induced groups twelve weeks after

SD or HFD feeding. Thus, there were a total of 4 groups with Sham

(vehicle, PBS, control)-SD (n=8), Sham-HFD (n=8), ELL-SD

(n=18) and ELL-HFD (n=18). Six weeks after induction (a total

of 18 weeks), a behavior test was performed, and fresh feces were

collected and immediately frozen at -80C. Mice were then

euthanized for sample collections: blood was collected via cardiac

puncture, PF was recovered by lavage (4 mL x 2 of ice-cold PBS),

and ELL and bilateral lumbar (L4-6) DRG were collected for further

analysis. Blood glucose levels (n=5) were measured by Contour

Next (Ascensia Diabetes Care), and plasma insulin (n=5) was

analyzed by ELISA (EZRMI-13K, Sigma Aldrich), according to

the manufacturer’s instructions.
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4.4 Von Frey test

A behavioral (mechanical sensitivity) test was performed

before sample collection (34, 73). Mice were allowed to

acclimate in the testing room for 30 min, and then the von Frey

test was performed using von Frey Filaments (BIO-VF-M,

Bioseb). Filaments were applied 10 times to the skin

perpendicular to the lower abdomen and bilateral hind paws.

The force in grams (g) of the filament evoking a withdrawal

response (50% response count as sensitive) was recorded. Three

behaviors were considered positive responses to filament

stimulation: 1) sharp retraction of the abdomen, 2) immediate

licking and/or scratching of the area of filament stimulation, or 3)

jumping. All behavioral tests were performed without describing

the identity and details of treatment groups to investigators. The

data were analyzed by another investigator. Mice without ELL or

sham induction after 12 weeks of SD or HFD feeding were

included as a baseline result.
4.5 Flow cytometry

Peritoneal lavages were centrifuged to collect peritoneal

exudate cells. After lysing red blood cells by 1x RBC Lysis

Buffer (BioLegend), cells were incubated at room temperature

for 20 minutes with Zombie Aqua™ Fixable Viability dye

(BioLegend) and blocked on ice for 20 minutes with Fc Block

anti-CD16/CD32 (Thermo Fisher). Then, cells were stained

with fluorochrome-conjugated monoclonal antibodies

(Supplementary Table S1) for 1 hour. Samples were acquired

with the Attune NxT Acoustic Focusing Cytometer using Attune

NxT software (Thermo Fisher), and data were analyzed with

FlowJo v10.9. For analysis, only singlets (determined by forward

scatter height vs. area) and live cells (Zombie Aqua negative)

were used.
4.6 Immunofluorescence

Immunostaining of BDNF, CGRP, SP, TRPV1, neurofliment

(NF), and CD68 was performed with cross-sections (5 mm) of

paraffin-embedded tissues using specific commercially available

primary antibodies (Supplementary Table S1) and AlexaFluor 488

and 568-conjugated F(ab’) secondary antibody (Molecular Probe)

or VECTASTAIN ABC kit (Vector lab). Immunostaining images

were acquired by Leica DM4 B. Cell-specific CD68 positive and

total cell numbers were counted by Image J in the area of 0.07244

mm2, and the percentage of CD68+ cells was shown. NF was used as

a pan-neuronal marker and was co-stained with BDNF, CGRP, SP,

or TRPV1. BDNF, CGRP, SP, or TRPV1 positive cells in the DRG

were counted by Image J in the area of 0.07244 mm2. The

percentages of BDNF, SP, CGRP, or TRPV1 positive cells per NF-

positive DRG were shown.
Frontiers in Endocrinology 11
4.7 IQELISA

Protein yield from PF was quantitated by BCA assay (Pierce),

and TNFa (IQM-TNFA-1), IL1b (IQM-IL1b-1), IL6 (IQM-IL6-1),

and IL10 (IQM-IL10-1) were further quantified by IQELISA kits

(Ray Biotech) according to the manufacturer’s instructions.
4.8 16S rRNA gene sequencing and analysis

DNA was extracted from fecal pellets (100 mg, n=5 per group)

by the QIAmp Power Fecal DNA kit (12850-50, Qiagen). The V4

region of 16S rRNA gene was amplified, and sequencing was

performed on an Illumina platform by the Alkek Center for

Metagenomics and Microbiome Research at Baylor College of

Medicine. Demultiplexed reads were quality filtered after initial

trimming, and taxonomic information was retrieved by mapping

against SILVA version 138.1 (75) using an identity threshold of 70%

in Quantitative Insights Into Microbial Ecology (76). Raw data in

FASTQ format were uploaded to the NCBI Sequence Read Archive

(PRJNA1007658). This dataset was used for downstream alpha and

beta diversity analysis, and top taxa were identified using a mean

abundance threshold of ≥ 0.05, as described previously (53). The

alpha diversity was measured using Chao1 distances, while the beta

diversity was estimated using weighted UniFrac measures (77).
4.9 Statistical analysis

Data at 18 weeks were subjected to one-way ANOVA and

Tukey’s post hoc test to identify differences among the groups using

Prism software (Ver. 9.1.0, GraphPad). Data at 12 weeks and lesions

at 18 weeks were analyzed by two-tailed Student’s t-test comparing

SD and HFD. Two-way ANOVA was used to determine the

significance between times and groups. All experimental data are

presented as mean with standard error of the mean (SEM). Unless

otherwise indicated, a P value less than 0.05 was considered to be

statistically significant. Different letters indicated significant

differences among the groups (P<0.05).
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