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Jingmen, China, 3Hubei Minzu University, Enshi, China
The intervertebral disc is not isolated from other tissues. Recently, abundant

research has linked intervertebral disc homeostasis and degeneration to various

systemic diseases, including obesity, metabolic syndrome, and diabetes.

Organokines are a group of diverse factors named for the tissue of origin,

including adipokines, osteokines, myokines, cardiokines, gastrointestinal

hormones, and hepatokines. Through endocrine, paracrine, and autocrine

mechanisms, organokines modulate energy homeostasis, oxidative stress, and

metabolic balance in various tissues to mediate cross-organ communication.

Thesemolecules are involved in the regulation of cellular behavior, inflammation,

and matrix metabolism under physiological and pathological conditions. In this

review, we aimed to summarize the impact of organokines on disc homeostasis

and degeneration and the underlying signaling mechanism. We focused on the

regulatory mechanisms of organokines to provide a basis for the development of

early diagnostic and therapeutic strategies for disc degeneration.
KEYWORDS

intervertebral disc homeostasis, intervertebral disc degeneration, organokines, organ
crosstalk, signaling pathway
1 Introduction

Intervertebral disc degeneration (IVDD) is the main contributor to the development of

low back pain, leading to a remarkable loss of disability-adjusted life years as well as a

substantial economic burden on society (1, 2). Healthy discs are cartilaginous structures

that contribute one-third of the spine height and act as “elastic cushions” providing

essential support, absorbing mechanical stress through compression, and providing

flexibility. At the core of discs lies the gel-like nucleus pulposus (NP), which is

surrounded by a concentric layer-arranged annulus fibrosus (AF) and two semi-rigid

thin cartilage endplates (CEPs) that lie beneath the adjacent vertebrae. Various biological

processes, including inflammation modulation, prevention of neovascularization, cell

homeostasis, and matrix metabolism balance, are essential for preserving the disc
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homeostasis (3). IVDD, which is characterized mainly by persistent

inflammation and matrix metabolism imbalance, refers to the

progressive deterioration of the disc structure, leading to disc

herniation, disc height loss, and nerve compression (3). The

therapeutic options for IVDD are limited due to a poor

understanding of the underlying mechanisms.

The healthy disc is not isolated from other tissues, despite having

long been known as a unique organ without blood vessels, nerves, or

immune cell infiltration (4). An increasing number of studies have

shown that organokines, the bioactive factors secreted by diverse

tissues, may have a vital impact on disc homeostasis. The expression

of organokines can be induced by several factors, including physical

activity, diet, aging, and metabolic alterations like obesity and

diabetes (5, 6). Through autocrine, paracrine, or endocrine

mechanisms, organokines have been linked to several inflammatory

diseases, such as rheumatoid arthritis (7, 8). However, the role of

organokines in IVDD is not completely understood.

In this review, we aimed to summarize the molecular and

biochemical characteristics of organokines from specific tissues

and their association with disc homeostasis and degeneration.

The organokines treated in this review include adipokines,

osteokines, myokines, cardiokines, gastrointestinal hormones, and
Frontiers in Endocrinology 02
hepatokines. Common hormones, growth factors, cytokines, and

chemokines are excluded (Figure 1). Organokines play regulatory

roles in cellular behavior, inflammation, and matrix metabolism in

intervertebral disc homeostasis by binding to their receptors and

activating downstream signaling pathways. We hope that this

review will deepen the understanding of IVDD in the view of

organ crosstalk and pave the way for the development of novel

therapeutic interventions.
2 Adipokines

Obesity, characterized by excessive adipose tissue, has been

recognized as a significant risk factor for disc degeneration (9). In

recent decades, adipose tissue has been considered as an endocrine

organ that secretes various bioactive factors named adipokines (10)

(Figure 2, Table 1). The cell-signaling proteins, such as leptin,

adiponectin, and progranulin (PGRN) are secreted from adipose

tissues and act like cytokines in the obesity-related impact on non-

adipose tissues (33, 34). Research suggests that adipokine signaling

is involved in the regulation of intervertebral disc homeostasis by

several conditions, including disc tissue disruption by vertebral
FIGURE 1

Diagrams illustrate that organokines, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones and hepatokines, mediates
the cross-organ regulation of disc homeostasis under physiological and pathological conditions from the major tissues of endocrinory ability. OPG,
osteoprotegerin; DKK-1, dickkopf-1; PTHrP, Parathyroid Hormone-Related Protein; SPARC, Secreted protein acidic and rich in cysteine; BMPs, Bone
morphogenetic proteins; ANP, atrial natriuretic peptide; GLP-1, Glucagon-like peptide-1; ANGPTLs, angiopoietin-like proteins; FSTL-1, Follistatin-
like-1; LCN-2, lipocalin-2. Graphic elements were created using biorender.com.
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osteomyelitis, disc inflammation by ectopic adipose tissue

infiltration, and osteonectin deletion-induced disc degeneration in

mice (35–38).
2.1 Leptin

Leptin is a peptide hormone that is mainly synthesized in white

adipose tissue and plays a regulatory role in energy metabolism and

body weight. Beyond enhancing energy consumption in target cells,

leptin can promote the production of pro-inflammatory cytokines,

underlying the inflammatory and painful impacts of obesity. Both

the leptin protein and the leptin receptor (LepR) have been detected

in discs and are positively correlated with age and degeneration

severity (11). While leptin can induce osteogenic differentiation in
Frontiers in Endocrinology 03
CEPs (17), the levels of leptin and its receptors increase with matrix

metalloproteinase (MMP) and cytokine levels in the AF and NP of

degenerative discs (12, 16, 39). Mechanistically, leptin can drive

matrix catabolism via the Janus kinase-2 (JAK-2)/signal transducer

and activator of transcription-3 (STAT-3) and mitogen-activated

protein kinase (MAPK) pathways (13, 40). Additionally, leptin

activates the ras homolog gene family member A (RhoA)/rho-

associated coiled-coil containing protein kinase (ROCK) pathway

and cytoskeletal remodeling in response to mechanical signals (15,

41). Although these findings suggest leptin has detrimental effects,

whole-body leptin receptor knockout mice display delayed cellular

proliferation and differentiation, elevated MMP-3 levels, and higher

apoptosis rates, leading to IVDD (14, 18). Moreover, LepR has been

identified as a lineage marker and fate modulator of notochord-

derived cells at perinatal stages (42). Therefore, the potential
FIGURE 2

Schematic plots illustrate the signaling mechanism of various adipokines in intervertebral disc cells. Leptin, binding to LepR, activates JAK-2/STAT-3,
MAPK, ERK1/2, RhoA/ROCK/LIMK/Cofilin-2 pathways, promoting disc degeneration. Adiponectin, binding to AdipoR1/2, activates AMPK, inhibiting
the NF-kB pathway to exert a protective effect. Progranulin activates TNFR1/2, inhibiting NF-kB, ERK1/2, and Wnt/b-catenin pathways, providing a
protective effect. Resistin, binding to TLR-4, inhibits NF-kB or MAPK pathways, exhibiting a protective effect. Chemerin, binding to CMKLR1 or TLR-4,
activates the NF-kB pathway, promoting disc degeneration. Visfatin, binding to Insulin receptors (InsulinR) or TLR-4, activates JNK, MAPK, ERK1/2,
and NF-kB pathways, promoting disc degeneration. However, the intracellular NAMPT activity of Visfatin delivered by Adipo-sEV could promote
NAD+ biogenesis and SIRT activity, exerting a protective effect. Omentin-1 activates PI3K/Akt and SIRT1 pathways, providing a protective effect,
though its receptor remains incompletely understood. Graphic elements were created using biorender.com.
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fundamental role of leptin–LepR interactions in IVDD requires

further exploration.
2.2 Adiponectin

Adiponectin, a glycoprotein that is uniquely expressed by

adipocytes, could maintain energy balance and suppress

inflammation or apoptosis in various tissues by binding to
Frontiers in Endocrinology 04
adiponectin receptors (AdipoR1/2). However, the role of

adiponectin and AdipoRs in IVDD is unclear. Previous studies

showed that adiponectin expression in degenerative discs was

decreased or absent while AdipoR1 and AdipoR2 expression

increased or decreased with the Pfirrmann grade of degenerative

discs (22, 43). However, plasma adiponectin levels were found to be

increased in IVDD patients (44). Recently, administration of the

AdipoR agonist AdipoRon was found to effectively reduce the levels

of the pro-inflammatory factor tumor necrosis factor a (TNF-a)
TABLE 1 Main characteristics of adipokines modulating IVD homeostasis and degeneration.

Organokines
(Receptors)

Target Model
Signaling
pathway

Cellular behavior or phenotype induced
by organokines

Citation

Leptin
(LepR)

NPC
AFC

Exposurea
MAPK↑; PI3K/Akt↑;
JAK-2/STAT-3↑

Inflammation (IL-6, TNF-a)↑; NO↑; Lactate↑;
Catabolism (MMP-1, 9, 13; ADAMTS-4, 5)↑

(11–14)

NPC Exposurea
RhoA/ROCK/LIMK/
Confilin-2↑

Cytoskeleton remodeling↑ (15)

AFC Exposurea MAPK/ERK1/2↑ Differentiation (Col IX, MMP-13)↑ (16)

CEP Exposureb ERK1/2↑; STAT-3↑
Matrix mineralization (RUNX-2)↑; Cartilage and chondrocyte↓;
Disc height↓

(17)

IVD LepR KOb NA Proliferation↓; Differentiation↓; Disc height↓; Torsional strength↓ (18)

Resistin
(TLR-4)

NPC
AFC

Exposurea
MAPK↑;
NF-kB↑

Infiltration of macrophages (CCL4)↑;
Inflammation (NLRP3, caspase-1, IL-1b, IL-6, IL-8)↑;
Catabolism (MMP-1, 3, 13; ADAMTS-5)↑

(19, 20)

Adiponectin
(AdipoRs)

NPC Exposurea
AMPK/NF-kB↑;
TNF-a↓

Inflammation (TNF-a, IL-6)↓;
Anabolism (Acan, Col II)↑; Catabolism (MMP-13, ADAMTS4)↓

(21)

NP, AF Exposureb AMPK/NF-kB↑ AdipoR1↓, AdipoR2↓; Histological scores↓; DHI↑; (21, 22)

Visfatin/
NAMPT

(Insulin receptor,
TLR-4)

NPC
CEPC

Adipo-sEV
deliverya,b

SIRT1/NAD+↑
Senescence (p16)↓;,SASPs:(TNF-a, IL-6, IL-8)↓;
Matrix mineralization (OCN, RUNX2)↓; Anabolism (Acan, Col II)↑;
Catabolism (MMP-3, ADAMTS4)↓; Pfirrmann grade↓

(23)

NPC KDa;OEa MAPK/NF-kB↑
Autophagy (Beclin-1, LC3B)↓; Inflammation (TNF-a, NLRP3)↑;
Anabolism (Acan, Col II)↓; Catabolism (MMP-3,13; ADAMTS-4, 5)↑;

(24, 25)

NP Exposureb
MAPK↑; JNK/
ERK1/2↑

Inflammation (IL-6)↑;
Anabolism (Acan, Col II)↓; Catabolism (MMP-3)↑; Pfirrmann grade↑

(26)

Progranulin
(TNFR1/2)

NPC Exposurea,b NA
Inflammation (MMP-13, COX-2, iNOS, IL-17) ↓;
Chondro-staining density↑; Histological scores↓

(27)

NPC
NP

Analogue
(Atsttrin)a; TNFR1/
2 KOb

NA
Apoptosis↓;
Catabolism (MMP-13)↓; Anabolism (Acan)↑;
Histological scores↓; Pfirrmann grade↓

(28)

NP,
CEP, AF

PGRN KOb NF-kB↓
Wnt/b-catenin↓

Inflammation (IL-17↓, IL-10↑)↓;
Matrix mineralization (ALP, OCN, Osterix, BSP, Col I, AXIN2,
RUNX2)↓;
Anabolism (proteoglycan)↑; Catabolism (MMP-13, ADAMTS-5, 7,
12)↓; Pfirrmann grade↓

(29, 30)

Chemerin
(CMKLR1,
TLR-4)

NPC
AFC

KDa,b; Exposurea
Akt↑;
NF-kB↑

Inflammation (COX-2, IL-1b, IL-6, TNF-a)↑;
Senescence (SA-b-gal, p53, p16)↑;
Anabolism (Acan, Col II, SOX-9)↓; Catabolism (MMP-3, 9;
ADAMTS-5)↑;
Histological scores↑; DHI↓;

(31)

Omentin-1
(NA)

NPC Exposureb SIRT1↑
Senescence (SA-b-Gal, p16, p53)↓
Anabolism(Acan, Col II)↑; Catabolism (MMP-13, ADAMT-5)↓;

(32)
fr
↑, increase; ↓, decrease; NA, not available; Exposurea, exposure in vitro; Exposureb, exposure in vivo; KDa, knock down in vitro; KDb, knock down in vivo; KOb, knock out in vivo; OEa,
overexpression in vitro; Receptor activationa, receptor activation in vitro; Receptor activationb, receptor activation in vivo; LepR, leptin receptor; LRPs, low density lipoprotein-related proteins;
TLR-4, toll-like receptor-4; IL, interleukin; Acan, aggrecan; Col II, type II collagen; Col lX, type lX collagen; OCN, osteocalcin; RUNX2, RUNX family transcription factor 2; STAT-3, signal
transducers and activators of transcription 3; CCL4, C-C motif chemokine ligand-4; AdipoR, adiponectin receptor; DHI, disc height index; NF-kB, transcription factor-Κb; NLRP3, NLR family
pyrin domain containing3; iNOS, inducible nitric oxide synthase; ALP, alkaline phosphatase; BSP, bone sialoprotein; AXIN2, axis inhibition protein 2; LC3, microtubule-associated protein 1A/
1B-light chain 3; NAMPT, nicotinamide phosphoribosyl transferase; CMKLR1, chemokine-like receptor 1; SOX-9, SRY-box transcription factor -9; SIRT1, NAD-dependent deacetylase sirtuin-1.
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and mitigate disc degeneration (21). In future research, the exact

role of adiponectin–AdipoR interactions in IVDD needs to

be clarified.
2.3 Progranulin

PGRN, a secreted glycoprotein that can be cleaved into

granulins by enzymes like elastase, exerts anti-inflammatory

effects and plays protective roles by enhancing cell proliferation

and through interacting with TNF receptors (TNFRs) or other

receptors. Although higher PGRN levels are associated with higher

degeneration severity in IVDD patients, current evidence suggests a

protective role for PGRN in disc degeneration and aging (3, 45).

Knockdown of PGRN in aged mice accelerates disc degeneration by

promoting matrix catabolism and cellular dysfunction in AF and

CEPs (29). Mechanistically, PGRN competitively binds to TNFR-1,

thereby inhibiting the expression of the pro-inflammatory factor

interleukin-17 (IL-17) and inflammatory and catabolic pathways

(30, 45). Moreover, PGRN promotes anabolism and the production

of the anti-inflammatory factor IL-10 via binding to TNFR-2 (28,

30). Additionally, PGRN and its derivatives, like atsttrin, inhibit

epoxide synthase-2, IL-6, IL-17, and MMP-13 production, thereby

inhibiting IVDD progression (29, 30).
2.4 Resistin

Resistin is a cysteine-rich polypeptide that is secreted by white

adipocytes and is involved in insulin resistance. In agreement with the

devastating effect of diabetes on IVDs, recent research indicates

resistin’s involvement in IVDD for its pro-inflammatory properties

(46). By targeting Toll-like receptor-4 (TLR-4), resistin activates the

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)
signaling to increase the expression of the macrophage inflammatory

protein chemokine C-C motif ligand 4 (CCL4), thereby fostering

macrophage infiltration into discs (19). In addition, resistin triggers

inflammatory cascades through the activation of the MAPK and NF-

kB pathways, which increases the NLR family pyrin domain containing

3 protein (NLRP3) inflammasomes and the expression levels of IL-1b,
IL-6, IL-8, and MMPs in discs (20, 47).
2.5 Chemerin

Chemerin is an obesity-associated adipokine and is involved in

various processes including inflammation by interacting with

chemokine-like receptor 1 (CMKLR1). The expression levels of

chemerin and CMKLR1 are increased in degenerative NP tissues,

especially those of obese individuals (31). Furthermore, the

administration of chemerin results in inflammation and tissue

degeneration, while CMKLR1 knockdown could slow the

progression of needle-induced disc degeneration in rats (31).

Furthermore, chemerin exerts pro-senescent and pro-inflammatory

effects on NP cells through binding to TLR-4, a well-known receptor

activating the NF-kB signaling cascade (31, 48).
Frontiers in Endocrinology 05
2.6 Visfatin

Visfatin, identified as the extracellular form of nicotinamide-

phosphate ribosyl transferase (NAMPT), has been known to

mediate insulin resistance and inflammation via binding to the

insulin receptor or the innate immune receptor TLR-4. Visfatin

could induce IL-6 expression and disc degeneration by activating

the MAPK pathway, which participates in the inflammatory

response (26). In addition, pharmacological inhibition or

knockdown of visfatin resulted in the maintenance of metabolism

balance by enhancing autophagy in the presence of IL-1b (24).

Interestingly, a recent study showed that NAMPT was delivered in

small extracellular vesicles derived from adipocytes (Adipo-sMV)

and mediated the protective impact of Adipo-sMV through

increased nicotinamide adenine dinucleotide (NAD) and NAD-

dependent deacetylase sirtuin-1 (SIRT1) activity in senescent NP

and CEP cells (23). Considering the lack of a secretion signal

sequence, visfatin/NAMPT may play a multifaceted role

dependent on its location: serving as the rate‐limiting enzyme for

NAD+ biosynthesis in the cytosol or binding receptors on the

cellular surface after leakage into the extracellular space.
2.7 Omentin-1

Omentin-1, an anti-inflammatory adipokine, exhibits anti-

inflammatory and antioxidant properties. Its expression level is

inversely correlated with the progression of various diseases,

including diabetes, obesity, and osteoarthritis (49, 50). Recent

studies showed that omentin-1 could protect NP cells from

ongoing senescence, inflammation, apoptosis, or matrix

metabolism imbalance in the presence of IL-1b through activating

SIRT1 or the phosphoinositide 3-kinase (PI3K)/protein kinase B

(PKB, also known as Akt) signaling pathway (32, 49). Therefore, it

is valuable to further investigate its in vivo therapeutic potential in

IVDD treatment.
3 Osteokines

Osteokines are a category of proteins predominantly secreted in

bone and can have a significant influence on the homeostasis of bone

and extraosseous organs (51–53). The interplay between bone

homeostasis regulation and disc degeneration is becoming

increasingly recognized. Indeed, the osteogenic potential of discs

increases with the progression of degeneration, evidenced by elevated

osteogenic differentiation of AF and CEP cells (54, 55). Then, intradiscal

ectopic ossifications or calcifications can result in increased tissue

stiffness, thereby provoking inflammation, disc degeneration, and low

back pain (56–59). Additionally, structural alterations of vertebral bone,

such as Modic changes (also known as magnetic resonance imaging

[MRI] signal intensity changes in vertebral bone marrow) and vertebral

osteoporosis, have been identified as associated with the development of

IVDD (60, 61). Therefore, it is imperative to investigate the precise role

of these osteokines (Figure 3, Table 2) in the pathophysiology of

disc degeneration.
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3.1 Osteoprotegerin

OPG is a typical osteokine recognized as the regulator of bone

mass and the receptor activator of NF-kB (RANK)/RANK ligand

(RANKL) pathway, while it exists in various extraosseous tissues

including discs. Various studies have shown a significant correlation
Frontiers in Endocrinology 06
between the levels of OPG in serum or disc samples and

degeneration severity (62, 63, 81, 82). Further, OPG gene

polymorphisms and increased OPG expression levels may

contribute to IVDD development (81). OPG and RANK/RANKL

expression could be upregulated with increased catabolism in AF,

NP, or CEP cells exposed to acidic microenvironments or the
FIGURE 3

Schematic plots illustrate the signaling mechanism of various osteokines in intervertebral disc cells. PTHrP, binding to PTHR, could activate MAPK or
PKA/CREB/Hedgehog pathways to protect disc from degeneration. Sclerostin binds to LRPs to activate Wnt/b-catenin pathway and matrix
anabolism, while inhibits the expression of DKK-1 that inhibits Wnt/b-catenin pathway. Osteoprotegerin inhibits the RANK-RANKL interactions to
protect disc from degeneration, while the intracellular signaling pathway is unknown. BMP-2,4,7,14(GDF5) binds BMPR-I/II to activate PI3K/Akt,
Smads pathway and inhibit PUMA expression to protect disc from degeneration. Periostin could interact with Integrin receptors, NF-kB pathway and
Wnt/b-catenin pathway to promote disc degeneration. Osteonectin/SPARC could modulate TLR-4, CXCR1/2, or GFs-GFRs interactions to protect
disc from degeneration. Graphic elements were created using biorender.com.
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inflammatory factor IL-1b (63, 64). However, OPG knockout

results in osteoclast-mediated cartilage erosion, leading to

disorganized alignment of CEPs, enhanced bone formation or

neovascularization, and elevated inflammatory factors in mice

(65–67). Thus, the multifaceted role of OPG in disc homeostasis

highlights that further research is needed to elucidate its mechanism

in IVD biology.
3.2 Sclerostin and Dickkopf-1

Sclerostin and DKK-1 are a pair of physical activity-related

osteokines that competitively bind to the Wnt coreceptors

lipoprotein receptor-related proteins (LRPs) and mediate the

crosstalk between bone and other organs. Recently, sclerostin and

DKK-1 have been shown to be involved in spinal pathological

conditions, including spinal ligament ossification, spondylarthritis,

and disc calcification (66, 67, 83). A recent study illustrated the

compensatory increase in DKK-1 levels and the suppression of the

Wnt/b-catenin pathway in sclerostin-depleted murine discs, and
Frontiers in Endocrinology 07
the administration of antibodies against sclerostin or DKK-1

exhibited beneficial effects on proteoglycan content, disc

hydration, and height (84). Considering the complex role of Wnt

signaling in disc development and degeneration, it is needed to

clarify the exact roles and determinants of these Wnt inhibitors in

IVDD (85).
3.3 Parathyroid hormone-related protein

PTHrP, first discovered in malignancy-associated hypercalcemia,

has been recognized as an osteokine acting in a paracrine manner on

bone and other tissues through binding to the PTH-1 receptor (PTH-

1R). PTHrP is involved in intervertebral disc maturation and

calcification, delays cellular mineralization and hypertrophy in Col

IX knockout mice, and inhibits progressive kyphoscoliosis in

fibroblast growth factor receptor-3 (FGFR-3) knockout mice (83–

85). By enhancing Hedgehog, transforming growth factor beta (TGF-

b), Wnt/b-catenin, mammalian target of rapamycin (mTOR), and

MAPK/protein kinase A (PKA) signaling, PTH-1R activation by
TABLE 2 Main characteristics of osteokines modulating IVD homeostasis and degeneration.

Organokines
(Receptors)

Target Model
Signaling
pathway

Cellular behavior or phenotype induced by organokines Citation

OPG
(RANK/RANKL)

Disc cell Exposurea RANKL↓ Inflammation (IL-1b)↑; Catabolism (MMP-3, 13)↑ (62–64)

CEP OPG KOb NA

Inflammation (IL-1b, IL-6, TNF-a)↑;
Tissue remodeling (TRAP, Rank, MMP-9, Cathepsin K)↑;
Chondrogenesis (cartilage area, growth plate thickness, aggrecan)↑;
Neovascularization (VEGF-A, CD31, VE-cadherin, CD34)↑;

(65–67)

Sclerostin
(LRPs)

NP
Sost KOb;
Exposureb

Wnt/b-catenin↑
Matrix maturation (Col II, FOXA2, Osterix)↑; DDK-1↓;
Matrix stiffness (proteoglycan↓; hydration↓)↑; DHI↓

(68)

PTHrP
(PTH-1R)

NPC
AFC

Analogue
(PTH)a

mTOR↑;
MAPK↑; PKA↑

Autophagy (Beclin-1, p62, LC3B)↑; Senescence (SA-b-gal)↓;
Matrix mineralization (Acan↑, Col I↑, COLX↓, calcium release↓)↓

(69, 70)

NPC
CEP

Analogue
(PTH)a,b

Wnt/b-catenin↑
Anabolism (Acan, Col II)↑; Catabolism (MMP3, 9)↓; Tissue remodeling (endplates
calcification↓; micro-vessel density↓, porosity↑, thickness↑)↑;
Histological score↓; DHI↑

(71, 72)

NPC NP
Analogue
(PTH)a,b

CREB/
Sonic Hedgehog↑

Oxidative stress (SOD-1, 2)↓; Apoptosis (Caspase-3, 8, 9)↓;
Inflammation (IL-1b, IL-6, TNF-a)↓

(73)

IVD

PTH1R
KOb;

Analogue
(PTH)b

Integrin avb6/
TGF-b/CCN2↑

IVD volume↑; IVD height↑; MRI signal intensity↑ (74)

BMP-2,7
(BMPR-I/II)

NPC
AFC NP

Exposureab;
KDa

PI3K/Akt↑;
Puma↓

Apoptosis (Apaf-1, cleaved-caspase-3,9)↓;
Senescence (SA-b-Gal, G0/G1 arrest, p16, p53)↓;
Inflammation (IL-6 and TNF-a)↓;
Anabolism (Acan, Col II, SOX-9)↑; Catabolism(MMP-13)↓; DHI↑;

(75–77)

Osteonectin/
SPARC

(CXCR1/2,
TLR-4)

NP
SPARC
KOb NA

Inflammation (CXCL-1, 5)↓; Macrophage activation (ITGAM↓)↑;
Endplate calcification↑; DHI↓

(78, 79)

NP

SPARC
KOb;
Receptor
inhibitiona

NA
Inflammation (C3aR1, COX-2, CCL-7,19)↓;
Catabolism (MMP-3, 13↓, TIMP1, 2↑)↓; Neutral zone stiffness↓;

(80)
fr
↑, increase; ↓, decrease; NA, not available; Exposurea, exposure in vitro; Exposureb, exposure in vivo; KDa, konock down in vitro; KDb, knock down in vivo; KOb, knock out in vivo; Receptor
activationa, receptor activation in vitro; Receptor activationb, receptor activation in vivo; RANK, receptor activator of NF-kB; RANKL, receptor activator of NF-kB ligand; PTH, parathyroid
hormone; PTH1R, parathyroid hormone type 1 receptor; BMP, bone morphogenetic protein; BMPR, bone morphogenetic protein receptor; SPARC, secreted protein acidic and rich in cysteine;
TRAP, tartrate-resistant acid phosphatase type 5; VEGF-A, vascular endothelial growth factor-A; VE-cadherin, vascular endothelial-cadherin; FOXA2, forkhead box protein a2; SOD, superoxide
dismutase; CCN2, communication network factor-2; Apaf-1, apoptotic protease activating factor-1; CXCL, C-X-C motif ligand; ITGAM, integrin subunit alpha M; C3aR1, complement 3a
receptor 1; TIMP,tissue inhibitor of matrix metalloproteinase.
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PTH administration plays a protective role in NP cell activity and disc

homeostasis (69–72, 74). Considering the elevated PTH-1R

expression in NP cells, the role of PTHrP–PTH-1R interactions in

IVDD ought to be elucidated in future research (73, 86).
3.4 Bone morphogenetic proteins

BMPs are osteokines participating in the formation and

maintenance of bone and various non-bone tissues, including

cartilage (51, 87). Various studies confirmed the presence of

BMPs, including BMP-2, 4, 7, and 14 (also known as growth

differentiation factor -5 [GDF-5]), with their receptors (BMPR-I/

II) in the IVD (88–92). Mechanistically, BMP-2 and BMP-7 activate

various signaling pathways, including the Smad/Puma and PI3K/

Akt signaling pathways, to inhibit NP cell apoptosis or senescence

(75, 76). Additionally, GDF-5 deficiency in mice results in notable

matrix abnormalities and disc degeneration, which could be

substantially restored by treatment with recombinant human

GDF5 (93, 94). Due to their anti-inflammatory and pro-

regenerative effects, recombinant human BMPs are used for bone

grafting in vertebral fusion surgery as well as disc tissue engineering

(95, 96).
3.5 Osteonectin

Osteonectin, also known as secreted protein acidic and rich in

cysteine (SPARC), is one of the most abundantly expressed non-

collagenous proteins in mineralized tissues as well as non-

mineralized tissues and orchestrates inflammation and tissue

remodeling through binding to TLR-4, BMPRs, integrin

receptors, and various growth factors. SPARC expression in

human disc cells decreases with age and disc degeneration (97).

Moreover, SPARC-deficient mice exhibit spontaneous disc

degeneration and lower back pain, evidenced by an age-

dependent increase in neuron markers like calcitonin gene-related

peptide and Neuropeptide-Y within the discs and peripheral nerves

(78, 98, 99). Additionally, these mice demonstrate a diminished

lumbar neutral zone, increased spinal stiffness, and reduced spinal

mobility (100). SPARC knockout results in elevated levels of

inflammatory mediators and vascular endothelial growth factor,

which can be mitigated by interventions like exercise and treatment

with TAK-242 (a TLR-4 antagonist) or reparixin (an inhibitor of

CXC chemokine receptors [CXCR1/2]) (80, 101–103). Therefore,

SPARC is a promising target for preventing IVDD in modulating

cell–matrix interactions and governing neural, immune, and

inflammatory pathways (79, 104, 105).
3.6 Periostin

Periostin is a bone turnover-related osteokine that is highly

expressed in collagen-rich tissue—including periosteum—and

mediates tissue remodeling through binding to integrin receptors

and proteoglycans. In human and rat discs, periostin levels
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gradually decrease from the outer AF to the central NP and

increase wi th degenerat ion deve lopment (106–108) .

Mechanistically, periostin promotes NP cell apoptosis via the

Wnt/b-catenin signaling pathway and cellular senescence via the

NF-kB pathway, contributing to the development of IVDD (109,

110). Considering its role as a matricellular protein, further

investigation is needed to elucidate whether periostin participates

in the regulation of disc cell–matrix interactions (111).
3.7 Other potential osteokines

Lipocalin-2 (LCN-2), a glycoprotein secreted by osteoblasts and

adipocytes, functions as a pro-inflammatory factor in obesity-

related metabolic disorders, despite our limited understanding of

the potential LCN-2 receptors (112, 113). A recent study suggested a

correlation between LCN-2 and the expression of inflammation-

related genes in human discs (114). Moreover, upregulated

expression of LCN-2 has been validated to increase MMP-9

activity in AF cells (115). Considering that LCN-2 could function

as a biomechanical and inflammatory sensor in bone–cartilage

crosstalk, its specific role in IVDD needs to be elucidated (9).

Fibroblast growth factor-23 (FGF-23) is the first identified

osteokine that can bind to the tyrosine kinase FGF receptors

(FGFRs) to regulate phosphate and vitamin D metabolism (116).

However, direct evidence linking FGF-23 to IVDD is currently

lacking. Klotho, a crucial cofactor for FGF-23 in the activation of

FGFRs, mitigates inflammation in NP cells and counteracts

extracellular matrix degradation in IVDD (117, 118). Accordingly,

the role of FGF-23 in IVD homeostasis, potentially analogous to that

of Klotho, presents an intriguing avenue for further investigation.
4 Myokines and cardiokines

Similar to adipose tissue and bone, skeletal muscle and cardiac

muscle can function as endocrine organs and secrete tissue-specific

hormones, termed myokines and cardiokines, respectively (119)

(Figure 4, Table 3). It is well recognized that these molecules

mediate cross-organ crosstalk beyond the muscle tissue itself and

orchestrate the multi-tissue response to physical activity and other

stress (112, 113, 119, 136). Given the emerging link between muscle

activity and IVDDprogression, the roles of myokines and cardiokines

in IVDD deserve more attention and in-depth investigation.
4.1 Irisin

Irisin is a well-characterized myokine derived from fibronectin

type III domain-containing protein 5 (FNDC5). It mediates the

health benefits of exercise by binding with integrins. Exercise

elevated irisin levels in plasma and NP tissue and FNDC5/irisin

knockout abolished the protective effects of exercise against IVDD

in a murine model (114). By activating autophagy or large tumor

suppressor kinase (LATS)/yes-associated protein (YAP)/connective

tissue growth factor (CTGF, also known as CCN2) signaling, irisin
frontiersin.org

https://doi.org/10.3389/fendo.2024.1340625
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2024.1340625
can help maintain cellular activity and matrix metabolism balance

and inhibit inflammatory effects, thereby decelerating the

progression of IVDD (115, 117).
4.2 Myostatin

Myostatin (also known as GDF8) functions as a negative

regulator of skeletal muscle growth. It binds to activin receptors
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(ACVRs) and can be expressed in back muscles after IVD injury

(118, 137). However, the role of myostatin in IVDD is incompletely

understood. Myostatin plays an inhibitory role in cartilage

formation and chondrocyte proliferation, and its serum levels

exhibit a positive correlation with the severity of conditions such

as osteoarthritis and rheumatoid arthritis (121, 138). Additionally,

ACVR1 silencing reversed lipopolysaccharide-induced

inflammation and matrix degradation in NP cells, implying the

potential unfavorable impacts of ACVR1 activation by myostatin
FIGURE 4

Schematic plots illustrate the signaling mechanism of other organokines in intervertebral disc cells. Irisin binds Integrin receptors to activate
autophagy and inhibit LATS/YAP pathway to protect disc from degeneration. Apelin, binding APJ receptors to activate PI3K/Akt pathway and induce
TFEB-mediated autophagy to protect disc from degeneration. FSTL-1, binding TLR-4, DIP2A, BMPRs or Wnt receptors, could activate MAPK, JNK,
ERK1/2, NF-kB and Smad pathway to promote disc degeneration. Additionally, the FSTL-1 deficiency inhibit the maintenance of disc homeostasis.
ANP binds NPR to protect cell from apoptosis and oxidative damage by activating NRF2/HO-1 pathway. Ghrelin binds GHSR to activate Akt and
inhibit NF-kB pathways to protect disc from degeneration. GLP-1 or its analogs, binding to GLP-1R, activate PI3K/Akt/mTOR, PI3K/Akt/GSK3b, as well
as inhibiting MAPK/AP-1 pathways to protect disc from degeneration. Amylin binds RAMPs or CTR to activate PI3K/Akt/mTOR pathway and inhibits
MAPK/AP-1 pathways to protect disc from degeneration. Meanwhile, Amylin aggregates could inhibit IL-1b/IL1Ra interactions. ANGPTL4/8 could
bind Integrin receptors or Ig-like receptors to activate NF-kB pathway to promote disc degeneration. Graphic elements were created using
biorender.com.
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upon discs (120). However, earlier studies indicated the

fundamental role of myostatin in disc homeostasis. Myostatin

deficiency in mice resulted in increased muscle weight,

accompanied by endplates ossification at the L4–L5 level and a

notable reduction in proteoglycan content in the endplates and

inner AF (122, 139). Therefore, more comprehensive research is

needed to elucidate the potential mechanism underlying the multi-

faceted role of myostatin–ACVRs interactions in IVDD.
4.3 Apelin

Apelin, identified as the endogenous ligand for the G-protein

coupled receptor APJ, plays a regulatory role across diverse tissues

including skeletal muscle and the cardiovascular system. Apelin and

its receptor APJ are downregulated in degenerative NP tissue (123,

124). Moreover, administration of apelin results in suppressed
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matrix degradation, apoptosis, and inflammation in the presence

of IL-1b and increased matrix anabolism in the presence of the

oxidative stress inducer H2O2 (123, 124). Mechanistically, apelin

enhances the PI3K/Akt pathway and transcription factor EB

(TFEB)-mediated autophagy flux in NP cells (123, 124).

Considering the significant role of apelin in exercise-induced

benefits, exploring whether and how apelin participates in

muscle–disc crosstalk is valuable (140).
4.4 Follistatin-like-1

Follistatin-like-1(FSTL-1) is a kind of myokine and cardiokine

modulating immune responses, cell proliferation, and

differentiation through binding to TLR-4, Wnt receptors, and

various growth factors. FSTL-1 has an adverse effect on disc

homeostasis, accompanied by increased concentrations in the
TABLE 3 Main characteristics of other organokines modulating IVD homeostasis and degeneration.

Organokines
(Receptors)

Target Model
Signaling
pathway

Cellular behavior or phenotype induced
by organokines

Citation

Periostin
(Wnt, Integrins)

NPC
NP

Exposureb;
KDb; Inhibitora

Wnt/b-catenin↑;
NF-kB↑

Apoptosis (Caspase-9, cleaved-caspase-3, Bcl-2, Bax)↑;
Senescence (b-Gal, IL-1b, IL-6, IL-8)↑;
Anabolism (Acan, Col II)↓; Catabolism (MMP-13)↑; Pfirrmann grade↑

(109, 110)

Irisin/FNDC5
(Integrin
receptors)

NPC
FNDC5 KOb;

OEa,b
AMPK/mTOR↑

Autophagy (p62, LC3B)↑;
Senescence (SA-b-gal, p16)↓; Apoptosis (C-caspase-3)↓;
Histological grades↓; DHI↑

(114)

NPC Exposurea LATS/YAP/CTGF↑
Anabolism (Acan, Col II)↓; Catabolism (MMP-9, 13↑, ADAMTS-4, 5↑,
TIMP-1, 3↓)↑

(115, 117)

Myostatin/
GDF8 (ACVR1)

NPC Receptor KDa NA
Apoptosis↑; Inflammation (NF-a, IL-1b, IL-6)↑;
Anabolism (Acan, Col II)↑

(120)

IVD Myostatin KOb NA
Chondrogenesis (Col II, SOX-9, proteoglycan)↓;
Endplate ossification↓

(121, 122)

Apelin
(APJ)

NPC Exposurea TFEB↑ Autophagy (LC3B, p62)↑; Anabolism (Acan, Col II)↑ (123)

NPC Exposurea PI3K/Akt↑
Apoptosis↓; Inflammation (IL-6, TNF-a)↓;
Anabolism (Acan, Col II, SOX9)↑; Catabolism (MMP-3, 13)↓

(124)

FSTL-1
(TLR-4, etc.)

NPC Exposurea
MAPK/ERK1/2↑;
JNK↑; NF-kB↑

Inflammation (TNF-a, IL-1b, IL-6, COX-2, iNOS)↑;
Catabolism (MMP-13)↑

(125, 126)

NP KDb Smad1/5/8↑; ERK1/
2↑; NF-kB↑

Inflammation (COX-2, iNOS, MMP-13, ADAMTS-5)↓;
Cartilage area mean density↑

(127)

ANP
(NPR)

CEPC Exposurea Nrf2/HO-1↑
Apoptosis (Bcl-2, Bax, C-caspase-3)↓;
Oxidative Stress (MDA, SOD, NO)↓

(128)

Amylin/IAPP
(RAMPs or CTR)

Disc cell
IVD

Exposurea; KDa
IL-1b/IL-1Ra;
PI3K/Akt/mTOR↑;
MAPK/JNK↑

Apoptosis (Caspase-3↓, Fas/FasL↓, VDAC-1↓, cyto-C↓, Bax↓; Bcl-2↑)↓;
Anabolism (Acan, Col II, SOX9)↑; Catabolism (MMP3, 9, 13;
ADAMTS5)↓; Histological grades↓

(129–131)

Ghrelin
(GHSR)

NP Exposurea,b
NF-kB↓
Akt↑

Inflammations(MMP13, ADAMTS-5, TNF-a, iNOS)↓;
Anabolism(Acan, Col II, SOX-9)↑; Pfirrmann grade↓

(132)

GLP-1
(GLP-1R)

NPC
Receptor
activationb

MAPK/AP-1↓
Anabolism(Acan, Col II, SOX9)↑; Catabolism (ADAMTS5, MMP3, 13)↓;
Histological scores↓; Pfirrmann grade↓

(133)

NP
Receptor
activationa

PI3K/Akt/
mTOR& GSK3b↑

Apoptosis (Caspase-3)↓ (134, 135)
fr
↑, increase; ↓, decrease; NA, not available; Exposurea, exposure in vitro; Exposureb, exposure in vivo; KDa, konock down in vitro; KDb, knock down in vivo; KOb, knock out in vivo; Receptor
activationa, receptor activation in vitro; Receptor activationb, receptor activation in vivo; ACVR1, Activin receptors-1; NPR, Natriuretic peptide receptors; RAMPs, Receptor activity modifying
proteins; CTR, C-terminal peptide; AP-1, activator protein 1; GSK3b, Glycogen synthase kinase-3 beta; VDAC-1, Voltage-dependent anion channel-1; Bcl-2, B cell CLL/lymphoma-2; Bax, Bcl-2-
associated X protein.
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serum of IVDD patients, discs of rats with IVDD, and the

cerebrosp ina l fluid of dogs wi th IVDD (125 , 141) .

Mechanistically, FSTL-1 promotes NP cell inflammation by

activating the MAPK, Smads, or NF-kB signaling pathway (125,

141). Interestingly, the knockout of FSTL-1 during embryonic

development leads to a decrease in vertebral cartilage and matrix

anabolism, indicating its fundamental role in early IVD formation

(142). Moreover, FSTL-1 may play diverse roles in disc

development and maturation, given that it could mediate the

differentiation of pre-cartilaginous stem cells into NP-like

cells (143).
4.5 Atrial natriuretic peptide

As a typical cardiokine, ANP binds to natriuretic peptide

receptors (NPRs) to induce diuretic, natriuretic, and vasodilating

effects and regulate the renin–angiotensin–aldosterone system

(144). NPR mutations can result in impaired cartilage

development, potentially leading to secondary degenerative

changes and suboptimal joint development (145, 146). Recent

studies indicated that ANP inhibited oxidative damage and cell

death in endplates by activating the nuclear factor erythroid 2-

related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling

pathway (128). Additionally, given the presence and adverse

effects of the local tissue renin–angiotensin system (tRAS) in

discs, whether ANP has a protective impact via suppressing the

tRAS in IVDD is an interesting avenue for future research

(147–149).
5 Gastrointestinal hormones
and hepatokines

In recent years, the interplay between the digestive system and

disc homeostasis has received increasing attention, with a special

focus on the role of the gut microbiota in the gastrointestinal

endocrine system (150–153). It is worth noting that the endocrine

functions of the digestive system facilitate complex inter-organ

communication through various gastrointestinal hormones (such

as Ghrelin and Amylin) and hepatokines (Figure 4, Table 3) (154,

155). Insight into how these endocrine factors influence disc

physiology can expand our understanding of IVDD.
5.1 Ghrelin

Ghrelin is a circulating brain–gut peptide hormone that

promotes growth hormone secretion via binding to the growth

hormone secretagogue receptor (GHSR) and participates in the

regulation of insulin resistance, obesity, and inflammation. Ghrelin

was found present in the NP tissue, and ghrelin administration

demonstrated a protective effect in a rabbit IVDD model (132).

Mechanistically, ghrelin suppresses IL-1b-induced catabolism and

inflammatory cytokine production by inhibiting the NF-kB
pathway, while promoting anabolism via Akt signaling (132).
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5.2 Glucagon-like peptide-1

Glucagon-like peptide-1(GLP-1), a peptide hormone secreted

by intestinal L-cells, has broad pharmacological potential for

managing type 2 diabetes mellitus and metabolic syndrome-

related disorders by binding to its receptor -GLP-1R. GLP-1R

activation leads to the inhibition of inflammation and apoptosis

through downstream pathways including the PKA, PKC, and

extracellular signal-regulated kinase 1/2 (ERK1/2) signaling

pathways (156, 157). Notably, GLP-1R activation by liraglutide (a

long-acting GLP-1 analog) has been shown to protect NP cells

against hyperglycemia-induced apoptosis via the PI3K/Akt

signaling pathway (134, 135). Administration of another GLP-1R

agonist, exenatide, in discs promotes matrix synthesis and mitigates

oxidative stress-induced matrix catabolism via inhibiting the

activation of MAPK and activator protein-1 (AP-1) activity (133).

Considering the therapeutic potential of GLP-1 activation, there is a

need to further elucidate the role of endogenous GLP-1 in IVDD.
5.3 Amylin

Amylin, also known as islet amyloid polypeptide (IAPP), is a

peptide that is predominantly secreted by pancreatic islet b-cells
and participates in the development of diabetes through receptor

activity-modifying proteins (RAMPs) or the calcitonin receptor

(CTR) to inhibit insulin and glucagon secretion. During IVDD

progression, amylin and its receptors are downregulated in the NP

and AF cells, while amylin aggregates accumulate in NP tissues

(129–131). Amylin overexpression in NP cells can maintain matrix

metabolism balance and control the autophagy–apoptosis crosstalk

by the PI3K/Akt/mTOR and MAPK signaling pathways (130).

Meanwhile, these protective effects could be augmented by

neutralizing IL-1b/IL-1 receptor antagonist (IL-1Ra) signaling

induced by amylin aggregation (129). Furthermore, the amylin

analog pramlintide showed the ability to relieve matrix

metabolism impairment and enhance cell survival via a

mitochondrial-dependent apoptotic pathway in NP cells (158).

Additionally, amylin activates Akt/mTOR signaling to protect AF

cells from death through the death receptor Fas/FasL and the

mitochondrial-dependent apoptotic pathway (131).
5.4 Hepatokines

Hepatokines, such as angiopoietin-like proteins (ANGPTLs) and

fetuin-A (also known as a2-HS-glycoprotein), are hormone-like

proteins secreted by hepatocytes (159). ANGPTLs act as modulators

of lipid metabolism, angiogenesis, and inflammation via binding to

integrin receptors and immunoglobulin-like receptors. However, their

roles in regulating disc homeostasis are poorly understood. Recent

research illustrated the correlation between the upregulation of

ANGPTL4/8 and the severity of disc degeneration (160, 161).

Mechanistically, ANGPTL4/8 appears to promote matrix

degradation and the production of inflammatory cytokines like TNF-

a through the activation of the NF-kB signaling pathway (161, 162).
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Fetuin-A functions as an indirect inhibitor of ectopic mineralization

and inflammation. Recent studies demonstrated that intra-articular

injection of fetuin-A derivatives leads to improved osteoarthritis scores

and mobility in a rat osteoarthritis model (163). Thus, it is worthwhile

to explore the role of fetuin-A in IVDD.
6 Regulatory factors of organokines

Organokines, serving as the potential communicator between

the extra discal tissues and the disc, participate in pathological

processes such as cell death, inflammation, and matrix loss, thereby

contributing to IVDD onset and progression. Current evidence

suggests that the release and interactions of organokines could be

regulated by multiple factors, making their impact challenging to

quantify. Lifestyle factors such as exercise, diet, stress, sleep, and

microbiome profoundly influence organokines production,

affecting disc homeostasis and susceptibility to IVDD-related

diseases (6, 164–166). Exercise, known as beneficial for IVD

homeostasis, can modulate the release and activity of organ

factors like irisin, ANGPTL4, osteocalcin, and adiponectin (113,

167). Notedly, acute exercise can fast change levels of myokines,

hepatokines, osteokines, and immune cytokines, while long-term

training alters baseline adipokines (113, 167). For instance, exercise

normalizes leptin and lowers resistin, reducing inflammation and

insulin resistance, which may help protect against IVDD (113).

Considering the individual variability in response, further research

is essential to explore pharmacological mimics of exercise on

organokines modulation for IVDD treatments.

Diet type or pattern have potential protective effects on disc

homeostasis and degeneration, taking Dietary supplements such as n-

3 fatty acids (FAs) and bioactive dietary polyphenol preparations

(BDPP) for example (168, 169). Interestingly, recent studies indicate

that dietary patterns and types are closely related to adipokine

secretion (170). Mediterranean, low-fat, and low-carbohydrate diets

have been found associated with decreased levels of leptin and vaspin

and increased adiponectin (170). Leptin and vaspin may adversely

affect disc homeostasis maintenance, while the role of adiponectin

remains controversial. Therefore, future research may focus on

identifying whether the secretion type, quantity, and activity of

organokines underly the links between diet types, patterns, or

nutritional supplements and disc homeostasis.
7 Conclusion and future directions

A variety of organokines from adipose, bone, muscle, or

digestive tissues play an adverse or protective role in

intervertebral disc homeostasis. Most studies have focused on the

impact on cells or tissue of single origin and have not considered

overall disc or extra discal dynamics. Functional studies using cell

cultures and animal models are encouraged to comprehensively

evaluate the role of organokines in IVDD, especially cross-organ

communication. The impact and detailed mechanisms of

organokines-mediated interactions warrant further investigation

under both physiological and pathological conditions.
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Future research should prioritize developing pharmacological

agents or biologics designed to modulate organokines activity,

agonists or antagonists for receptors of organokines and

inhibitors for organokines signaling pathways for potential

clinical applications. Current investigations into the regulation of

organokines by exercise, diet, and stress predominantly rely on in

vitro or animal models. Moreover, it is essential to elucidate which

organokines paly dominant roles on disc cell homeostasis and

matrix metabolism balance. Consequently, future studies need to

be more holistic, examining the impact of specific lifestyle choices

on the entire spectrum of organokines, ideally assessing both local

disc tissue and systemic levels. Given that many aspects of these

molecules in humans remain under-explored or contentious—such

as their in vivo half-life, protein binding in circulation, effective

concentration in disc tissues, receptor interactions, and overall

impact on disc health—clinical trials face a considerable

journey ahead.
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AdipoRs Adiponectin receptors

ACVRs Activin receptors

AdipoR-2 Adiponectin receptor-2

AdipoR-1 Adiponectin receptor-1

Adipo-sMV Small extracellular vesicles derived from adipocytes

AF Annulus fibrosus

AMPK AMP-activated protein kinase

ANGPTLs Angiopoietin-like proteins

ANP Atrial natriuretic peptide

AP-1 Activator protein-1

BMPs Bone morphogenetic proteins

CEP Cartilage endplates

CMKLR1 Chemokine-like receptor 1

CTGF Connective-tissue growth factor

CTR Calcitonin receptor

DKK-1 Dickkopf-1

DM Diabetes mellitus

ECM Extracellular matrix

ERK Extracellular signal-regulated kinase

FGF Fibroblast growth factor

FGFRs FGF receptors

FNDC5 Fibronectin type III domain-containing protein 5

GDF5 Growth differentiation Factor 5

GHSR growth hormone secretagogue receptor

GLP-1 Glucagon-like peptide-1

GLP-1R Glucagon-like peptide-1 receptor

HO-1 Heme oxygenase-1

IL-17 Interleukin-17

IL-6 Interleukin-6

IVD Intervertebral disc

IVDD Intervertebral disc degeneration

JNK C-Jun N-terminal kinse

LATS Latency-associated transcript

LCN-2 Lipocalin-2

lepR Leptin receptor

LRPs Lipoprotein receptor-related proteins

MAPK Mitogen-activated protein kinase

MMP Matrix metalloproteinase
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MMP-13 Matrix metalloproteinase-13

MRI Magnetic resonance imaging

mTOR Mammalian TOR

NAD Nicotinamide adenine dinucleotide

NAMPT Nicotinamide-phosphate ribosyl transferase

NF-kB Transcription factor-Kb

NLRP3 NLR family pyrin domain containing 3

NP Nucleus pulposus

NPR Natriuretic peptide receptors

Nrf2 Nuclear factor E2-related factor 2

OA Osteoarthritis

OPG Osteoprotegerin

PGRN Progranulin

PI3K Phosphoinositide 3-kinase

PKA protein kinase A

PKC protein kinase C

PTH Parathyroid hormone

PTH1R Parathyroid hormone 1 receptor

PTHrP Parathyroid hormone Related Protein

RAMPs Receptor activity modifying proteins

rhGDF-5 Recombinant human growth differentiation factor 5

SPARC Secreted protein acidic and rich in cysteine

TGF-b Transforming growth factor-b

TLR-4 Toll-like receptor 4

TNF Tumor necrosis Factor

TNFR1 tumor necrosis factor receptors 1

TNFR2 tumor necrosis factor receptors 2

TNFRs tumor necrosis factor receptors

TNF-a Tumor necrosis Factor Alpha

tRAS Tissue renin–angiotensin system
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